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I 

A random walk on the set of integers {0,1,2, ..., u }  with absorbing barriers at 0 
and a is considered. The transition times from the integers z (O<z<a) are 
random variables with finite moments. The nth moment of the time to absorp- 
tion at a, Dz,,, conditioned on the walk starting at z and being absorbed at a, is 
discussed, and a difference equation with boundary values and initial values for 
Dz,, is given. It is solved in several special cases. The problem is motivated by 
questions from biology about tumor growth and multigene evolution which are 
discussed. 

. 

I. Introduction 

We derive a formula for the mean absorption time for a random walk on a finite 
set of integers with absorbing barriers at both ends. The mean absorption time is 
conditioned on absorption at the right end. The time epoch of the steps of the 
walk is a random variable with values in (0,m) and finite mean. This problem 
arose from two mathematical models in biology, which are discussed. A method 
is presented of obtaining higher moments. Stern [lo] has derived similar for- 
mulae for the first moment in the special case of steps in unit times (gambler’s 
ruin problem). A general formula is given for the higher moments in the 
symmetric gambler’s ruin problem conditioned on absorption at an end point. 
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11. Applications 

The first mathematical model to which the formula (1) below has been applied 
concerns the growth of a cancer tumor. A tumor is a noninflamed abnormal 
mass of tissue. A cancer tumor is thought of as arising from one wayward cell 
that has lost the ability to control itself. This is the model used for certain simple 
cases. The wayward cell starts reproducing without regard to the presence of 
other cells. The cell progeny may all die before catastrophe overtakes the host 
organism, or may produce a family tree of descendants (called a clone) large 
enough to be noticeable to the host organism, in which case the descendants 
become a tumor. It is the tumor that is noticeable, not the early cells that died 
without progeny. It is of interest to estimate the time it takes for one wayward 
cell to reach tumor size. 

Bell [ 11 has posed the problem of modeling tumor growth and answering the 
above and related questions. A set of models can be developed as follows. 
Suppose each cell has the probability p (O<p < 1) of dividing to produce two 
identical new cells, and probability q= 1 - p  of dying. Of interest is the event of 
a cell becoming, by this chance mechanism, a macroscopic clone of N cells. TO 
complete this model, division and death times must be specified. The question of 
interest is the time it takes for one wayward cell to reach a clone of N cells. The 
natural model for this problem is a birth and death process with linear growth. 

A second biological model that also leads to a birth and death process with 
linear growth was suggested by Perelson and Bell [8]. This model is based on the 
evolution process of repeated copies of genes by unequal crossover. For infor- 
mation refer to the article by Smith [9]. The existence of multiple copies of genes 
is an important biological fact. For our purposes, we may regard a gene as a 
subsequence of a nucleotide sequence (N-sequence), where an N-sequence is a 
finite sequence over an alphabet of four letters. The gene is a code for some 
biological function. Figure l(a) shows how an N-sequence might be diagrammed 
with the genes numbered as shown. The N-sequence doubles preparatory to 
mitosis [Fig. l(b)]. Normally, the N-sequence pair then divides; one pair goes to 
one cell of the daughter cells, and the other N-sequence goes to the other 
daughter cell. Occasionally, the phenomenon of crossing over takes place. 
Homologous points, such as the dividing point of genes 2 and 3, will become 
crossed. Less often the crossing over will be unequal. For example, the dividing 
point of genes 1 and 2 in N-sequence 1 will cross over the dividing point of 
genes 2 and 3 in chromosome 2 [Fig. l(c)]. The N-sequences then separate, as 
shown in Fig. I(d). In N-sequence 2’, gene 2 appears twice, whereas in N -  
sequence l’, gene 2 does not appear. Thus, in one of the N-sequences a gene has 
been duplicated. The process can be repeated. There exist genes that have lo7 
copies in one organism. If we are given the probabilities and time epoch 
distribution of such crossovers and know that lo7 copies have been made, we 
use the methods shown below to estimate the time of appearance of the first 
gene from which the rest are copies. 

t 
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Gene number 1 2 3 4 ... 

N-sequence 1 
---- a. 

1 2 3 4 ... 
-0- - b. N-sequence 1 

N-sequence2 - - - 
1 2 3 4 ... 
1 3 4 ... 

N-sequence 1 

N-sequence 2 
C. 

