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A metric on binary trees is dehed to give the similarity of two dendrograms. 
One of the major desirable properties of the proposed treesimilaritymeasure 
is to clarify the decision ordering nature of biological trees. This metric 
is applied to evolutionary tree reconstructions and comparative embryo- 
genesis. The mathematical properties of this metric are discussed, and an 
algofithm is proposed to compute the metric. 
". . . . our essential task lies in the comparison of related forms rather than 
in the precise definition of each; and the deformation of a complicated 
figure may be a phenomenon easy of comprehension, though the figure 
itself have to be left unanalysed.. . ." 

Darcy Thompson 1917 

1. Introduction 

A number of areas of current biological research result in, and use binary 
trees (dendrograms). The most evident area is taxonomy. Here various 
hierarchical cluster methods (Hartigan, 1975; Jardine & Sibson, 1971 ; 
Johnson, 1967) are used to construct taxonomic trees. Over the last ten 
years, rather successful attempts have been made in reconstructing evolu- 
tionary trees from molecular sequence data. (See Dobson, 1975; Jardine & 
Sibson, 1971; Moore, Goodman & Barnabas, 1973; Sneath & Sokal, 1973; 
Waterman, Smith, Singh, & Beyer, 1977). One of the remaining problems 
this area is that the different cluster methods result in different (Hartigan, 
1975; Jardine & Sibson, 1971) dendrographic structures. Worse yet, the 
same cluster algorithm can result in different trees with differing initial 
ordering (Waterman et al., 1977). Therefore, in numerical taxonomy a 
method of measuring the degree of similarity between dendrograms is of 
some importance. This is true both for comparative taxonomic studies and 
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FIG. 1. A dendrographic representation of some of the major progressive tissue differ- 
entiations arising from the three primary germ layers in the vertibrate embryo. Tissues 
obtained from Ectoderm are: EC1 =Pharynegd pouches, EC2 =Liver, EC3 = 
Pancreas. Tissues obtained from the Mesoderm are: M1 = lateral mesoderm, M2 = 
somatic mesoderm, M3 = splanchnic mesoderm, M4 = heart, M5 = blood corpuscles, 
M6 = skull, M7 = axial skeleton, M8 = skeleton muscles, M9 = skin connective tissue. 
Tissues obtained from the Entoderm are: EN1 = pharyngeal pouches, EN2 = liver, 
EN3 = pancreas. 

for the continuing development of the dendrographic construction techniques 
(Dobson, 1975; Farris, 1973; Jardine & Sibson, 1971). 

A second area of biological research involving dendrograms is in morpho- 
genesis and/or cell differentiation studies (Reverberi, 1971). As in the dendro- 
gram representation of evolutionary history, the development of many tissue 
systems may be represented by a tree (see Fig. 1). This representation does 
not seem to have been exploited previously. These trees arise basically as 
decision trees, which have been studied extensively by computer scientists 
(Knuth, 1969; bather, 1976; Korfhage, 1974). One of the desirable properties 
of a tree similarity measure would be to clarify the decision order nature of 
biological trees. With such a measure some aspects of comparative embryo- 
genesis can be put on a more quantitative basis. 

The problem of the similarity of dendrograms thus arises in a number 
of areas. There are two independent properties of binary trees of interest. 
First is the dendrographic structure (branching topology) and second are 
the branch lengths. The branch lengths are normally directly proportional 
to some parameter, such as time, number of mutations or number of cell 
divisions. The branching topology contains the fundamental information 
about the order in which the “decisions” were made. It is this second property 
which we wish to consider in connection with similarities between binary trees. 
The degree of similarity, in general, is a problem of graph theory (Dobson, 
1975). While computer science frequently deals with tree structures (Knuth, 
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1969; Prather, 1976; Korfhage, 1974), this particular problem does not 
seem to have been considered in that context. 

The subject of this paper, then, is to find a metric p on the set, .Fm, of 
unrooted binary trees over the same set of n terminal vertices. Given two 
trees T and S in the set we require 

O < p ( T , S )  Q 1 

in addition to the usual requirements that @,.F,,) be a metric space. This re- 
quirement allows comparison of two clustering schemes applied to sets 
with different numbers of terminal vertices. 

