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The primary structure of a single-stranded nucleic acid, such as a tRNA, is the 
sequence of nucleotides or bases making up the molecule. Secondary structure of 
such a molecule is a class of graphs in the plane which preserves the bonds in the 
primary structure but allows helical regions. Prediction of the most stable secondary 
structure is an important probkm at the most basic biological level. This paper gives 
the first graph theoretic definition of secondary structure and derives some associated 
properties. A classification of secondary structures is given and used as a basis for 
new and efficient algorithms to find the most stable secondary structure. -L. 

1. INTRODUCTION 

The sequence of nucleotides or bases of a tRNA is known as its primary 
structure. When primary structure of a single-stranded tRNA is known, the 
question arises of which bases form pairs and allow the sequence to form 
helical regions in two dimensions. This latter structure is known as secondary 
structure and was proposed quite early [9, lo]. In fact, a cloverleaf model 
was proposed when the first tRNA primary structure was known [14]. 
Secondary structure has received much attention [l] and has, as at least 
part of its function, a role in the interactions of tRNAs with proteins [19], 
in stabilizing mRNA, in packing RNA into virus particles, and in recognition 
of specific sites by components of the translating system [23]. Prediction of 
the minimum free energy @e., most stable) secondary structure, then, is an 
important problem at the most basic biological level. 

To approximate the Helmholtz free energy of a proposed secondary struc- 
ture, much biochemical information must be obtained. Work by Uhlenbeck 
et al. [21), Gralla and Crothers [ l l ,  121, DeLisi and Crothers 131, and 
DeLisi [4] has contributed to this task. Once this information is obtained, 
secondary structure is carefully defined, and rules for evaluation of free 
energy are established, then work on prediction of secondary structure 
can start. 
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Much effort has been given to the prediction of secondary structure, One 
of the most important methods, due to  Tinoco er nl. [20], considers the base 
pairing matrix for a tRNA. This method has been modified and extended 
but appears to be the basis of the algorithms that have since been proposed 
or used [3 ,7 ,8 ,  13, 17, 19). Below a connection is made between a Tinoco- 
like method and the adjacency matrix for the graph corresponding to the 
secondary structure. This connection allows a clear understanding of the 
method and its severe limitations. 

This paper gives a careful and general definition of secondary structure 
and derives some properties that follow from the definition. A classification 
of secondary structure by complexity is given, and this classification is used 
as a basis for efficient algorithms to  find the optimal secondary structure. 
The algorithms are new, and careful proofs are given that show they solve 
the general problem of optimal structure of single-stranded nucleic acids. 
Attention is also given to computational efficiency. 

* 

2. THE GRAPH THEORY OF SECONDARY STRUCTURE 

In this section, graph theoretic properties of secondary strucfbres are 
studied. There will be no consideration of the specific pairing rules or prop- 
erties of a specific single-stranded nucleic acid. Instead, the object is to give 
a precise definition of secondary structure and of the components of 
secondary structure for an arbitrary sequence of length n. The total number 
of secondary structures for a sequence of length n is considered. Also, the 
set of possible secondary structures will be decomposed into a disjoint union 
indexed by k = 0, 1,. . . . The kth set in this union will be called the set of 
kth order secondary structures and will be given a simple definition based 
on the complexity of the secondary structure. This classification of secondary 
structures will allow a proof (Theorem 7.5) that the algorithms stated later 
in this .paper do find the best secondary structure given a specific single 
stranded nucleic acid with pairing rules. 

Figure 2.1 gives some examples of secondary structure. In the following 
discussion, a sequence of n points (1 -2-- . - + I )  will be assumed given in 
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which each point i, I < i < n, is joined or bonded to i - 1 and i + 1. A 
point i unpaired will mean i is not joined to any points other than i - I 
and i + 1. Figure 2.la is the configuration of the sequence (1-2-3.. .-12) 
with, in addition to the bonding between adjacent members of the sequence, 
the bonds (1, 12), (2, 1 I), (3, lo), (4,9). Thus, when labeled, Fig. 2.la becomes: 

. 
I I 1 2  

This structure is called a hairpin. The region (1 -2-3-4) bonded with 
(9-10-11-12) is called a ladder (also called helical region in the literature) 
and appears in Fig. 2.ld. The unpaired region (5-6-7-8) forms what is 
called a hairpin loop in the literature. (In this paper hairpin loop and loop 
have identical meanings.) The unpaired region in the initial part of the se- 
quence in Fig. 2.lb will be called a tail. The secondary structure in Fig.Q.lc 
is called a cloverleaf. The unpaired region in Fig. 2.le is known as a bulge, 
while the unpaired members of Fig. 2.lf are known as an interior loop. 

The problem is to construct a usable mathematical model of all possible 
secondary structures and to use this model to study secondary structure. 
It isjpportant-to realize that these molecules have a polarity (the 3’ end to 
the 5’ end), and that only bases of opposite polarity bond. The most useful 
approach to the model seems to be graph theoretic since secondary structures 
are clearly graphs in the plane. Also, a and b are said to be adjacent if (a, b) 
is a line of the graph. This leads to the definition of the adjacency matrix 
A = (aij) of a labeled graph G with P points. The element aij = 1 if i and j 
are adjacent, and aij = 0 otherwise. (Set the elements aii = 0.) 

A study of the properties of these structures and the adjacency matrices 
has led to the following definition of secondary structure. 

DEFINITION 2.1. A secondary structure is a graph on the set of n labeled 
points { 1 ,  2, . . . , o) such that the adjacency matrix A = (aij) has the follow- 
ing three properties: 

(i) ~ ~ ~ , ~ + ~ = l f o r l < i < n - l .  
(ii) 

(iii) 
For each fixed i, 1 < i < n, there is at most one qj = 1 where j # i _+ 1. 
If  aij = a,, = 1, where i < k < j, then i < I d j .  

