
. 
Combinatorics of RNA Hairpins and Cloverleaves 

By Michael S. Waterman 

I 

For an abstract single-stranded RNA, a combinatorial analysis is given for two 
important structures, hairpins and cloverleaves. The number of possible hairpins 
is 0(2"), while the number of possible three-petal cloverleaves is O(n32"), and 
the number of possible general cloverleaves is O((2.21)"). 

1. Introduction 

Determining the shape a single-stranded RNA takes in solution is an important 
problem in molecular biology. The given for the problem is the primary 
structure or sequence of bases of the RNA. Although RNA shape has been 
inferred from x-ray diffraction data [3], usually the next step is to study the 
secondary structure of the RNA. Secondary structure is a class of two-dimen- 
sional graphs in which the sequence has formed helical regions. The final step is 
to infer tertiary structure of the RNA, which is the three-dimensional shape. 

Although no algorithms have been proposed for prediction of tertiary struc- 
ture, several have been devised for secondary structure. Most of these sec- 
ondary-structure algorithms fail to search all possible graphs for the optimal 
structure. Recent work of the author [4] does present an algorithm to efficiently 
search secondary structure, but that work will not be presented here. 

Instead, we explore in detail the number of the two major secondary struc- 
tures: hairpins and cloverleaves. An example of each of these structures is given 
in Fig. 1. The problem we will address and answer is the number of each type of 
structure for an arbitrary-length RNA. The indicated graphs must be labeled, 
since these molecules have a polarity (the 3' end to the 5' end), and only bases of 

with basej. In our discussion, we allow all possible bondings. 
n opposite polarity bond. For a real RNA, base i may or may not be able to bond 
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Figure 1. secondary structure: (a) hairpin, (b) cloverleaf. The primary structure can be found by 
beginning at the Iower left hand comer and traversing the outside of the diagrams in a clockwise 
direction. 

This study shows that there are a large number of configurations to be 
searched over. Thus, a study such as [2] can be considered to give lower bounds 
to the amount of possible secondary structure. 

2. Hairpins 

In this section, we derive the number of hairpins for an RNA (or string) of 
length n. As Fig. 1 indicates, there are two major components to a hairpin: the 
loop and the stem. The only (physical) constraint we impose is that any loop 
must have m or more bases. Other meaningful constraints could be imposed, 
such as requiring all helical regions to have at least two bonds, but that will not 
be done here. 

First of all, we prove a useful lemma on the number of stems. Let K(a,b) be 
the number of stems with a bases on one side, b bases on the other, and the lead 
(or topmost) bases bound. 

LEMMA. For K(a,b) defined as abme, 

Prooj After the lead bases are bound, there are a - 1 bases on one side and 
b - 1 bases on the other. Since the bonds cannot “cross” each other, achieving k 
bonds is equivalent to choosing k elements from a - 1 and k elements from 
b -  1. Thus 

K(a,b)  = ( ai1)( ‘il) = ( a + b - 2 ) .  a-1 
k > O  

Next the lemma is utilized to count the hairpins. 

THEOREM 1. Let H(n) be the number of hairpins for a string of length n with m 
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or more bases in the loop. Then 
H(n) = 2 n - m - 1  - 1, n > m + l .  

Proof: Let the string of length n be denoted by 1’- 2 - 3 - - - - n. H(n) is the 
sum of the number of hairpins whose stem joins 1 - 2 - * - * - i and j - (j + 1) 
-... - n ( i  and j are bonded). Of course, j- i -  1 > m  to satisfy the loop 
constraint. Thus 

. 

n - m - l  n - i - m - l  

= c i -  1 7 =O (y) 
n - m - l  = w  i 1. 

1 - 1  

3. Cloverleaves 

Next we consider the number of cloverleaves. Notice that a cloverleaf is a 
modified hairpin, with a stem as in a hairpin but with a “loop” that is a 
sequence of three hairpins joined by the primary structure. It is possible to allow 
more than three hairpins in the “loop.” These possibilities are indicated in 
Fig. 2. 

Due to difficulties in calculation, we set m= 1 in this section. Below we refer 
to the three hairpin “loop” as a three-petal cloverleaf and to the more general 
situation as a general Cloverleaf: 

THEOREM 2. The number of three-petal clovedeaues, C3(n), satisfies 

where a,, - b,, means Iim,,-,m a,, b,, = 1. 

Proof: Assume the loop of the cloverleaf has v bases, and kj is bonded to 4, 
where 1 < k, 4 I ,  <k2 4 I ,  <k3 < I 3  < v. Then H(4 - kj - 1) + 1 structures can form 
for each of these bonds. Since H(n)  is of convenient form when n > m  + 1 =2, 
assume 4. - ki > 3. The number of loop structures, L3(v), is then seen to be 

v3 65 v 
6 6 

- - v22v-9 - 2 9 ~ 2 ’ - ~  + 1092”-* - - + 2v2 - - + 19. 
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Figure 2. Cloverleaf “loops”: (a) 3 hairpins, (a) more than 3 hairpins. 

Now, C3(n) satisfies 

To proceed to the general cloverleaf, the number of general loop structures 
Lg(v) will be needed. Lg(v) was calculated in [4] to be 

LJV) - p - w ,  

whereA=2.2055... ~ ( 2 , 3 ) i s  asolution of ~ ~ - 2 x ~ - l = O a n d p = A - ~ + 3 A - ~ +  
2-4[2A(A- 2)-’-2A-’ - 8A-z-24A-3]. This calculation was made by applica- 
tion of the renewal theorem of Feller [l, p. 3301. 

THEOREM 3. The number of general clowrleaves, Cg(n), satisfies 

Cg( n )  - [ 4p(A - 2) ] - ‘An+ 
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Proof: Cg(n) satisfies 

95 

n 
E p - I  hk22n-k2-2 

k2-0 

=-( 
4p A-2 

Now, let 

1 1  1 +--+-. 4 ~ n  1 1 1 
0, =-= -+--+... (a)" 2" A 2n-1 A"-' 2 A" 

Then 

and, applying the renewal theorem of Feller [ 1, p. 3301 with bn = 1 /2", fl = 1 /A, 
f;,-0 for i >  1, 

' 2; 
n > O  

u, +- = A. 
E 4 
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Therefore 
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and the proof is complete. 
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