This topic has been previously surveyed by Dobson (1975) who considered 
various approaches. The metric proposed in this paper is new and conse- 
quently not discussed by Dobson. The new metric properties mentioned 
below may make it more appealing than these previously proposed. However, 
the present work lacks the value of the normalizing constant and does not 
have an efficient algorithm for computation. Hopefully, these problems will 
be solved in later work. However, an algorithm that can be computed is 
given, and it is conjectured that it coincides with the metric mentioned above. 

2. Binary Trees 
We define an (unrooted)? binary tree or dendrogram to be a connected 

graph with no cycles where each vertex has degree one or three and where the 
terminal vertices (those of degree one) are labeled. If a binary tree has n 
terminal vertices, then it has n-2 internal vertices, n branches connecting 
terminal to internal vertices, and n- 3 branches connecting internal vertices. 

In work on constructing evolutionary trees from molecular data sets, 
Moore, Goodman & Barnabas (1973) introduce the concept of “nearest 
neighbor I-step changes.” This idea, which we refer to as “nearest neighbor 
interchange,” was used to generate the neighborhood of a given tree in 
order to search the very large set of possible trees for the tree giving the 
best fit to a molecular data set. For a discussion of these and related concepts, 
see Waterman, Smith, Singh & Beyer (1977). 

To give a careful definition of nearest neighbor interchange, it is useful 
to consider some natural partitions of the terminal vertices of the binary tree. 
Each interior vertex induces a natural partition of the terminal vertices into 
three sets each of which is composed of those terminal vertices in each 
connected component after the removal of the interior vertex. More important 
for the present discussion is the partition associated with each interior 
branch. Removal of the interior branch, but not the two interior vertices 

?For application to rooted trees, one need only to identify a given terminal vertex as 
the “root”. 
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Fro. 2. Separation v = {{Al, Aa}, {Bl, Ba}} associated with interior branch i. 

associated with the branch, yields the partition A = {A ,  B } .  Removal of the 
vertices yields v = {{Al, A2} ,  {B,,  B2} } ,  where A ,  n A2 = 4, AluA2 = A,  
B1 n B2 = 4 and B, v B2 = B. The separation v of thepartition A is indicated 
in Fig. 2. where the interior branch is labeled i. 

The set of partitions for all interior branches, P = {IC,,. . ., A , , - ~ } ,  is 
equivalent to the binary tree generating the partitions. This fact is given in 
the next theorem. 

Theorem 1 

used as a representation of the binary tree. 

Proof 
Let P = {A,, . . ., A " - ~ }  be the set of partitions for a tree with terminal 

vertices labeled 1,2, . . ., n(ns4) .  Some A, = {A,, B,} is such that A, (say) 
has exactly two elements, Ai = {j1,j2}. Since we assumed P was constructed 
from a binary tree, j ,  and j2 occur together in the sets of aII the partitions. 
Thus the problem can be relabeled to make a new problem with n- 1 terminal 
vertices. Continue the process n-4 steps where the tree of four terminal 
vertices corresponds to a unique partition. Of come, the relabeling must be 
reversed to recover the tree giving rise to P. 

Given a separation Y, = {{Al, A 2 } ,  {B,,  B2} }  associated with an interior 
branch, a tree is said to result from a nearest neighbor interchange if it has 
separation v1 = { { 4 , B l } ,  {A2,B2}} or v2 = { { A l , B d ,  { B l , 4 } }  where 
all other separations remain the same. These separations are shown in Fig. 3 

If P is the unique set of partitions for a given binary tree, then B can be 

FIG. 3. The thrce nearest neighbors VO, VI, vs. 

Thus a nearest neighbor interchange results in one of two possible trees. 
There are two equivalent ways of viewing the generation of v1 or v2 from v,. 



ON THE SIMILARITY OF DENDROGRAMS 793 

First we can consider moving the branch associated with AI (say) onto the 
branch associated with either Bl or B2. Equivalently, these separations can 
be generated by interchanging A I  and B, 

3. Nearest Neighbor Interchange Metric 

The metric we propose below essentially counts the minimum number of 
nearest neighbor interchanges required to change one tree to another. It 
should be noted that interchanges deep in the tree are given equal weight with, 
say, an interchange involving a terminal vertex. In the context of evolutionary 
trees, this says that misclassiiication or changed decision order deep in the 
tree was, at the time that specification or decision occurred, exactly as 
important as misclassification at a more recent level. 

