
TECHNOMETRICS@, VOL. 20, NO. 2, MAY 1978 

A Bayesian Model for Determining the Optimal Test 

Stress for a Single Test Unit 
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Consider the case of a single test unit which must be tested at some level of test stress. 
Suppose that the test stress level is free to be determined, and that only the survival or 
nonsurvival of the unit is observed. It is assumed that the unit is designed to withstand a known 
and specified design stress level. A Bayesian model is developed for determining the required 
level of test stress which maximizes the expected probability of survival at the design stress 
level. Engineering experience from similar past tests on similar units is used to fit the model. A 
practical application illustrates the method. The sensitivity of the procedure to changes in the 
parameters used in fitting the model is also examined. 
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1. INTRODUCTION 

I n  many engineering testing situations, only a 
single unit is available for testing. The unit may be a 
component, subsystem or complete system. Suppose 
that a single test unit is to be tested at some level of a 
single test stress which is free to be selected by the test 
engineer. Further, suppose that the unit is designed to 
withstand a known and specified level of design 
stress. It is further assumed that, once the test is 
conducted, only the survival or nonsurvival of the 
unit is observed. 

For example, consider the case of a fuel container 
of a radioisotope thermoelectric generator (RTG) 
system, which is the power supply for a space satel- 
lite, The radioisotope fuel container is designed to 
withstand a certain impact onto flat plate steel, such 
as might occur during a launch pad overpressure 
accident. As part of the required safety analyses, tests 
designed to simulate such an accident must be per- 
formed. A prototypic unit, using simulated fuel, is 
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impacted onto flat plate steel at some test velocity 
which must be determined. This test velocity may or 
may not be taken to be the design velocity. According 
to a precise definition of failure, e.g., if the unit 
ruptures to the extent that one or more fuel elements 
are exposed, the unit either survives or fails the test. 
This example will be further considered in Section 4. 

The model to be developed incorporates the fol- 
lowing aspects. Suppose that the test unit survives a 
test stress which exceeds the design stress. It is rea- 
sonable that this should increase the experimenter’s 
confidence in the ability of similar units to survive the 
design stress. On the other hand, if the test unit is 
tested at too great a stress, the unit is likely to fail, 
thus providing little information about the unit’s 
ability to survive the design stress. The model effec- 
tively trades between these two alternatives in seeking 
the optimum desired level of test stress. The precise 
definition of “optimum” will be discussed in the next 
sect ion. 

The philosophy of the proposed model is to test at 
a high enough stress level to provide assurance but 
not failures. This contrasts with the usual statistical 
philosophy which is to test at various levels, some of 
which are high enough to insure failures. Of course, 
more than one unit must be tested in this case. Easter- 
ling [ l ]  develops an over-test procedure, referred to 
as a “sensitivity test”, which is based on such a statis- 
tical philosophy. Meeker and Hahn [ 5 ]  consider the 
optimum allocation of test units to overstress condi- 
tions when estimating the survival probability at de- 
sign conditions of low expected failure probability. 
Much of the literature on accelerated life testing con- 
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siders the effect of stress on certain failure character- 
istics. An excellent bibliography on accelerated life 

and 
11/8k6)- k( -lnpk)"- 1 ( 1 -  k k 

testing is provided by Lowe and Waller [ 2 ] .  fb  I a* 81 = B a , p & z ) [  1 - ( 1  + 8k6)-a]  9 

2. THE MODEL 0 < P k  5 1 ;  0 5 k 5; CO; a, @, 6 > 0, ( 5 )  
Let s k  denote the event that the test unit survives a 

test of stress k.&,  where SI is the given design stress. 
Also let P k  = Prob ( S k ) . ,  A Bayesian approach is 
used, in which the uncertainty in P k  is expressed by 
assuming that P k  is a random variable having a modi- 
fied negative-log gamma prior distribution with prob- 
ability density function (pdf) given by 

o I p k 5  1 ; O ~ k ~ ~ ; O < ~ X , 8 , 6 .  ( I )  
This distribution may be derived from the fact that, if 
X has a gamma distribution with the shape parameter 
a and scale parameter (3, then the survival probability 
exp[-Xk6] has the distribution given in ( I ) .  A Wei- 
bull strength model with gamma distributed scale 
parameter thus leads to the case considered here. 
Here k is the test stress, expressed in units of design 
stress SI. The parameter 6 appearing in ( I )  is used to 
rescale k ,  for reasons to be discussed in the next 
section. The usual negative-log gamma distribution 
may be obtained by letting k E 6 =S 1. The negative- 
log gamma distribution has been previously discussed 
and used in reliability by Springer and Thompson [6, 
71, Mann [3], and Mastran and Singpurwalla [4]. 

