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This recurrence rule generates the sequence 1, 1, 2, 4, 9, 21, 
51, 127, 323, 835,. .. , which is #456 is Sloane [3]. A recent compre- 
hensive article [4] calls these integers-with some justification-the Motzkin 
numbers, and gives several combinatorial settings in which the numbers occur; 
superficially at least, the present setting is new. As remarked in [4], the Motzkin 
numbers m,, are given explicitly by 

where 

the familiar Catalan numbers. We shall give our own derivation of Q. ( 5 )  in 
Section 3 below. 

Finally, we note that the derivation of Q. (1) from the combinatorial model is 
immediate. Add a new point-n the right, say-to the previous set of n points, If 
the new point (with label n + 1) is not paired with any other point, the contribu- 
tion to S,,+,(m), the new total number of configurations, is S,,(rn). If the new 
point is paired with the leftmost point j = 1, the contribution is S,,-*(m), and so on 
until it is paired with a point whose label j satisfies m + 3 S j S n - 3 ;  then the 
point set is divided into two parts, on each of which nontrivial pairings can occur, 
giving rise to the nonvanishing quadratic terms in Q. (1). Introducing the 
boundary conditions (2), we may write the recurrence in precisely the form (1). 
The same derivation holds for the special case m = 0, yielding Eqs. (3) and (4). 

For the convenience of the reader we give in Table 1 a short list of values of 
S,,(m) for the range O s m s 6 ,  m S n n 2 0 .  

3. The explicit solution 

For given m 2 1 we write S,, = S,,(m) and introduce the generating function 

y = snxn = xm + sm+ix"'+i, 
,1 = O  j=1  

(7) 

. the second expression following from the boundary condition (2). Then, using the 
recurrence rule, we may write 

y2 = (Srn+l - s, - s,- 1 - * * - SO)xm-l 

+(S,+2-S,+,-Srn- * - -  -SJX" 
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Table 1. S,(m) 

0 1 2 3 4 5 6 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
IS 
16 
17 
18 
19 
20 

1 
1 
2 
4 
9 

21 
5 1  

127 
323 
835 

2188 
5798 

15511 
41835 

113634 
310572 
853467 

2356779 
6536382 

18 199284 
508520 19 

1 
1 
2 
4 
8 

17 
37 
82 

185 
423 
978 

2283 
5373 

12735 
30372 
72832 

175502 
424748 

1032004 
25 16347 

1 
1 
2 
4 
8 

16 
33 
69 

146 
312 
673 

1463 
3202 
7050 

15605 
34705 
775 11 

173779 
390966 

1 
1 
2 
4 
8 

16 
32 
65 

133 
274 
568 

1184 
248 1 
5223 

11042 
23434 
49908 

106633 

1 
1 1 
2 1 1 
4 2' 1 
8 4 2 

16 8 4 
32 16 8 
64 32 16 

64 32 129 
26 1 128 64 
530 257 128 

1080 517 256 
2208 1042 513 
4528 2104 1029 
9313 4256 2066 

19207 8624 4152 
39714 17504 8352 

Rearranging, we obtain 

y~=(sm+lx"'- '+sm+2x"'+* * e) 

-(SmXm-'+Sm+~X" + * ) 

-(Sm-*X"-'+SmXm+ * .  a )  

- (Soxm-l + SIXrn + - * ) 

Defining 

we write this functional equation in the form 

F(x, y)=x2yZ-y/T(m+1)+xm =O. 

This also holds for rn = 0. The formal solution of Eq. (9) is 

1 
( 1 - ~ 1 - 4 ~ " + ~ T ~ ( r n +  1)). 

=2xzT(m + 1) 
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Now for arbitrary p and T, 

265 

+(I - J 1 -  2 2 ~ p T 2 ) =  

j - 1  

with cj the Catalan numbers (6). Eq. (10) then becomes 

,, = 1 Cj+,~(m+2)J+mT2i+1(m + 1). 
j =O 

We now introduce the “convolved generalized Fibonacci numbers” fn(r, k) by 
means of the definition 

note that for r = 2, k = 1 these are the usual Fibonacci numbers. 

solution of the recurrence (1) is 
On comparing Eqs. (12) and (7) we see that, in terms of the f,,(r, k), the 

sn (m) = ci+ Ifq (m + 1 ,2 j  + I), q n - m - mj - 2j. (14) 
j -0 

From the definition (13) it is clear that 

k + n - 1  
f . ( l .k )=(  ), 

whence 

so that for rn = O  Eq. (14) reduces to Eq. (3, the explicit expression for the 
Motzkin numbers given in [4]. 