1 2 3 4 ... 
1 3 4 ... 

N-sequence 1' 
d. 

1 2 2 3 4 ... N-sequence 2' 

Figure 1. Gene duplication by unequal crossing over. 

111. Random walk model and difference equation 

Consider a random walk process on the set {0,1,2, ..., a} with 

O < z < a ,  O < p < l ,  I P(z-+z + 1) =p, 
P(z+t + 1)= 4' 1 -p ,  

and 0 and a as absorbing barriers. If the arrival time at an integer z is I ,  then the 
transition time at z is t + 7,, where 7z is a random variable depending on z with 
values in ( 0 , ~ )  and with finite moments E(7,"). If P, is the probability of 
absorption at a of a random walk which starts at z, then from Feller [5, p. 3451: 

and 
Z 

P,',, P = 4. 

Let D,,, be the nth moment of the duration of a random walk which starts at 
z, given that the walk terminates at a. By conditioning on the first step, it is seen 
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that D,,, satisfies the difference equation 

PzD2.n = ~ ~ z + l D z + l , n  + @ z - ~ D z - ~ , n  

n-1 

with the boundary conditions 

PODO,, = Do,, = 0, 

and the initial conditions 

Dz.o = 1. 

(In every case in this note, O<z <a, and n is a positive integer.) On putting 

M2.n = PzDz,n, 

one obtains from (1) 

n - 1  

with the boundary conditions 

M 0 , n  = Ma,, = 0, 

and the initial conditions 

(4) 

IV. Case of birth and death proceses 

For linear birth and death processes, 

c"n! 
z" ' E(7,") = - (7) 

where c is a constant. For such processes, and forp#q, 
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Applications of (8) are given in [l] and [8]. For large a, 

where y is Euler's constant. 
For p = q=  1 2 '  

and 

C2 

3 = - { a2 - 2' - 6[ F(u) - F ( z ) ]  }, 

where F(z) is the digamma function. Application of (3) to determine Mz,3 from 
the values of M,,o, M,, I ,  and M,,2 requires the determination of 

1 A-2- F(z), 
Z 

which is not expressible in finite terms. For large n, the term involving the 
highest power of z in D,,, is 

( - 2czy 
(n+ I)! 

c 

V. Gambler's ruin problem 

The gambler's ruin problem [E(733 11 is not relevant to the biological applica- 
tions discussed above, but is discussed here because the formulae (1) or (3) 
subsume it. We consider first the case p = q = 5. Then (3) reduces to 

" - 1  

with 
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Z 
w , o  = - a '  

It is easy to show that 

J= 1 

where ( z ) ~  is the falling factorial z(z - 1). - ( z  - j  + 1) and 

b 0 1  =-  ' a '  

Then 

n > 2 (3<1<2n- l ) ,  

and 

b2L-I' 
bz",+' = - - 2n+1'  

n 2 1 .  

(Unassigned b's have the value zero.) For example, 
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and 

(The values for b,', bi, and bi have been obtained by Stern [ 101.) In addition, one 
has 

7a4-20a+ 13 
45a ' 6: = 

and 

1 b 2 - - .  - 15a 

For large n, the term involving the highest power of z in D,,, is 

( - z2), 
(2n + l)!! 

For p f q ,  (2)-(5) give, with r = q / p ,  

which Stern [ 101 also obtains. 

VI. Remarks 

1. The moments of the expected time to absorption at z=O conditioned on 
absorption at z = 0 are obtained by replacing z with a - z and interchanging p 
and q in the above formulae. More details of the derivation of the above 
formulae are given in [2]. The solutions of these difference equations are best 
obtained by the methods in Jordan's book [6]. 

2. Everett and Stein [4] have investigated the combinatorial properties of the 
numbers Pa,/, which are the number of distinct walks that start at z =  1 and 
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arrive at a without z=O and have exactly I steps in the negative direction. In 
terms of Pa,/ one has for the classical ruin problem 

m 

Dl ,n  = (a+21- 1)"Pa,,pa+'-'q'. 
1=0 

Karni [7] has obtained a formula for the probability ON,z  for a walk of N steps 
on a finite set of integers (with absorbing barriers at both ends) conditioned on 
absorption at a given end. The wak starts at the integer z. In terms of ON,, ,  one 
has for the classical ruin problem 
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