The mean and variance of (1 )  are 

where $k denotes the event that the test unit does not 
survive a test of stress k . S 1 .  The cumulative distribu- 
tion functions (cdfs) associated with (4) and ( 5 )  may 
be expressed in terms of the chi-square (x') distribu- 
tion as 
F@ I s k i  a, 8, 6) = Prob { p  5 p I ski a, 8, 6, } 

and 

= [Prob {XW' > gsIb) - 21np 

r - 
(7) 

whete xlcrp denotes a xa random variable with 
2a degrees of freedom. 

The posterior means of (4) and ( 5 )  are easily com- 
puted to be 

respectively. It might be expected that the mean sur- 
vival probability curve have a reflected S-shape as a 
function of k .  The mean given in ( 2 )  has this property 
for certain combinations of a, 8, 6. Figure 1 shows 
the standard deviations for several choices of a with /3 
and 6 computed according to the example in Section 
4. It is observed that the prior model is quite diffuse 
for small a. A procedure for identifying a, B and b 
will be presented in the next section. 

The distributions of interest are the two posterior 
distributions of P k ,  conditional on the survival (non- 
survival) of the test unit. For convenience, we shall 
henceforth drop the subscript k on P except where 
confusion may result. By a simple application of 
Bayes' Theorem, we obtain the two posterior pdf s 

( 9 )  

The unconditional probability of survival of the test 
unit is, of course, given by ( 2 ) .  

The model for use in obtaining the required test 
stress level is based on the following two proposi- 
tions: 

If the test unit survives a test stress which exceeds 
the design stress, then remaining units should have 
a higher expected probability of survival at the 
design stress than if the test unit had been tested 
and survived at the design stress. 
If the test unit does not survive a test stress which 
exceeds the design stress, then remaining units 
should have either the same or a higher expected 
probability of survival at the design stress than if 
the test unit had been tested and failed at the design 
stress. 
In both propositions, the increase depends upon 

the difference between the test and design stress lev- 
els. Mathematically, let us quantify the first proposi- 
tion above according to 

f ( P k  1 a* 8 9  = pt&dr(aX1 k l l / b k b (  -In +PpP)-a k l a - l  9 

0 S P k  5 1; 0 5 k 5 a; 6 > 0, 
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E(Pi I Sk) = gi(k)E(Pi I SI), k 2 1, (10) 
where g l ( k )  is a suitably chosen function of k which 
has the following properties: (i) gl( 1) = 1; (ii) g l ( k )  -+ 

l/E(P, I SI) as k + a; and (iii) gl ' (k)  2 0, at all 
points of continuity of g l (k ) .  The second property 
guwantees that, if the test unit survives a test of 
infinite stress, then the remaining units are expected 
to survive the design stress with probability equal to 
1. 

Similarly, the second proposition may be quan- 
tified as 

I 

I 

E(Pi I S k )  E gz(k)E(Pi I SIP,,, k > 1, ( 1 1 )  
where g J k )  is a suitably chosen function of k which 
satisfies the following properties: (i) gZ(1) = 1; (ii) 
gz(k) --L E(P,) /E(P1 I SI) as k -, a; and (iii) g'(k) 2 
0, at all points of continuity of gz (k ) .  The second 
property insures that, if the test unit fails a test of 
infinite stress, then nothing additional has been 
learned from the test about the ability of femaining 
units to survive the design stress. The basic reason for 
(10) and (1 1) is the need to consider f(pl I Sk)  when 
all we have derived is f(pk I Sk).  Particular choices for 
g l ( k )  and gr(k)  will be considered in Sections 3 and 4. 

Now let us consider the optimization model itself. 
We wish to determine the value of k which maximizes 
the expected probability that SI occurs, given that we 
test a sirlgle unit at test stress k * & .  That is, we wish to 
maximize 

where 

YI  = ( 1 + / 3 Y  - 
1+2/3 ' 

and 

In order to maximize E(P1; a, 8, a), it is useful to 
solve 

a' " 
= [y lg l ' (k)  - y l g i ( k ) ] (  1 + /3kb)-* ak  

The solution to (16) yields the desired optimal test 
stress ko. The solution to the problerti of finding k 
such that (12) is maximized is discussed in the next 
section. 