4 

The numbers fn(r, k) are not extensively tabulated. There are short tables in [3] 
for r = 2, k d 6, but these contain some errors; one may also find there values of 
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c 

f,,(r, l), 2 s r S 5, for a small range of n. For r = 1, of course, the fn(r ,  k) reduce to 
binomial coefficients, as given in Eq. (15) above. 

To get an explicit formula for fn(r, k), we start from the definition (13) and we 
the binomial theorem, obtaining 

T k ( r ) =  2 ( k + j - 1  ) x i ( l + x + - - . + x " ) i .  
i =O 

' 

To simplify the notation, we introduce the three-index constants Cr.i,i by means 
of 

It can be shown that 

, (O<iG(r- l ) j ) .  
S =o 

Setting i = n - j ,  we have 

This formula is useful for obtaining selected values of f,,(r, k); to prepare a table, 
however, it is better to use the following recurrence rules. 

fo(r, 1) = 1 
flk 1) = 1 
f*k 1) = 2 

k = l  (19) 

These rules follow trivially from Eq. (13) on setting T'(r) = T(r)T''-'(r). In Table 
2 we list values of f,,(2,2j + 1) over a range just sufficient to check the values of 
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Multiplying the second equation by s and subtracting the first equation from it, we 
obtain 

, 2r(m+2)12+ r + .  . . + p + l =  1. (23) 

We now consider some special cases. 
(a) rn = 0. As remarked in Section 2, these are the Motzkin numbers, given 

explicitly by formula (5 ) .  The solution of (23) is r =$, and the folklore theorem 
gives 

s2 = ,.m-2 

At n = 149, formula (24) yields S149(0)-9.9395 X 

accuracy, is 9.7792 x 

(14) we obtain 

the correct value, to this 

(b) rn = 1. This is the case of greatest general interest (cf. [l, 21). From formula 

To get the asymptotic formula, we first observe that the system (23) reduces to 

s2=1/r, 2rf+r+r2=1, 

whence s4-s2-2s-1 =O=(s2-s-1)(s2+s+1). The appropriate root is s =  

+( 1 + A), so that l / r  = $(3 + A). Further, 

5 + 3 h  
Fx(r, s) = 2rs2 + (1 + 2r)s + 1 = 3 + s + 2rs = - 

2 '  

F,, (r, s) = 2r2 = 7 - 3 h .  

Substitution of these values into (22) gives 

It seems quite laborious to derive (26) directly from (25), that is, without using the 
folklore theorem. At n = 150 this expression gives Sn(l)- 2.9872 x the 
correct value, to this accuracy, is 2.9397 X los9. 

(c) rn =2. From Q. (14), 

3.2j+1) sn(2) = C. 1+1 f n-4j-2. 
j =O 

The system (23) becomes 

s = 1, r3  + 3r2+ r -  1 = 0 = (r + l ) (r2+ 2r - l), 
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so that r =h- 1, l / r =  1+&, and 

F,.(r, s) = 1 + 6r + 3r2 = 4, F,, ( r ,  s) = 6 - 4 h .  

This leads to 

Evaluating at n = 150, S,(2) - 1.2446 x los4; the correct value, to this accuracy is 
1.2233 x los4. 

3, the system (23) must be solved numerically. More, however, can be 
said about the behaviour of the root r = r (m)  as m increases. The following three 
theorems, which we state without proof, are due to C.J. Everett (private com- 
munication). 

For m 

Theorem 1. For finite m, r ( m )  <$. 

Theorem 2. r ( m )  is monotone increasing wirh m. 

Theorem 3. r(m)+& from below as m - m .  

The behavior implied by these theorems is illustrated in Table 3. 