I f  = 1, i and j are said to be bonded. 
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Part ( i )  of Definition 2.1 requires adjacent points to be bonded. Part ( i i )  
states that each point can be bonded to at most one other point (besides 
the adjacent points). Finally, part (iii) is to assure that if i and j are bonded, 
then all bonding of points i < k < j  is with points I between i and j .  Part 
(iii) is an essential part of the definition as it keeps the structure from “folding” 
and becoming a three-dimensional or tertiary structure. 

It is interesting to note that Kleitman [16] and Hsieh [IS] have studied 
irreducible diagrams which suggest a different representation of secondary 
structure. This representation, given in Fig. 2.2, is perhaps useful for com- 
binatorial reasons but is not used here since the definitions and results 
here are motivated by the models of secondary structure in the biological 
literature. 

FIG. 2.2. (a) Usual diagram of‘ secondary structure. (b) “Loop” diagram of secondary 
structure. 

Before proceeding to  the enumeration of secondary structures, it is neces- 
sary to clearly indicate what structures are to  be enumerated. Two secondary 
structures for (1 -2-- . . -n) will be conL:lered distinct if their adjacency 
matrices are not equal. Consider n = 6, where the seventeen secondary‘ 
structures are enumerated in Fig. 2.3. 

An examination of Fig. 2.3 shows that the enumeration depends heavily 
on the labeling of the sequence. In fact, there are eleven such structures if 
the sequence is unlabeled. 

It would be an interesting problem to enumerate the unlabeled secondary 
structures, although of no direct use in this paper. Also, Paul Stein of Los 
Alamos Scientific Laboratory has suggested the problem of determining 
whether or not a given unlabeled graph has a labeling such that the graph 
is a secondary structure. 

+ 

THEOREM 2.1. Let S(n)  be the number of secondury structures for n points. 
Then S(1) = S(2) = 1, crndfor n > 2, S(n) srrtisjes 

n - 2  

S(n + 1 )  = S(n) + S(k)S(n - k - l), 
k = O  

. 
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FIG. 2.3. The seventeen secondary structures for ( 1  -2-3-4-5-6). 

-L 

where S(0) 
ofS(n)for n = J, . . . , 10.) 

1.  Also, S(n) 2 2"-'for n 2 2. (The table below gives the values 

, 1 1 0  1 2 3 4 5 6 7 8 9 10 
S(n) I I 1 I 2 4 8 17 37 82 185 423 

Proof. It is easy to see from Definition 2.1 that for n = 1 and n = 2 the 
only secondary structures are 

I I 2  
( , I  = 1 )  0 1  = 2) 

and therefore S(l) = S(2) = 1 .  
Suppose S(k)  is known for 1 < k < n. Now consider ( 1  -2-. . .-n + 1). 

Either n + 1 is not paired or n + 1 is paired with j for 1 < j < n - 1. If n + 1 
is not paired, then (1  -2-. . . -n) can form any possible secondary,structure. 

. .  . 
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If n + 1 is paired with j, then (1 -2- .  . .-( j  - 1)) and ( j  + I-. . . -n) can 
each form any possible secondary structure. This technique forms secondary 
structures for (1 -2-. 1 . -n  + 1) as a check of Definition 2.1 shows. That this 
technique enumerates all secondary structures for the sequence follows from 
(iii) of that definition. 

From the preceeding paragraph, it follows that 

S ( n  + 1) = S(n) + S(n - 1) + S(l)S(n - 2) + . . . + S(n - 2)S(1). 

Defining S(0) = 1, the equation takes the form (n > 2) 
n - 2  

S(n + 1) = S(n) + C S(k)S(n - k - 1) 
k = O  

n - 2  

= S(n) + S(n - 1) + 

= S(n) + S(n - I )  + 

S(k)S(n - k - 1) 

S(k + 1)S(n - k - 2). 

k =  1 

n-3 

k = O  

Since S(k  + 1) 2 S(k), 
A n- 3 

k = O  
S(n + 1) 2 S(n) + S(n - 1) + 1 S(k)S(n - k - 2) = 2S(n). 

Now S(2) = 1 so that the above inequality implies 

S(n) 2 2" - 2 .  

This completes the proof. 

where 1 ,  > 0. Then 
To show that 2"-' is an unsatisfactory bound, assume &an < S(n) < /l,cr", 

and 

(1,/A2)a2 2 a + L2(n - 21, 

which is a contradiction. Thus, the rate of growth of S(n) is not geometric. 
However, it will be shown that S(n) is bounded by a geometric growth rate. 
If the generating function 4(x) is defined by 

m 

. .  
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the recursion formula in Theorem 2.1 can be multiplied by s”’ and summed 
to obtain 

s”2(x) + (s - 1 - s2)4(s) + 1 = 0. 

This equation can be solved to yield the next corollary. 

COROLLARY 2.1. IJ’ +(s) = S(n)x”, theri 

.YZ - s + 1 - [l + 4 x 3  - 2s2 - x - 2)]”* 
2s2 +(XI = 

- Next it is shown that S(n) is bounded by a geometric series. 

COROLLARY 2.2. For n >, 2 there is a fixed M > 0 such chat 

2n-2 < S ( n ) <  M4”. 

Proof. Now S(n + 1) < E=, S(k)S(n + 1 - k) so that if g(0) = g(1) = 1 
and 

n -  1 

g(n)  = 1 g ( M n  - k), 4 
k = O  

then S(n) < g(n); and DeBruijn and Erdos [2] show 

Now some additional definitions will be given so that several of the features 
in Fig. 2.1 can be identified from the adjacency matrix. 

D E F ~ N ~ T ~ O N  2.2. Suppose A is the adjacency matrix for a secondary 
structure on (1-2-. . .-n). 

(i) The point j is said to be paired if there is some point i # j +_ I 
such that aij = 1. 

(ii) The region (i + I - i  + 2-- . .-(j - 1)) is a loop if i + 1, i + 2,. . . , 
j - 1 are all unpaired and nij = 1. The pair (i,j) is said to be the foundation 
of the loop. 

