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ABSTRACT . 
Using a rigorous mathematical analysis, the prediction of RNA secondary structure as 

a function of free energy is obtained. The iterative method effectively allows a search over 
the entire configuration space of the RNA molecule not possible by earlier methods. The 
approach also allows for the direct inclusion of the nearest neighbor or stacking energies. 

i 

INTRODUCTION 

The prediction of RNA secondary structure has been carried out by 
numerous authors [Id]. The general approach has been to search for 
configurations of maximum base pairing or of minimum free energy. There 
are two basic problems encountered in these approaches. First, the entire 
RNA configuration space over which the search is to be performed is 
extremely large, and, until recently [7], no systematic method of searching 
the entire space has been proposed. The second problem is the assignment 
of proper free energies to the various substructural components. While 
considerable theoretical work has been carried out [8, 91, the most useful 
free energy data have been extrapolated from experiments with various 
oligoribonucleotides [ 10-131. Such extrapolations, as noted by DeLisi and 
Crothers [3], often ignore such essentials as the nearest neighbor or stacking 
energies and lead to the imposition of somewhat ad hoc assignments of free 
energy to the configurations examined. There has recently been consider- 
able work on the tertiary structure of some nucleic acids, in particular in 
comparisons with the x-ray data on various tRNAs. However, it should be 
noted that constraints arising from the most probable secondary structure 
base pairing are normally imposed on the tertiary structure considerations. 
This is analogous to the methods of predicting protein tertiary structure by 
starting with the statistics of forming helical and nonhelical regions. 
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In the present study the first problem is solved. This is accomplished 
through an iterative definition of all secondary structures and the extension 
of the sequence metric algorithms of Sellers [ 141. The initial stepsare based 
on the work of Needleman and Wunsch [15] and Tinoco et al. [2]. These 
ideas lead to the calculation of a minimum “distance” between segments of 
a RNA sequence, where “distance” is measured in free energy. The most 
probable secondary structure is then assumed to be the configuration 
having the minimum sum of all such aligned “distances.” 

SECONDARY STRUCTURE ENUMERATION 

Modifying the approach of Tinoco et al. [2], define the base pairing 
matrix P = (pu), for a given RNA sequence s= sls2.. .sn (and the reversed 
order sequence s’ = sns,,- ’.. .sl) by pu = 1 if si and 3 can form a bond and 
pu -0 otherwise. (the bonds are A-U, G-C, and sometimes G-U.) 

A secondary structure for s is a configuration of the sequence s1s2.. .s,, 
with two properties: (i) Each point can be bonded to at most one other 
point. (ii) If si and 3 are bonded, then any bonding of s, (i < k  q) must be 
with points between i andj .  It has been shown [a] that this definition 
includes all possible substructures (such as hairpins, helicies, bulges, tails, 
and interior loops). This definition does not include the Blll structure’ 
proposed by Richards [a]. This is due in part to the standard definition of 
secondary structure [2,9] as the primary folding conformation induced by 
Watson-Crick base pairing. While there is evidence of non-Watson-Crick 
base pairs [ 161 in such nucleic acids as the tRNAs, these are considered part 
of the tertiary structure resulting from the folding of, and consequential 
interactions between, secondary structural components. 

The total number of structures having i+ 1 bonded pairs for a sequence 
n+ 1 long is given by a recursion relation. Let NIfn be the number of 
secondary structures containing exactly i bonded pairs formed on the 
subsequence s,s,+ ’.. A,,. Then 

where all hairpin loops have at least rn bases. The equation follows from the 
fact that s,,,’ is either bonded or not bonded. If s,,~ is not bonded, then 

”&re is no known recent experimental evidence for such structure involving the 
standard Watson-Crick pairing; this may be due to the fact that such structures would, for 
paired sequences of five or six, result in thermodynamically improbable knots. 
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there are NL: structures of interest. Otherwise, n + 1 is bonded to some j ,  
l< j<n-m,  and if k bonds are formed in S/ . . .S~-~ ,  then i - k  must be 
formed in s/+ I . .  .s,. The definition of secondary structure implies that any 
combination of a k bonded structure with an i - k bonded structure gives a 
secondary structure. Thus NL::, satisfies Eq. (1). 