3. FITTING THE MODEL 

First, let us consider a procedure for estimating a, 
S ,  and 6. Since only a single test unit is assumed to be 
available, the suggested procedure is necessarily sub- 
jective. Consider the following two questions: 

Question I :  Prior to the test, at what stress level 
k ,  will the test unit have approximately a 95% 
expected chance of survival? 

Question 2: Prior to the test, at what stress level 
k2 will the test unit have approximately a 5% ex- 
pected chance of survival? 

Now kz  > k ,  and both are expressed in units of design 
stress. Then 

( 1  + /3k?)-" = &, i = 1, 2,  
where El = .95 and & = .05. Then 

/3 = - l ) k l - 6  i = 1, 2, (17) 
and further simple algebra yields 

Therefore we have b = p(a) and 6 = 6(a), so that our 
three parameter model has been reduced to a one 
parameter model. 

Since the prior variance of the survival probability 
is given by 

V @ ;  a, p, 6) = V ( a )  = (1  + 2@k6)-" - (1 + pk6)-", 

the parameter a may be chosen to coincide with the 
experimenter's prior estimate of the variation at some 
stress k .  For the examples we have worked out, V ( a )  
has been observed to be a decreasing function of a. 

Two other functions, g l ( k )  and gz(k) ,  must be spec- 
ified. In our calculations, we have taken 

g l ( k )  = kc, k I K 
and 

gz(k) = 1, k I K 

where K is an unspecified upper limit of test stress 
beyond the range of practical interest. For k > K ,  
suitable adjustments would have to be made to these 
choices of g l ( k )  and gz (k )  to ensure that the appropri- 
ate asymptotic properties discussed in Section 2 are 
present. 

Recall that 

E(Pi I Sr)  gi(k)E(Pi I SI) 

= k"E(P1 I S1). 
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FIGURE I .  Standard deviation as a function of k for several 
values of e. 

The choice g,(k) = 1 cxprcsses the situstion in which, 
if the test unit fails a test of stress k, 1 < k 4 K, then 
the expected probability of survival is  the same as if 
the test unit failod a test at the design stress. 

To determine c, consider the following question: 

Question 3: Prior to the test, suppose that a hypo- 
thetical test unit was tested and survived an in- 
creased test stress level. At what stress level k, will 
the expected failure probability, E(l - PI I SRJ, be 
one-half as large as the expected failure probability 

i 

0.75 

0.50 

0.25 

0.00 

0 = E(P) 
0 = E(P1S) 
4 = E(PI-S) 

0 1.5 2.0 2.5 3.0 
k 

FIGURE 2. E ( P ~ ) ,  E(P, I SA and E(& I $k) as a function of k 
for u - .1. 

5 

of a hypothetical unit which was tested and sur- 
vived the design stress, E(I - PI I SI)? 
Of course, k, must also be expressed in units of 

design stress. Then 

1 - E(P1 I S I )  = 2 ( 1  - E(P1 1 SR,)} 
or 

1 - (-)-= I + 2/9 = 2 (1 - k,' ( w) l t 2 p  -= }. 
I + @  

TABLE I-Values of @, 6. c, and optimal stress ko for selected values of a. 

a B 6 C k0 

.4 

. 5  

.6 

.7 

.8 

.9 
1.0 
2.0 
3.0 
4.0 
5.0 
10.0 
15.0 
20.0 
23.0 
30.0 
35.0 
40.0 
45.0 
50.0 

4 . 2 2 ~ 1 0 ~~ 
.0000018 
.0000044 
. oooooao 
* 0000120 
.0000160 
.0000198 
.0000370 
.0000365 
.0000330 
.0000294 
. 00001 8 1 
,0000129 
.0000100 
.0000082 
.0000069 
,0000060 
.0000053 

.0000047 

.0000042 

37.71 
32.69 
29.45 
27.23 
25.61 
24.38 
23.43 
19.48 
18 :30 
17.74 
17.42 
16.79 
16.58 
16.48 
i6.42 
16.38 
16.35 
16.33 
16.32 
16.30 

2 . ~ 1 ~ 1 0 - ~  
.0000015 
.0000044 
,0000093 
.0000159 
.0000240 
,0000330 
.0000123 
.0001825 
,0002198 
,0002450 
.0003021 
.0003232 
.0003342 
.0003409 
.0003454 
.0003487 
.0003512 
.0003530 
.0003546 

1.35 
1.36 
1.37 
1.38 
1.38 
1.39 
1.39 
1.43 
1.45 
1.46 
1.47 
1.48 
1.49 
1.49 
1.49 
1.49 
1.49 
1.49 
1.49 
1.49 
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0 = E(P1S) 
= E(P1-S) 
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1.0 1.5 2.0 2.5 3.0 3.5 
k 

FIGURE 3. f?(pk), E(pk 1 S k ) ,  and E(pk I $) as a function of k 
for a = 3. 