(iii) Thesequence(i+ l - i + 2 - . . - - ( j -  l ) ) isabu/geif i+ l , i + 2 ,  . . . ,  
j - 1 are all unpaired, i and j are both paired, and oij # 1. 

(iv) An interior loop is two bulges (i + 1-i  + 2-.*--(j - 1)) and 
( k  + 1 -k + 2-, . .-(/ - 1)) such that uil = 1 and ajk = 1. (Here i < j  < k < 1.) 

(v) A join is a bulge (i-i + 1-. . .-j) such that ak[ = 1 for k < i implies 
I 6 i, and akl = 1 for k > j implies I >, j .  

- 



. .  

174 MICHAEL S. WATEKMAN 

(vi) A tuil is a sequence (1-2-. . .-j) where 1, 2 , .  . . , j are unpaired 
and j + 1 is paired. 

(vii) A lutlder is two sequences ( i  + 1 - i  + 2 - . . . - i  + j) and ( k  + 1- 
k + 2-. . e - k  + j )  such that i + . j  + 1 e k ,  u i + r , k + j - I +  , = 1 for 1 < I < . j  and 

A hairpin is the longest sequence ( i  + I-i + 2- .  . e - ( j  - 1 ) )  con- 
taining exactly one loop such that ai+ ,, j -  = 1 and ai,j = 0. The paired 
points i + 1 and j - 1 will be called the foundation of  the hairpin. 

a i . k + j + l  - - a i + j + l , , = O . I f i + j +  3 =  k +  1,thislastrequirementisdropped. 
(viii) 

The above Definition 2.2 shows that the definition of secondary structure 
given here is rich enough to include the elementary structures in Fig. 2.1. 
These structures can be easily identified from the graph or from the adjacency 
matrix. For example, a ladder corresponds to a sequence of 1’s on some 
negative diagonal. It is this observation that Tinoco et al. [20] utilize in 
their work on prediction of RNA secondary structure. It has been the basis 
of all previous algorithms to predict secondary structure (see, e.g., [19].) All 
these algorithms rely on the examination of all possible secondary structures. 
The combinatorial results shown later in this section indicate that the number 

However, the question of whether the definition of secondary structure is 
too broad remains. The next theorem shows that any secondary structure 
is made up of loops, ladders, bulges, and tails. No secondary structure can 
be drawn with a point that is not a member of a loop, ladder, bulge, or tail. 

of cases in such an examination is extremely large. .s 

THEOREM 2.2. Any secondary structure can be uniquely decomposed into 
loops, ladders, bulges, and tails. 

Proof. If aij  = 1, where i # j 1, then i and j are members of sequences 
(possibly of length 1) which are a ladder. Thus, assume i is an unpaired 
point. Then let ( i  - j ) - .  . .-i-- . .-i + k be the longest sequence of unpaired 
points that i is a member of. If i - j = 1 or i + k = n, then i belongs to a 
tail. Otherwise i - j - 1 and i + k + 1 are paired. If a i - j -  ,, i + k +  , = 1, then 
i belongs to a loop. If a i - j -  , . i + k +  , = 0, then i belongs to a bulge. 

The next theorem shows that any nontrivial secondary structure contains 
a loop. 

THEOREM 2.3. I j  a secondary structure has at least one pair, it has at 
least one loop. 

Proof. Clearly, there exists at least one ladder. Consider the ladders in 
the secondary structure: L, ,  L , ,  . . . , L,. By the definition of ladder, the 
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union of the two sequences making up the ladder does not make a new 
sequence. Since there are a finite number of ladders and every paired point 
belongs to a ladder, there exists a ladder such that the nonempty sequence 
of points between the two sequences making up the ladder has the property 
that they are all unpaired. By definition this sequence is a loop. 

The next result shows the secondary structure in more detail. This result 
is necessary to make a classification of secondary structures by complexity. 

THEOREM 2.4. Every secondary structure can be uniquely decomposed into 
(i) hairpins and (ii) ladders, bulges, and tails which are not members of a hairpin. - 

Proof. Each loop is contained in a hairpin. Since by definition a hairpin 
has exactly one loop, there are as many (nonintersecting) hairpins as loops. 
The structures remaining must, by Theorem 2.2, be ladders, bulges, and tails. 

Next, secondary structures are classified by a certain complexity criterion. 
A simple lemma is necessary to  make certain this definition can be 
accomplished. 

LEMMA 2.1. 

. 

a 
If A is the adjacency matrix for some secondary structure 

and, if A' = (aij) is formed from A by setting aij = aii = 0 for any set of choices 
of i and j ( i  # j i- l), then A' is the adjacency matrix for another secondary 
structure. 

Proof. It is easy to check Definition 2.1 for A' = (aij). 

DEFINITION 2.3. Let A be the adjacency matrix for a secondary structure. 
A sequence A(') of adjacency matrices of secondary structure is formed as 
follows: 

(ii) Form A( '+ ' )  from A'" by setting a$+') = ai:") = 0 whenever at,) = 
u$ = 1, k and I are members of some hairpin, and k # I k 1. 

The secondary structure for A is said to be kth  order if Mk) is the first matrix 
in the sequence {A")},"=, such that the secondary structure for A(k)  has no 
hairpins. (Of course, this means A(') is a matrix such that a$) = 0 if i # j f 1.) 

It is clear from Lemma 2.1 that the algorithm of Definition 2.3 is well 
defined. The next theorem states some additional properties of order. 

(i) A'O' = A. 

- 

THEOREM 2.5. An!) secondary structure is a kth order secondary structure 
for some unique k 2 0. I f  the sequence is of length n, then k < [ n / 3 ] .  
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Proof. Since at least three points are required to make up a hairpin, 
there are a finite number of hairpins for any secondary structure. If there 
are no such hairpins, the secondary structure is 0th order and there is nothing 
to show. If there is exactly one hairpin, there can be no paired points not 
belonging to  the hairpin; and therefore the secondary structure is first order. 
Otherwise there are at least two hairpins. 