The only sterical constraint in Eq. (1) is that the hairpin loop size must 
be at least m. It is possible to modify Eq. (1) so that no helices of length one 
are allowed. This has been done and the recursion applied to real RNA 
sequences. For many real RNA sequences of length forty there are over 106 
structures, hundreds of which may have maximal base pairing. . 
MINIMUM FREE ENERGY STRUCTURES 

Tinoco et al. [2] noted that their base pairing matrix contains the pairings 
for all structures, and that some set of non-overlapping antidiagonal strings 
of 1’s must represent the optimal structure. For short sequences it appeared 
that the maximal pairing configuration could be deduced by direct observa- 
tion [2] or from some counting schemes [ 17, 181. There have been a number 
of attempts to construct an algorithm to search for the optimal combination 
of such antidiagonal strings [4, 17, 18, 231, none of which search the entire 
configuration space. 

The problem is analogous to finding the optimal matching alignment 
between two evolutionary sequences. The solution to that evolutionary 
distance problem was proposed by Sellers [14] and generalized by Water- 
man et al. [ 191. To help clarify the relationship between the two problems, it 
is useful to note that regions of homology between different sequences are 
analogous to complementary helical regions, nonhomologous regions are 
analogous to noncomplementary internal loop regions, and deletions/inser- 
tions are analogous to bulges. It is also helpful to recall that finding the 
maximum homology between evolutionary sequences is equivalent to find- 
ing the minimum mutational distance between them. As noted above, in 
this work a minimum “distance” measured in free energy is calculated 
between all subsequences. 

The very large number of possible structures makes the RNA secondary 
structure problem considerably more difficult than the evolutionary 
sequence problem. However, an iterative algorithm has been constructed [7] 
which builds up complex structures from simpler ones. Before describing 
this algorithm, the free energy functions associated with various secondary 
structural components must be defined. (Recall the indexing on s’= 
s,s, - I . .  .si.) We define 

q, = AG (free energy change) of binding of the ith element of the sequence s 
with the j th of s’; 
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vu = AG resulting from nearest neighbor interaction between base pairs 

&= AG of a bulge j bases long; 
vu = AG of an interior loop of lengths i and j; 
&, = AG of an end loop n - i - j bases long due to the pairing of bases i and 

T ~ = A G  of a free end or tail of length i. 

i -  l j -  1 and i j ;  

j ;  

The total free energy change of a secondary structure is defined to be the 
sum of the AG’s associated with these substructures. This can be accom- 
plished [7] by constructing an f matrix such that each element 1, represents 
the free energy of formation of the i, j bound pair plus the free energy of 
that secondary structure having the minimum free energy among all sub- 
structures formed from the i - 1 subsequence of s and the j - 1 subsequence 
of s’. The elements of A, are undefined (plus infinity) for all i j  such that the 
ith base in s cannot form a Watson-Crick pair with the jth base in s’ 
(Pu = 0). 

For the case when pu = 1, A, is defined as 

h-IJ-I & {  h - k -  I j - I  +a,}, 
k>O 

The free energy change of the best single loop secondary structure is 
calculated by 

1 <)<?I 

which includes the additional free energy associated with the end loops. 
Figure 1 shows the values of A, for a simple illustrative example using the 
component AG’s given in Table 1, Column A. The insert in Fig. 1 shows the 
spatial relationship between previous elements of A, and a given element for 
a finite value of a. A complete, mathematical proof that this procedure 
obtains the minimum is given by Waterman [7]. 

To calculate more complex minimum free energy secondary structures, 
the single loop 4, must be obtained for all viable subsequences 1 < i <i < n. 
Then the bulges, interior loops, and tails must be examined for the possibil- , 
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TABLE 1 
Substructural Component Free Energies 

in kcal at 23°C 

A' Bb 
au=-l .Oc aAu = - 0.25 
TJij = - 1 .oc a== - 1.4 

aGU= +1.9d 
/31=1.0+0.51 vu= - 1.oc 

Yk1' l .O+O.5(1+ k )  /3/= 1.0+0.31 
&le 1.0+0.5(n-k-I) ~,k=1.5+0.2(1+k) 

A GjOh 0.0 &k = 3.05 + O.l(n - k - I )  
AGj, = 0.5 + 0.31 

'Values for investigative use only, in the construction of Fig. 1. Such 
values allow the illustration all the major properties of the proposed 

bValues extrapolated from experimental values. The values for 
a,,", am, and 1) were chosen to given the standard values of - 1.25 
and -2.4 kcal in the limit of long bound chains. 

algorithm. 