Some elementary algebra yields 
i 

Therefore, for the specific choice of gl(k) and g, (k) ,  
the parameters p,6 ,  and c are given by equations (17), 
(18), and (19). Then, when a is chosen in accord with 
the experimenter’s estimate of ‘the variation, the pa- 
rameters of the model are completely determined. 

4. EXAMPLE 

As indicated in the introduction, the example con- 
sidered here concerns the fuel container of a radio- 
isotope thermoelectric generator (RTG) system used 
as the power supply for a space satellite. In the radio- 
isotope fuel container there are a number of fuel 

1.00 

0.75 

0.50 

0.25 

0.00 

- a=l .  0 

- 

- 

LEGEND 
- 0 = E(P) 

0 = E(PIS) 
A = E(PI-S) 

- 
I I I -  - I 

1.0 1-5 

FIGURE 4. E(Pk) ,  E(pk 
for a = 1.0. 

2.0 2.5 3.0 3.5 

&) as a function of k 
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0.50 
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0.00 
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- 

LEGEND 
- 0 = E(P) 

0 = E(PJS) 
a = E(PJ-S) 

I I I -  - I 

1.0 1.5 2.0 2.5 3.0 3.5 
k 

FIGURE 5. E(&), E(pk I SI), and E(pk I S k )  as a function of k 
for a = 10.0 

elements, which are simply spheres which contain the 
fuel. The RTG is designed to withstand impact onto 
flat plate steel at a certain velocity so that, for ex- 
ample, launch pad accidents will not release radio- 
active material to the environment. 

The answers to questions 1, 2, and 3 of Section 3 
were solicited from a group of engineers at the Los 
Alamos Scientific Laboratory responsible for such 
impact tests. The answers for one particular RTG 
system of interest were as follows: 

(1) At approximately 140 fps, the test unit should 
have roughly a 95% expected chance of survival. 
(2) At approximately 180 fps, the test unit should 

have roughly a 5% expected chance of survival. 
(3) At approximately 135 fpo, E(l - Pl I SkJ 

should be roughly one-half of E(l - P, I SI). 
The design stress velocity S, is 100 fps. Thus, k, = 

1.4, ks = 1.8, and ks = 1.35. Equation (12), for g, and 
g2 specified in Section 3, becomes 

1.00 

0.75 

0.50 

0.25 

0.00 
1.0 1.5 2.0 2.5 3.0 

k 
5 

FIGURE 6. E(pk), E(pk 1 Sk). and E(& I s k )  as a function of k 
for a = 50.0. 
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1.6 

1.7 

k, 1.8 

1.9 

2.0 

1.2 1.3 1.4 1.5 1.6 

1.32 1.36 1.42 1.21 

1.36 1.40 1.45 1.81 1.08 

1.40 1.44 1.48 1.54 1.84 

1.44 1.47 1.52 1.57 1.62 

1.47 1.51 1.55 1.60 1.65 

.((1+ B)* - 1)- '(1 - (1 + Bkb)-"). (20) 

1.6 

1.7 

k, 1.8 

1.9 
2.0 

The optimal k, k,, is found on a computer by a simple 
search program. 

Certain a and k,, k2, ks result in difficulties in 
computation. For example, if Bk* 0, then on the 
computer 

1.2 1.3 1.4 1.5 1.6 

1.17 1.26 1.87 

1.18 1.27 1.36 

1.18 1.27 1.36 . 
1.19 1.27 1.37 . 1.90 

1.19 1.28 1.46 1.93 

1 - (1 + Bk"-" = 0 

1 - (1 + /3k6)-" = + aBk6. 

whereas a simple expansion shows that 

While such approximations were used whenever pos- 
sible, it was not possible to obtain all values in the 
tables below. A "*" indicates that the computation 
was not performed. Table 1 gives the vatues of /3 = 
B(a), b = b(a), c = da), and k, = ko(a)  for several 
different choices of a. It is observed that k,, is a fairly 
stabte function of a. All calculations were performed 
on a CDC 6600 at Los Alamos Scientific Laboratory. 

Figure 2 gives a plot of i?(Pk), E(Pk I s k )  and E(Pk 
I & )  as a function of stress k for a = 0.1. It is 
observed that 

E(Pk I S k )  5 E(Pk) E(pk I Sk). 