Now, given T and S in Y,,, the set of binary trees with the same set 
{ 1,2, . . . , n} of terminal vertices define 

(2'423) = { ~ i ~ l - ~ .  . .~l:~~~ltIl(...~l(T). . .)) =S,  

r1: T,, 
interchange, 1 Q i Q I } .  

Y,,, and zl is the identity or results in a nearest neighbor 

If the identity transformation belongs to {T+ S}, let I = 0. Also, it is 
shown below that {T + S} # 4 if T # S. 
Theorem 2 

Let T and S E Y,,. Define 
M(n) = max min [I: q.. .zl E {Q+P}] 

0 2  2. 
and 

min [ I  : ? l .  . . z1 E { T + S}] 
M(n) AT, s) = 

Then 
(i) M(n) < co for 1 < n < co. 
(ii) 0 Q p (T, S) Q 1 for T, S E Y,,. 
(iii) @, Y,,) is a metric space. 

Proof 
(i) To show M(n) finite, consider any two trees T and S in Y,, and consider 

{I: zl  . . . E {T  + S } } .  We will exhibit a member of {T + S }  with I e co so 
that M(n) e co follows. 

Now let a, /3 E { 1,2, . . . , n} be such that there is only one intervening 
node on the shortest path between them in S. If this is not the situation 
in T, move a to p. This can clearly be done in less than n - 2 nearest neighbor 
interchanges. 

Next, in both trees, replace a, /3 and the shortest path between them by 



794 M. S. WATERMAN AND T. F. SMITH 

a new terminal vertex a'. Repeat the above process until there are only three 
terminal vertices remaining. Thus, we have shown that 

n- 1 

l a 3  
M(n) 6 ( n - i )  = (n-3)(n-2)/2 < 03. 

(ii) We have p(T, S) < 1 by definition of M(n). 
(iii) Assume T = S. Then the identity transformation belongs to {T + S} 

and p(T, S) = 0. Also, if p(T, S) = 0, then since M(n) < 03, the identity 
transformation belongs to {T + S} or T = S. 

Clearly p(T, S) 2 0. 
Since a transformation corresponding to a nearest neighbor interchange 

Finally, we establish the triangle inequality. Suppose 
has an inverse which is a nearest neighbor interchange, p(T, S)  = p(S, T). 

ql . . . r I€{T .+S}  

9 2 + l l .  . . f l + l l  E {S .+ R}Y 

and 

where 

and 

Then 

so that 

li = min { I :  71.. .zi E {T * S}} 

12 = min ( 1 :  .ti.. .TI E {S .+ R}} .  

% + I ,  -71 +ll% * - .TI  E {T + R }  

This completes the proof. 
An important relationship of the ultrametric inequality with binary trees is 

that any additive tree satisfies that inequality (Dobson, 1975; Johnson, 1967). 
It is natural, then, to ask whether p satisfies this inequality: 

for all triplets of trees with some labeling. This is equivalent to 
AT,, TZ) Q AT,, T3) = AT29 T3) 

WnldT,, Tz) Q W M T l ,  T3) = ~(nlAT2, T3). 

2 5  I x 3  4 2  I s 4  4 2  'M3 5 4 

Fro. 4. Example (n = 5) where the ultrametric inequality fails. 
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The inequality is satisfied for n = 4 but, for n = 5, a counter example is 
given in Fig. 4, where 

M(n)p(Ti, T2) = 2 but M(n)p(Ti, T3) = M(nIp(T2, T3) = 1- 
4 Closest Partitions Metric 

In this section, we consider an algorithm based on the partitions induced by 
the interior branches of a binary tree. Essentially, the algorithm searches 
for the minimum number of nearest neighbor interchanges (mi) to achieve a 
partition in T that agrees with a partition in S. (The problem is to find amini- 
mal member of {T + S}.) Hence the algorithm is called the closest partition 
(CP) algorithm. 
As soon as the fist identical partition is achieved, a descendent partition 

from T, zT, and a partition in S, n,, agree. That is, A = A ,  u A2 and 
B = B, u B2 are equal for each partition. Therefore, the algorithm branches 
into two problems with the interior vertex partitions {A, Bl ,B2}  and 
{Al, A2, B}, where each A and B is considered a terminal vertex. This 
procedure is shown in Fig. 5. Note that each new problem has no more 
than n-1 terminal vertices and that convergence of the algorithm is then 
clear. Since each new tree is essentially a non-overlapping part of the problem, 
it should be emphasized that the algorithm branches in a notational sense 
only. 