Assume A'" has at least two hairpins. At least one pair of these hairpins 
has only unpaired points between them. Thus A ( ' + ' )  can have at least one 
less hairpin than A"), and the algorithm must terminate in a finite number 
of steps. 

In fact, each hairpin has at least one point in its loop and at least one pair 
of points on or above the foundation. Therefore, there are at most [n/3] 
loops and the secondary structure cannot have order greater than [n/3] .  

It is very convenient to  determine the order of a secondary structure from 
a graph, and this is illustrated in Fig. 2.4. An arrow will denote passage from 
the secondary structure for A(') to  that for A('+ ') in Fig. 2.4. 

It is clear that order is related to  complexity and that, for sufficiently 
large n, secondary structures of arbitrarily large order exist. A proof of this 
can be based on Fig. 2.4f. If a secondary structure of order k ca&be con- 
structed, add it to each side of a hairpin. The new structure is of order k + 1. 

THEOREM 2.6. For any k > 0 there is an n = n(k) such that some secondary 

Next, the secondary structures with exactly one loop are enumerated. 

structurefor (1-2-* . .-n) is of order k .  

These structures are the basis of the lower bound in Theorem 2.1. 

THEOREM 2.7. There are exactly 2"-2 - 1 secondary structures of length 
n (n 3 2) which have exactly one loop. 

Proof. Let L(n) be the number of secondary structures of length n which 
have nomore than one loop. By inspection L(1) = L(2) = 1.  

The proof follows that of Theorem 2.1. Assume L(1), L(2), . . . , L(n) are 
known and consider (1-2-. . .-n + 1). Either n + 1 is not paired or it is paired 
with j ,  where 1 ,< j ,< n - 1 .  In the first case, (1-2-* * e-n + 1) can form L(n) 
secondary structures of interest. In the second case, ( j  + 1-. . .-(n - 1)) can 
form any possible secondary structure of interest. (1-2-. . .-(j - 1)) cannot 
form a loop as this would make two loops. 

Thus it is clear that 

L(n + 1) = L(n) + L(n - 1) + * . . + L(1) 
= L(n) + L(n) = 2L(n) for n 2 2. 

. 
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I -  

Since L(2) = 1 ,  

L(n) = 2 " - 2  for n k 2. 

The function L(n) counts all secondary structures with one loop plus the 
unique case of no pairing. The result now follows. 

h 

, 

( b )  Order I 

n 

L n 

-8Q, - /L Order 3 

FIG. 2.4. Example of order. 

Although Theorem 2.6 is a satisfactory answer to the question of how 
many (order 1) secondary structures have exactly one loop, the question of 
the number of order 1 secondary structures remains. This problem is dealt 
with in the next theorem, and the solution follows from an application of 
the discrete renewal theorem. 
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THEOREM 2.8. Let S:'' be the number of secondary structures of order 1 
for a sequence of length n. There is a I E (2,3) (1 = 2.2055 . . .) such that 3, 
is a solution of x3 - 2x2 - 1 = 0 and 

lim A-",S!,~) = p - 1 ,  
n- m 

where 11 = 1-I + 3i.-3 + 2-4[2i.(A - 2)-' - 21-' - 81-' - 24A-3]. 

Proof. Let s, be the number of zero or first order secondary structures 
for a sequence of length n. (Clearly, s, = Si1) - 1.) Also, let h ,  = 1, h2 = 0, 
and, for k 2 3, let hk be the number of secondary structures with no more 
than one loop for a sequence of k - 2 points. 

It easily follows from the definition of first order that if i and j are paired 
there can be no more than one loop in the sequence ( i  + 1-- . * - ( j  - 1)). By 
an argument similar to that of Theorem 2.1, the system of equations below 
follows: 

- 

- 

. 

so = 1, 

S, = s,- 1 + Sohn + sIh,- 1 + . . . + ~,,-3h3, 
-= Sohn + slhn-]  + .  . . + ~ ~ - ~ h ~  + ~ ~ - ~ h ~  + ~ , - ~ h ' .  

Define bo = 1, and, for 1 > 2, 

U, = S , , I . - ~ ,  S, = h,L-". 

Then, . I 

Now, 
rn m 

I 
.. . 
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If i. = 3, f = 3-' + 3-3 + 3-3(3 - 2)-' < 1. But limi12J'= +a. Thus 
there is a 1 E (2, 3) such that f = 1. The equation j' = 1 can be rewritten as 
the equation in the theorem statement by factoring and deleting the factor 
.Y - 1. 

Next apply the discrete renewal theorem as given in Feller [S, pp. 330- 
3311. The only additional computation to obtain the result is 

a cc 
p = C nf. = I . - '  + 3 i - j  + 1 n2"-41.-n 

n =  1 n = 4  

- l  + 3A-3 + 2 

Of course, there is only one secondary structure of order 0 so 

lim i.-"sc,l) = lim l-"sn = p-'. 
n+ m n- m 

The proof is now completed. 

Since there are exactly 2"-' - 1 secondary structures with exactly one 
loop (n 2 2), it follows that, if SA1)' is the number of first order secondary 
structures with more than one loop, 

.L lim l-nSil)* = p-1. 
n* m 

3. FIRST ORDER SINGLE Loop SECONDARY STRUCTURES 

In this section results are derived which allow the determination of the 
minimum free energy first order single loop secondary structure for a single- 
stranded nucleic acid. The results are quite general and allow input of more 
precise information as it becomes available. Of course, restrictions on the 
possible secondary structure are imposed, and the set of possible secondary 
structures is not nearly as general as those described in Section 2. The 
algorithms which are presented in this section are motivated in form and 
proof by previous work [22] on sequence homology, but the results of [22] 
cannot be directly -adapted to this problem. In fact, some quite distinct 
properties arise as a result of the assumptions and restrictions imposed here. 
Symmetries exist in the sequence homology problem that are absent here. 

Some fundamental definitions are now made. 