Also, it is easy to see that the asymptote for E(kk I 
s k )  is 

1.6 

1.7 

k, 1.8 

1.9 

2.0 

k, 
1.2 1.3 1.4 1.5 1.6 

1.34 1.37 1.43 

1.38 1.41 1.46 1.09 . 
1.42 1.45 1.49 1.54 1.23 

1.46 1.49 1.53 1.58 1.63 

1.61 I 1.66 1.50 1.53 1.57 
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1.6 

1.7 

k, 1.8 

1.9 

2.0 

1.2 1.3 1.4 1.5 1.6 

1.21 1.29 

1.25 1.30 1.38 1.96 t 

1.25 1.32 1.39 1.51 1.81 

1.26 1.33 1.41 1.49 1.63 

1.28 ' 1.35 1.42 1.50 1.58 

Figures 3-6 give plots similar to Figure 2 for a = 
0.5, 1.0, 10.0, and 50.0, respectively. 

Earlier, in Section 3, we suggested the a could be 
chosen to coincide with the experimenter's prior esti- 
mate of the variance at a given stress k. It is also 
possible to choose a by use of Figures 3-7. From 
these figures, it is observed that the difference be- 
tween the prior and posterior expected survival prob- 
abilities is larger for smaller values of a. That is, for 
small values of a, the expected survival probability is 
more sensitive to the test result than for large values 
of a. 
. Let us now examine the sensitivity of the optimal 

test stress k,, as given by the solution to (20), to 
variations in the answers to Questions 1,2, and 3. It  is 
important to do this since the answers to these ques: 
tions may be inaccurate. Such inaccuracy may be due 
to either lack of precise knowledge by the person(s) 
answering the questions or lack of clear understand- 
ing of the precise information being solicited in the 
questions. 

First, consider the sensitivity of the optimal test 
stress to changes in k, and/or k,. Tables 2-5 give-the 
optimal test stress ko as a function of several choices 
of k, and k2 for a = 0.5, 1.0, lO.O,.and 50.0, respec- 
tively. In Tables 2-5, k, = 1.35. I 

It is observed that the aptimal test stress ranges 
between 1.09 (a = 50, k, = 1.6, kz = 1.7) and 1.93 (a 
= 0.5, k, = 1.6, kz = 2.0). For a given a, the optimal 
test stress is fairly insensitive to changes in kz for 
small values of k,. On the other hand, for a given a, 
the optimal test stress is less insensitive to changes in 
k, for large values of k2. As both k, and kz increase, 
the optimal test stress is fairly stable. 

Now consider the sensitivity of the optimal test 
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plan to changes in k8, since this quantity was held 
fixed in Tables 2-5. Table 6 gives the optimal test 
stress ko as a function of several choices of k, and a! 
for the nominal values kl = 1.4 and kz = 1.8. It is 
observed that ko is quite insensitive to changes in ks 
for a fixed value of a. This is an important result, 
since the answer to Question 3 is likely to be some- 
what arbitrary in practice. That is, in practice, k, may 
be an imprecisely known value. 

5. CONCLUSIONS 
b 

A Bayesian procedure for determining the optimal 
test stress for a single test unit has been developed. 
The procedure is both objective as well as subjective. 
It is subjective in the choice of the model. It is sub- 
jective in the sense that the necessary parameters in 
the model are estimated from best available informa- 
tion prior to the test results. These estimates are then 
used in an objective manner to provide the required 
test stress. The test stress provided by this procedure 
is “optimal” within the model framework in a certain 
well-defined sense. Specifically, this optimal test 
stress maximizes the modeled expected unconditional 
probability of survival at the design stress. The model 
effectively trades between two extremes. The first rep- 
resents the increasing likelihood of survival at the 
design stress gained as a result of a test unit surviving 
increasing test stress. This gain is countered by the 
correspondingly decreasing probability of test unit 
survival as the test stress increases. 

The model was used to determine the impact test 
velocity in an impact test of a certain radioisotope 
fuel container. The optimal test velocity was found to 
be approximately 30-50 percent above the design 
impact velocity. In addition, a limited sensitivity 
analysis to the subjective estimates required in fitting 
the model was conducted. It was observed in this 
example that the optimal test velocity was fairly in- 
sensitive to the subjective estimates. This may or may 

TABLE 6-Optimal test stress kofor several values of k, and a ( k l  
= 1.4 and k, = 1.8) 

1.43 1.40 
1.48 
1.49 

not be true in other applications. Consequently, as a 
safeguard, it is recommended that such a sensitivity 
analysis be routinely conducted when applying this 
model in practice. 
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