Table 3 

~ 

0 0.333333333 
I 0.381966011 
2 0.414213562 
3 0.43691 I127 
4 0.453397652 
5 0.465571232 
6 0.474626618 
7 0.481373188 
8 0.486389036 
9 0.490102038 
10 0.492835560 
1 1  0.494836199 
12 0.496292071 

6. Generalizations 

m r ( m )  

13 0.497345948 
14 0.498105305 
15 0.498650302 
16 0.499040180 
17 0.499318358 
18 0.499516421 
19 0.499657210 
20 0.499757161 
21 0.499828048 
22 0.499878286 
23 0.499913869 
24 0.499939061 
25 0.499956892 

The Catalan numbers themselves satisfy the recurrence rule 
n-I 

s, = 1 S;S,-,-;, s o =  1; 
; =o 



210 P.R.  Stein, M.S. Waleman 

explicitly, 

s,, = c,+, = - 

The enumerative interpretations of c, (bracketing, trees, etc.) are too well known 
to require restatement here. With y = &-o Sixi, the functional equation resulting 
from (29) is xy2- y + 1 = 0, so that 

1 
y=2x(1-J1-4x), 

and formula (30) follows on expanding the radical (cf eq. (11)). The folklore 
theorem gives 

S,  -- n-$4“, 

and this agrees with the result of applying Stirling’s approximation to (30). 
The sequences (14) considered in this paper can clearly be thought of as 

generalizations of the Catalan numbers despite the fact that there is no value of 
the parameter m for which the recurrence rule (1) takes the form (29). These 
“generalized Catalan numbers” preserve the “elementary” character of the 
original c,. Other, quite natural, generalizations need not have this property, for 
example 

n 

- S,,+,(b) = (n + b)  Si(b)S,+l-i(b), S , ( b )  = 1 ( b  30). 
j -1  

(See [7] for a discussion of these nonelementary sequences). 

parameter t into the recurrence (1): 
Further elementary generalizations of c,, are obtained by introducing a second 

with the same boundary conditions (2). The sequences &(m) studied above 
correspond to taking t = m - 1. Proceeding as in Section 3, we find the functional 
equation 

y+x” =o. 1 
T ( m  + 1) 

F(x, y) = ~“‘+~-~y*- 

It is evident from both (31) and (32) that this generalization includes all the cases 
studied earlier except the Motzkin numbers and, of course, the Catalan numbers 
themselves. 

Solving Eq. (32) we obtain 

1 
y=XP-“T- f ( l - m ) ,  T = T ( m + l ) ,  p = 2 m + l - t .  (33) 
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Eq. (1 1) gives the general solution 

. .  .. . . . . .  : . .. ...., \.:......:.. ., . ,. ,../.,. :...:. . :..I.,,..(.:.:.:: 

S,,(rn, t ) =  1 ci+lfq(rn+1,2j+1),  q=n-rn-(2rn+1-t) j7  n a m .  
j =O 

(34) 

The parameters r, s of the folklore theorem are determined by 

(35) s2 = r r - l '  2rm+l-'s - (1 - r - . . . - ym+l )  = 0. 

Examples. (a) rn = 0, t = 0. The recurrence rule is 
j -1  

si = si-l + 1 sisi-l-i, s o  = 1, 
i -0 

and the functional equation is 

xy=-- + 1 = 0 .  
T(  1) 

From (34) we get the explicit solution 

This sequence 1,2,6,22,90,394,.  . . is probably new; at least it cannot be found 
in [3] or its supplement. The appropriate solutions of the system (35) for this case 
are s = 1 +a, l l r  = s2 = 3 + 2 f i ,  and these lead to 

S,,(O, 0) - te n-s(3 + 2A)". (38) 

(b) M = 2, t = 0 (N.B. rn = 1, t = 0 is S,,(l), previously studied). The recurrence 
is 

From (32) and (34) we have 

F(x, y ) = ~ ~ y ~ - ~ + x ~ = O ,  
T(3) 

(41) 3.21+1) Sn(2,0> = 1 C. 1+1 f n--51-2. 
j -0 

After simplification, the system determining the folklore theorem parameters 
reduces to 

r=1/s2, s5-s4-s-  1 = 0 .  (42) 
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Numerical solution yields s = 1.49709405, SO that l l r  = 2;2412906; this is, of 
course, the limit of the ratio Sn+,/Sn for this case. 

We do not take space for further examples. It is worth remarking, however, 
that the sequences (34) appear to be new (Le. not in [3]). Unfortunately, we do 
not at present have a combinatorial interpretation for any of these numbers, with 
the exception of the subset given by Eq. (14). 
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