'For all ij=A,C,G,U. 
dThe value of aGu was set e q d  to the interior loop value. This 

results in a AG for a G-U pair in the interior of a helical region of 
only - 0.1 kcal. The values for the bulge, interior loop, and end loop 
contributions are linearizations of those due to DeLisi and Crothers 
[3], and as such have a limited argument range. 

ity that these subsequences may form bonded single loop structures. It is 
not entirely easy to calculate the proper free energy changes for the addition 
of these structures. This is because f" gives tails weight zero, when they 
could become bulges or joins in the new composite structures. It is useful to 
calculate Fg only for substructures such that si and are bonded. Water- 
man [7], using these restricted e,, was able to iterate and calculate &- 
mum free energy structures of arbitrary complexity. 
On the computational side, the elements of the various matrices for- 

tunately have to be calculated only whenpG is nonzero. Yet, even on large 
modem computers, one is limited in secondary structure calculations using 
the above algorithm to sequences of two hundred or less. 

The secondary structure having the calculated minimum free energy 
change is obtained from a traceback procedure. Having found theA, which 
gives the single loop minimum F,,  in Eq. (3), one must trace back to find 
which terms in Eq. (2) and thus which structural component contributed at 
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\ '----7 

- 1 0  

- I O  - I 0  / 
/ -=w 

dG- -6.0 

FIG. 1. Thefu matrix calculated for the given test sequence using the component free 
energies in Table 1, column A. The first order structure obtained is shown, along with the 
traceback path through the& matrix. The small triaagular inset illustrates the relationship 
between the p ~ ~ i t i ~ ~  in the matrix and the contributions of the variou component free 
enrxgies to the calculation of cach term with a nonzero a in Eq. (2). For this test sequence 
there are, for example, 1344 eight bound pair, 89 nine pair, and only 1 ten pair structures 
88 enumerated by Eq. (I). 

each step. There is no guarantee that the minimum free energy structure is 
unique, but a traceback procedure can locate all such structures. 

As noted in the introduction the application of even a mathematically 
correct algorithm requires a knowledge of component free energies. While 
these have been extracted from experimental data by many workers [3, 2, 
10-131, the distinction between secondary and tertiary contributions is 
somewhat arbitrary. Yet considerable success has been had in understand- 
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ing the quantitative nature of Watson-Crick pairing and the weaker pairings 
[16] which probably are formed only later [19]. It therefore seems essential 
that the mathematics of the secondary structure algorithm be independent 
of the continuing investigation of the various free energy contributions. 

APPLICATIONS 

The general algorithm has been applied through second order on the R17 
viral RNA fifty-five base subsequence originally studied by Tinoco et al. [2]. 
The predicted structure is the single loop structure identical to that pro- 
posed by Tinoco with a free energy only slightly lower. This is due of course 
to the fact that the free energies in column B of Table 1 are not identical to 
those used by Tinoco et al. [2]. As a check on both the validity of the free 
energies used and the physical-chemical nature of the algorithm, the Phe 
tRNA from yeast [18] with known secondary structure was investigated. 
The minimum free energy single loop structure predicted by Eq. (3) is 
shown in Fig. 2(a). This first order structure contains the anticodon loop 
and stem as well as the acceptor stem. The midregion predicted pairing is of 
low thermostability (short interspersed helices) This structure is highly 
suggestive of an intermediate melting sequence structure proposed by 
Crothers [21]. In Fig. 2(b), the predicted minimum free energy second order 
structure shows the familiar four stem, three loop form. It should be noted 
that for the substructure AG’s in column B of Table 1, used for this 
calculation, the D loop is favored over an open bulge by less than 2 kcal. 
This also supports the melting model of Crothers in which the stability of 
the D loop is a function of the folded three dimensional conformation. 
Thus, by comparing the best single loop structure with the best higher order 
structure, one may be able to investigate the dynamics of the tRNA melting 
stages proposed in [21], [22]. 

The proposed method of investigating minimum free energy RNA struc- 
tures not only rests on a rigorous mathematical foundation, but with the use 
of experimental component AG’s yields predictions compatible with the 
best known structural configurations. This analysis will allow a major 
investigative effort of the numerous RNA sequences now available. 

Finally, the computation time limitations as a function of sequence 
length may in fact be related to nature’s own problem of searching for a 
global free energy minimum for large RNA molecules. At physiological 
ionic conditions and temperatures one expects many local minima of less 
than -20 kcal. This suggests that for large RNA the stable structures may 
be in part kinetically determined. In conclusion, we note that a computer 
program for this algorithm is available from the first author [24]. 
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FIO. 2. Minimum AG structures obtained for yeast Phe tRNA. (a) The best first 
order single loop structure predicted from Eq. 3, having a AG of - 16.95 kcal, with 42 
paired bases. (b) The best sccond order structure found, having a AG of -22.15 kcal, with 
42 paired basts. 
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