DEFINITION 3.1. Let d be a finite set called the alphabet. Then the 

(i) A pairingfunction is a symmetric function p ( - ,  .) defined on d x d 

following functions are assumed to be given. 

such that p(a, b) E (0, 1 )  for (a, 6)  E sd x d. 
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( i i )  A real valued symmetric function LY(., .) defined on .d x d is called 
the free energy associated with the pair (a, b). Using C Y ( . ,  .),the ladder.funcrion 
can be defined on dk x ,dk for k >, 1 by 

k 

CY(a1 ' . . ak, b,  . . . bk) = CY(ai, bi). 
i =  1 

(iii) A real valued function p ( - )  defined on dk for k 2 1 is called the 
bulgefunction. Its value /?(a, . . . ak) is said to be the free energy associated 
with a bulge a, . . . a,. 

(iv) The real valued symmetric function y ( * ,  -), defined on dk x d' for 
min(k, I )  2 1, is called the interior loopfunction. Its value y(a, . . . ak, b,  . . . b,) 
is said to be the free energy associated with an interior loop a, . . . a, and 
b, * * . b,. 

(v) The real valued function ((e; -) defined on d2 x dk for k > 1 is 
called the loop function. The value [ (cd;  a ,  . . . a k )  is called the free energy 
associated with a loop a,  * - ak with foundation cd. 

(vi) The real valued function {(e) defined on dk for k 2 1 is called the 
join function. Its value { ( a ,  f . . a k )  is called the free energy associated with 

(vii) The real valued function z(-) defined on dk for k 2 1 is called the 
tailfunction. Its value ?(a, . a,) is called the free energy associated with a 
tail. In this work r(al 

To establish an efficient algorithm, several assumptions are made about 
these five functions. While these assumptions might seem rather arbitrary, 
they appear natural from energy considerations; and all are satisfied by 
current estimates of the functions [6, 11, 12, 19,201. They are necessary for 
the proof of Theorem 3.1 below. For ease of expression below when, say, 
B ( k )  is written, it is to be interpreted as the bulge function f l  evaluated at an 
arbitrary sequence of k letters. An inequality like 

a join. a 

. a,) = 0 for all elements of dk for all k. 

B(k + I )  G B(k) + B ( 0  
means 

p(a, . . . a, ,  b1 ' ' . b,) ,< p(a, . ' ' ak) + P(b, . . ' bi). 

Also, since [ is a function of d2 x dk, [ is written as [(k). 

DEFINIT~ON 3.2. The functions ( p ,  CY, p, y, [) with an alphabet are said to 
be regular if 

(i) for all arguments, p, y ,  [ are positive, 

a(a, b) is negative if p(a, b) = 1, 

a(a, b) = + 00 if p(a, b) = 0, 

. 
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and 

(ii) the following inequalities hold: 

B(k + I )  < B(k)  + B ( h  
Y(k, I )  < B(k)  + 8(0, 

max{i(k + I ) ,  ( ( 1  + k)} < P(k )  + w, 
max{y(k + q,O, ~ ( 4  + k, I ) ,  y@, I + Y), y ( k ,  4 + I ) }  < B(q) + 17% 0, 

r u  + 4 + n) < Y ( l  n) + C(4)9 

Y(k + 47 1 + 4 s Y(k, 1 )  + Y(47 4. 
Let a be a finite sequence of elements of d with the functions p, a, 8, y, c, 5 

defined as in Definition 3.1. By Theorem 2.2, any secondary structure S(a) 
for (a) can be decomposed into loops (LO), bulges (E), ladders (LA), and 
tails (T). If the interior loops are denoted by IL and joins by J, then let 
B = (B' - IL) - J. 

The next definition concerns the free energy of a class of secondary 
structures. Free energy here refers to the difference in Helmholtz free energy 
between a given secondary structure S(a) and the completely unpaired 
structure So(a) (a tail). So(a) is the random coil state and is a member of T. 
While the traditional notation for free energy is AF or AA [24), the delta 
has been dropped as its mathematical connotations might be misleading. 
The assumption of additivity for free energy is equivalent to independence 
of energy contributions of the various structural components. This results 
from the assumption of statistical mechanics that the partition function is 
a product for independent energy contributions [24]. 

- 

DEFINITION 3.3. Assume a is a sequence as given above and that a first 
order secondary structure S(a) has at least one pair. Then the first order free 
energy associated with S(a) is defined by 

F , ( W )  = 'c 5 ( 4  + C(W)  + c B W  + Y ( Y )  + c 44. 
. V € J  W O L O  x e B  y e l L  z s L A  

If S(a) has no pair, F,(S(a)) = 0 by definition. (This is consistent with the 
omission of T in the above equation.) The first order free energy associated 
with a is defined by 

F,(a) = min F,(S(a)), 

- 

S(a)e 9 

where 

9 = {S(a):S(u) is zero or first order, 
w E LO implies w is a sequence of at least rn elements, 
and z E LA implies a(z) < 6 < 0). 
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If Y* = Y n {S(a):S(a) has no more than one loop}, then define 

F,*(a) = min F(S(a)). 
S(a)EISY* 

Since any loop must have at least one element, the requirement of at least 
m elements is no loss of generality and can be used to eliminate computation. 
The requirement of a(z) < 6 < 0 is to assure that ladders have enough free 
energy to be stable. Previously, at least three (consecutive) pairs in a ladder 
had been required ; the present requirement is more realistic but can include 
the previous requirement. 

Definition 3.3 is a mathematical statement of the problem of “best” 
secondary structure. It will require some slight alterations in succeeding 
sections but is entirely adequate for first order secondary structures. 

A few more comments are in order before the next theorem. The algorithm 
given by the theorem essentially considers, for at - a, and a, . a,- j +  

the free energies associated with pairs, bulges, and interior loops between 
the two sequences. The algorithm chooses the “structure” which has the 
smallest free energy. As the “structure” formed has no loop and is not a 
secondary structure, the word alignment is used. This usage is familiar from 
the literature on homology of biological sequences [22]. Another cmvention 
is that, if an alignment ends in ai and a,-j+l paired, it is said that that 
alignment ends in a pair. Of course, the final step of the theorem obtains 
the value of F,*(a). 