! 

1 
1 

A, 

Fro. 5. The original problem with the two smaller descendent problems. 

The following three theorems are presented to explore the relationship 
between the algorithm and the nearest neighbor interchange metric. Although 
we wished to show the algorithm finds the minimal path, this has not been 
completely established. 

First, we give a general result which suggests the CP algorithm. 
Theorem 3 

If an optimal path in {T -+ S} has a partition nI associated with branch i 
identical with a partition in S, then that branch i is crossed at most once 
by any member of { 1,2, . . . , n}. 
Proof 

Let v = {{Al, A 2 } ,  {B,, B,}} and suppose b E B = B, u B2. To move b 
more than once across i will take at least one more move than leaving b on 
the appropriate side of n = {A ,  u A2, Bl u B2}. 
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The next result handles the situation with existing identical partitions. 

If nT is a partition in T and n, is a partition in S and nT = n,, then nT 
Theorem 4 

will not change in any optimal path in { T  + S} .  
Proof 

Any nni across the associated branch would require the elements to be 
returned across the same branch. This violates Theorem 3. 

Next, we consider the case where one nni results in an identical partition. 
Theorem 5 

If there are no identical partitions between T and S and some nearest 
neighbor interchange in T results in an identical partition with S, then that 
nearest neighbor interchange is on some optimal path in { T  + S } .  
Proof 

Since the partition in question must eventually be achieved, the following 
question must be answered: Could we do strictly better by making other 
moves before achieving this partition ? 

To answer this question, let 
nT = iB1, B2}) + BTa ={{B2, tB19 

and 

where it is assumed that B, v A, = C, v C,. Several possible nni’s can be 
made before T T,  and they will be considered in a case by case fashion: 

i) Interchanges within A, ,  A,, B,, or B, need not be made until after 
T + T,  since they can then be made at no change in the total number of 
interchanges. 

ii) Interchanges between A ,  and B, or between A,  and B, can, after 
T + T,, be made with fewer interchanges. 

iii) Interchanges between A ,  and B,, between A ,  and A,, between A,  and 
B,, and between B, and B2 all take more moves than if not made. This holds 
since they are now separated and they need to be separated to achieve 
{ T  + S } .  

Results concerning a larger number of nni’s to achieve the k s t  identical 
partition with S have not been obtained. However, we have constructed our 
CP algorithm based on these partial results. 

CP 1. If an existing partition on T agrees with a partition on S, make two 
subproblems to continue with. (This procedure is shown in Fig. 5).  
When any problem is reduced to three terminal vertices that problem 
is finished. 

5 = {G, c21, (4, D2H, 

We now summarize the closest partition algorithm: 
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Make k-step nearest neighbor interchanges where k is the minimum 
number required to produce an identical partition between T and S. 
All such trees produced will be returned to CP 1. 
pp(T, S) * Mp(n) then equals the sum of k over all cycles through 
steo CP 2. 

Since we have not proven that the closest partition algorithm produces the 
minimum number of steps, define above Mp(n) and pp(T, S) to be quantities 
for the closest partition algorithm which correspond to M(n) and p(T, S). 
Then we conjecture that 

P,(T, s) = AT, 9. 
5. Interior Vertex Algorithm 

Prior to our work, two methods have been proposed for measuring simi- 
larity of trees based on the number of interior vertices on the path between 
each pair of exterior vertices. For each tree a sequence of (“2) integers is 
obtained. Phipps (1971) computes the correlation coefficient of the two 
sequences. It has been conjectured [Dobson (19731 that -0.5 is the smallest 
possible value but a proof of this seems to be unknown. Williams and 
Clifford (1971) calculate the sum of absolute values of differences between 
members of the sequences. They divide this sum by (:) to give a measure of 
similarity. However, the quantity is not bounded above by one. It would be 
interesting to find the maximum value obtained by the Williams & Clifford 
scheme. 