, 

THEOREM 3.1. Let a = a, a, be a sequence from d” and assume the 
functions ( p ,  a, fl, y ,  [) are regular. Let 6 < 0 and m, a positive integer, be used 
in the dejnition of F,* .  DeJne 

b . = a  I , - ] + I ,  . 1 < j < n  

and p(0,  j )  = p(i, 0) = 0 fur 0 < i, j < n. Then inductively dejne p(i ,  j ) ,  fur 
0 < i j ;  i + j < n - m, to be the minimum of zeru and: 

(i) ’ 

p(i - k ,  j - k )  + ct(ai-k+, . . . ai, bj-k+ * . . bj), 

where 1 < k d min{i, j )  and ~ ( ( a ~ - ~ +  . . . a,,  bj-k+ . . . bj) < 6; 
(ii) 

p ( i  - k , j )  + B(ai-k+ 1 . . . ai), 
where 1 < k < i - 1 rind .wine alignment jiw p(i  - k ,  j )  ends in a pair; 

p( i .  j - k) + B(bj-k+ . . . bj), 
(iii) 

d i e r e  I < k < j - 1 crntl seine dignnient j b r  p( j ,  j - k )  ends in u ptrir; and 

. 
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(iv) 

p ( i  - k ,  j - I )  + ~ ( q - ~ +  . . . ui, bj - ,+  , . . . bj), 

where 1 < k < i - 1, 1 < I < j - 1, ant1 some alignment for p( i  - k ,  j - I )  ends 
in a pair. 

Then 

F,*(a) = min(p(i, j) + [(aibj; a i + ,  . . . uf l - j ) : i  + j < n - n 7  
and some alignment for p(i, j )  ends in 
a pair}, 

- 
where F ,  *(a) = 0 if' the above set is empty. 

Proof. The proof that p( i , j )  is the minimum free energy associated with 
a, . . . a, and b,  * . * bj = a,, * a,,- j +  , is postponed at present, and the 
statement is assumed true. 

If a best first order secondary structure with no more than one loop has 
at least one pair, then it has exactly one loop. Let aibj be the foundation of 
that loop. Then the free energy e for a, . . - a, and b,  . . . bj in this structure 
satisfies p(i, j )  < e < 0. If p(i, j )  has an alignment with i and j paired, then 
p(i, j )  < e is a contradiction and p(i, j )  = e. Otherwise the assumption of tke 
paragraph above requires p(i, j )  < e. There are two situations for p(i, j ) .  The 
first situation is 

p(i, j )  = p(i - k,  j - I )  + y(ai-k+ 1 . . . a,, bj - l+  , * . . bj), 

- 

which implies 
. . .  A i -  k , j  - 1 )  + c ( a i - k b j - l ;  a i - k + l  a n - j + l )  

< p ( i  - k , j  - I )  + 
< e + [ (aibj;  a i .  . . a,,-j)  = f,*(a). 

, . . . a i ,  b j - ,+  . * . bj) + [(aibj;  ai+ , . . . 

The other situation is 
g p(i, j )  = p(i  - k , j )  + B(ai-k+ , . . . ai) 

so that 

p ( i  - k,  j )  + C ( c ~ ~ - ~ b ~ ;  a i - k +  , . . . u , , - ~ )  

< p(i  - k, j )  + B(ai-k+ I ' ' ai) + {(ajbj; ai+ 1 ' ' ' an-,) 

< e + [ (aibj;  ai+ , . . . = f,*(a). 

Each ofthese situations (the second covers two cases, one of which is omitted) 
results in a contradiction since a member of Y* has been exhibited with 
free energy smaller than F , * .  Therefore, subject to the assumption on p ( i ,  j) 
made above, the theorem holds. 

. .  , , . . (  . ,  . . ,  . . .  . 

, .  

. 

. 

. .  
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To show p(i ,  j )  has the required property, assume that the property holds 
for p(k, I ) ,  where 0 < k < i, 0 < I <J ,  k + 1 < i + j .  Consider an optimal 
(minimum free energy) alignment for a, . . . n, and b,  . . . b,. Either (i) ai and 
bj are paired, (ii) exactly one of a, and b, is paired, or (iii) neither a, or b, is 
paired. Each case will be handled below. It must be shown that, in each 
case, the optimal alignment is one that is obtained by the theorem. 

In case (i), the pair aibj belongs to a ladder z satisfying a(z) < 6. The free 
energy associated with the optimal alignment for a ,  . . . ai and bl . . . b, has, 
by the equation of Definition 3.3, the form 

r(i - k,  j - k )  + u(ai-k+ , . . . ai, b j -&+ . . . bj), 

where an alignment for r(i - k, j - k) does not end with ai.-& and b j - k  paired. 
If p(i - k, j - k )  < r(i - k,  j - k), an easy contradiction results so that, in 
case (i), p(i, j )  has the required property. 

For case (ii), suppose, without loss of generality, that a, is paired. Then 
the minimum free energy associated with a, - . . ai and bl . . . bj is of the form 

r ( i , j  - k )  + b(bj-k+ 1 * bj) 

since bj must belong to  a bulge. In the alignment for r(i, j - k), ai and b j - k  
are paired. If p(i, j - k )  = r(i, j - k), then the result holds. Therefore assume 
p(i, j - k) < r(i, j - k). If a, and b j -k  are paired in some alignment for 
p(i, j - k), then an easy contradiction results. There are three more pos- 
sibilities to be considered. 

First, suppose an alignment for p(i, j - k) is of the form 

p(i - 1, j - k) + P(a,-[+ , . * . a,) = p(i, j - k). 
Then, 

p(i - 1, j - k )  + y(ai- ,+ . . . a i ,  b j -&+ . . . bj) 
< p(i  - I ,  j - k )  + B ( U i - , +  1 . . ' ai) + fi(bj-k+ 1 ' . . bj) 
< r ( i , j  - k )  + fi(bj-k+ 1 ' ' ' b,), 

and a contradiction has been obtained. 
Next, assume an alignment for p(i, j - k) has the form 

p( i , j  - k - 1 )  + B(b,-k-l+ 1 . . ' b,-k) = p ( i , j  - k ) .  

Then, 

p(i, j - k - I )  + B(bj-k-[+ 1 . . . bj) 
d p( i , j  - k - 1 )  + fi(bj-k-l+ 1 " ' bj-k) + b(bj-k+ 1 " ' bj) 
< r(i, j - k )  + fi(b,-k+ I . . . bj) 

and, again, a contradiction is shown. 
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To conclude case (i i ) ,  suppose an alignment for p(i ,  j - k )  is of the form 
. . .  b.  ) = p(i ,  j - k ) .  p( i  - / , j  - k - 4) 4- ' J ( O - l + I  ' . . ai, b j - k - , , +  1 I - k  

Then, 

p(i - / , j  - k - 4) y ( U i - , +  1 ' . U i ,  b , - k - , , +  1 . . . bj) 
. . . a,, b j - k - y +  < p(i - /, j - k - q)  + ~ j ( a , - ~ +  . . . b j - k )  

+ (bj-k+ I ' ' ' bj) 
< r ( i , j  - k )  p ( b j - k + i  . . ' b,) 

- and, with this contradiction, case (ii) is concluded. 

associated with a, . . . ai and b ,  . . . bj has the form 
In case (iii), neither ai nor bj is paired. Then the minimum free energy 

r ( i  - I ,  j - k )  + * * * a,,  b j -k+,  . . . bj). 

If p(i - I ,  j - k )  = r ( i  - I , J  - k), the proof is complete. Therefore, assume 
p ( i  - I,j - k) c r(i - I ,  j - k). If and bj+ are paired in some alignment 
for p(i - I, j - k), an immediate contradiction results. There are essentially 
two distinct situations to  consider. .L 

First, suppose an alignment for p ( i  - I , j  - k) has the form 

p ( i  - I - q , j -  k) + f l ( ~ , - , - , + ~  = p(i - / , j  - k). 

Then, 

p ( i  - 1 - q,j - k )  -k y(a i -~- ,+  1 ' .  ' ai, b j - k +  1 . ' .  bj) 
< p(i  - / - q,J - k) + p(ai-l-,+ 1 ' ' ' ai-1) + 'J(Ui-l+ 1 . ' . ai, b j - k  + 1 . ' ' bj) 

< r ( i -  / , j -  k ) + y ( a i - l + l  ai ,b , -k+l  ... bj), 

which is a contradiction. 

p(i - I, j - k) has the form 
The last (nonredundant) situation to consider is that an alignment for 

. 
p ( i  - I - q, j  - k - P) 3- y(a i - l - ,+  1 . . .  0i -1 ,  b j - k - p +  I . . ' b j - k ) .  

- Then, 

p(i - I - q,j  - k - p )  + y ( ~ ~ - ~ - , , + ~  . . . u, ,  bj-k-,,t I . .  . bj) 
< p(i - I - q, j - k - p )  + y ( ~ l ~ - ~ - ~ +  I . . .  L I ~ - ~ .  I > j - k - p +  I ' ' ' b j - k )  

y(ai- l+ I ' ' ' U i ,  b j - k +  1 ' ' ' bj) 
< r ( i  - I ,  j - k )  + ~ ( C I ~ - ~ +  I . . . c i i ,  h j - k +  I . . . h,). 

With this last contradiction, case (i i i )  and therefore the proof of the theorem 
is complete. 
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Hopefully, it is evident that the algorithm of Theorem 3.1 can be imple- 
mented on a computer and that a matrix formulation is the most convenient. 
The only points (i,j), except for ladders, to search over are those whose 
optimal alignments ended in a ladder. It is possible to make other ob- 
servations to reduce the search even more, and this is handled in the next 
corollaries and theorem. For the theorem it is necessary to make further 
assumptions about B and y. These assumptions are quite reasonable and 
satisfied by current estimates of p and y [19]. The set I denotes the set of 
integers. 

COROLLARY 3.1. For Theorem 3.1, let I = minJdz a(a, b) < 0. Then 

(i) if 6 / I  E I, then p(i, j) = 0 for min{i, j} < 6/1, 
(ii) if 6 / I #  I ,  then p(i, j) = 0 for min{i, j} < 6/A. 

Proof. An examination of Theorem 3.1 shows that p(i, j) # 0 must first 
be achieved by part (i) of that theorem; but part (i) does not have a contribu- 
tion unless a(ai-,+ . . * ai, bj- ,+ bj) < 6. The first occasion that this 
can occur is for the smallest integer k such that kI < 6 or k < &/I < 0. The 
corollary follows. A 

COROLLARY 3.2. In Theorem 3.1, (i) can be replaced by 

(iY 

p(i - k , j  - k) + a(ai-,+ . . . ai, bj-,+ . . . bj), 
where 1 < k < min{i,j], a(ai-,+ . . . a i ,  bj-k+l  * . . bj), and no alignments 
for p(i - k, j - k), p(i - k + 1, j - k + l), . . . , p(i - l , J  - 1) end in a pair, 
and (ii) can be replaced by 

(ii)' 

p(i  - k, j - k )  + . * . ai, bjbk+ . . . bj), 

where l'd k < min{i,j}, a(ai-k+ . . . ai ,  b j - , + ,  - bj) < 0, no alignments 
for p(i - k + l , j  - k + l), . . . , p(i - 1, j - 1) end in a pair, and some align- 
ment for p(i - k, j - k) ends in a pair. 

Proof. The proof follows easily from the additivity of a. 