Our objection to both methods described above is that one classification 
mistake (a nearest neighbor interchange) can make the two trees seem quite 
dissimilar. However, there is an interesting algorithm which chooses the 
nearest neighbor interchange reducing the Williams and Clifford sum the 
most. 

First, let dT (iJ) be the number of interior vertices on the path between 
exterior vertices i and j .  An interesting formula for dT is I r-3 

4-w) = n-2- c c ~ A v ~ ~ ~ ~ ~ A v c n + ~ B w ~ ~ ~ ~ ~ B w c I ~ l ~  I v = 1  

where {Av, B,) is the partition associated with the v-th interior branch and I 
is the usual indicator function. 

The interior vertex algorithm chooses the nearest neighbor interchange 
which minimizes 

where T’is obtained from Tby a nearest neighbor interchange. Unfortunately, 
it has not even been proven that this algorithm converges. 

~ 
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6. Conclusion 
The nni metric has been applied to tree reconstruction techniques used 

on molecular sequence data by Waterman et al. (1977). In Figure 6, five 
evolutionary trees obtained from molecular sequence data are given. These 
represent the results of different clustering techniques and/or different 
protein sequence data sources. The nni metrics recorded in Table 1 support 
two conclusions. First, the different clustering or tree building techniques 
employed result in minimal differences, on the order of those arising from 
using different sequence data sources. The more apparent conclusion, on 
study of Fig 6, is that the data do not allow us to determine the consanguinity 
of the Lagomorpha (rabbits) and carnivora (dogs) with the rest of the phylum 
chordata (vertibrate). 

Man Horse pig 

Kangaroo 

FroS 

Monkey 

Rabbit 

P 

Beginning 

P 
I I 

Fro. 6. Five possible vertibrate evolutionary relationship obtained from molecular 
sequence data. Tree I is the “best” biological tree compatible with the cytochrome C 
obtained by Beyer et al. (1974). Trees II and I11 were obtained from the cytochrome data 
by Fitch and Margoliash (1967) and Dayhoff (1972) respectively. Trees N and V were both 
obtained by Dayhoff (1972) from the hemoglobin sequence data, N for the apha chain and 
V for beta. See Table 1 for the nni relationships between these five trees. 
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TABLE 1 
The values of p (nni) among evolutionary trees depicted in Fig. 6 .  

799 

I I1 m IV V 

I 0 
11 2/M(9) 0 

111 2/M(9) 1/M(9) 0 
IV 2/M(9) 2/M(9) 2/M(9) 0 
V 2/M(9) 1/M(9) YM(9) 1/M(9) 0 

; 

The values of p (nni) among 
Unitarian 
0 
4/M(8) 
S/M(8) 
U 

the hemopoiesis theories depicted in Fig. 7 .  
Dualistic Trialistic 

0 
2/M(8) 0 

D T 

A second example, is the comparison of the traditional theories of hemo- 
poiesis given in Fig. 7. It is of some curiosity that the unlabeled tree 
structures are identical, while the differences between labeled trees are quite 
large. The large distance between the polyphyletic and monophyletic theories 
should suggest an investigation into the possibility of clear experimentally 
distinguishable differences. 

The proposed nearest neighbor interchange metric has two important 
properties for biological problems. The first of these is that it yields a metric 

The Unitarian or Reticular 
Cells Erythrocytes Monaphyetic Theory 

Lymphocytes 
Eosinophils 

Monocytes 
Nwt<phils Basdphils 

N B 
R 

L + Polyphyletic ' h e  Trialistic Theory OT 

FIG. 7. The dendrographic representation of the three traditional theories of Hemo- 
N B 

poiesis, blood cell consanguinity. (Greep and Weiss, 1973; Arey, 1968). 
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space and gives the distance between two dendrograms. The second is that 
what is being measured is the minimum number of differences in decision 
ordering between two tree structures. Its major disadvantage at this time is 
that there is no efficient algorithm known to compute the distance. Hopefully 
the closest partitions metric can be shown to be identical to the nearest 
neighbor interchange metric. 

The authors wish to thank Halldor Egilsson for his help in constructing the 
embryonic and hemopoiesis dendrograms from the rather descriptive literature. 
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