THEOREM 3.2. Assume the situation of Theorem 3.1 and, in addition, that 

B ( k )  d min { B(k + I), PU + k ) ] ,  
P ( k )  < min{y(k + 0, Y(l, k)), 
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and 

y(k, I )  < minfy(k + i, 1 + j ) ,  y( i  + k, j + I ) } ,  
where i, j ,  k, and 1 are arbitrary nonnegative integers. Suppose that p(i  - k, j - I )  
and p(i, j )  each possess an alignment that ends in a pair. Then, i j  p(i, j )  < 
p(i - k, j - I ) ,  p(i - k, j - I)  need not be used in steps (ii), (iii), or (iv) to 
determine p(i + p,j  + q) (where 0 -= p + q). Also, p ( i  - k, j - I )  need not be 
used to determine F,*(a). 

Prool. Suppose q = 0 and p # 0. Then three cases need to be considered: 

(i) 1 = 0, k # 0, 
(ii) 1 # 0, k # 0, and 

. (iii) 1 # 0, k = 0. 

For case (i), 

p( i , j )  + B(ai+ 1 * * * ai+& G - k , j )  + /?(ai+ 1 * * ai+p) 
< p(i - k , j )  -k B(ai-k+I . - .  ai+p). 

For case (ii), -L 

p( i , j )  + B(ai+ 1 . . ai+& < p(i - k , j  - I )  + /?(ai+ 1 * * . a. I + P  ) 
. . . a.  ) < p(i - k , j  - I )  + I + P  

G p(i - k, j - I )  + y ( U i - k +  1 . . ai+p,  bj-r+ 1 . . . bj). 

In case (iii), 

p(i , j)+B(ai+l . * . a i + p ) < ~ ( i , J -  I)+B(ai+l " ' a -  I + P  

< p(i, j - 1 )  + y(ai+ 1 . . . ai+p, bj-l+ 1 . . . bj)* 

In each of the three cases above, the quantity for p(i, j )  was smaller than 
the corresponding quantity for p(i - k, j - I). The only (nonredundant) 
situation remaiping is p # 0, q # 0. Then, 

A i  - j )  + y(ai+ 1 . . . ai+p, bj+ I . . . bj+y) 
< p( i  - k, j - I )  + y(ai+ . . . a i+p ,  bj+ . . . b j+J  
< p(i  - k, j - 1 )  + y(ai-k+ . . . ai+,,, b j - l+ . . . bj+J, 

and the proof is concluded. 

EXAMPLE. For a simple example, let A = { o ,  u, g, c, n)  with p ( y ,  c) = 
p(a, u) = 1 and p(x,  y) = 0 elsewhere. (The base 17 is to be thought of as a 

1 
i 
, .  
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neutral element.) Define 

cc(g, c )  = cc(a, u) = -2, 

P ( k )  = k ,  
y ( k ,  I )  = k + I ,  

and 

[ ( k )  = k .  

The functions (p, q, P, y ,  [) are easily seen to be regular. With 6 = - 2  -= 0 
and m = 2, Theorems 3.1, 3.2, and Corollary 3.1 all hold. 

Now consider 

a = ggguaunnnauagggnnncccauannnuauccc. 

The elements of this sequence of length will be numbered from 2 to 34. The 
structure for F,*(a) = -7 has four ladder regions and appears in Fig. 4.1. 

Base number 14 pairs with base number 22 : gc 
Base number 15 pairs with base number 21 : gc 
Base number 16 pairs with base number 20 : gc 

Base nux’nber 11 pairs with base number 24 : au 
Base number 12 pairs with base number 23 : ua 

Base number 5 pairs with base. number 30 : ua 
Base number 6 pairs with base number 29 : au 

A 

n /n\n 

;-t! 
I 1  

?-! 
,g - c 

I 

n’ ‘-0. 

u--0 
I I  
a-u 

?’ x 
9-7’ 

n’ 
‘a-u’ 

I I  
u--0 ‘ u I 
9-c 
I I  
9-c 

? 

FIG. 4.1. Best single loop secondary structure for a.  
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Base number 2 pairs with base number 34 : gc 
Base number 3 pairs with base number 33 : gc 
Base number 4 pairs with base number 32 : gc 

4. THE HAIRPIN MATRIX 

The purpose of this section is to define a matrix which will allow efficient 
calculation of the best first order secondary structure F,(a) and the best 
second order secondary structure. In addition, the concepts of the last 
section and of this section motivate the solution of the problem of finding 
the best Nth order secondary structure. 

Motivation for the matrix defined below was the computation of the best 
single loop secondary structures for aiai+ * ai for 1 Q i < j Q n. There 
are, of course, n(n - 1)/2 such sequences. The use for such a matrix is to 
use the free energies 

F,*(aiai+ . ai) 

in much the same way P(ai . * uj)  was used in Section 3. Certain problapls 
immediately arise. A major difficulty is that F1*(ui . - * aj) gives tails weight 
zero when a tail of such a structure could become a bulge or a join when the 
entire sequence ala2 . . a, is considered. This difficulty is overcome by the 
next definition. 

DEFINITION 4.1. For a given sequence a = a, . - a,, regular functions 
(p, a, /I, y, () and parameters 6 < 0 and m, define the hairpin matrix H to be 
the symmetric n x n matrix with hii = 0 for 1 < i < n and, for 1 < i < J  < n, 

hij = min F , ( S ) ,  
S E Y i j  

where 9, = {S(ai . . . aj):S(ai . . . ai) is first order with exactly one loop, 
w E LO implies w has at least m elements, z E LA implies a(z) < 6 < 0, and 
p(ui ,  uj) = 1 ) .  If ,4Pij = 0, let hij = K, where K is large enough so that the 
structure corresponding to hi j  is not used. 

Since this definition is fundamental in the next two sections, it must be 
carefully examined. The value h, is the minimum free energy of single loop 
secondary structures for ai . . ai with the restriction that ai and aj are paired. 
This avoids the problem of tails with weight zero and also allows the omission 
of calculation of 

F ,  *(ai . . . o j )  

for many values of i and j .  

. .  
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The calculation 0. , , i j  cannot be handled direct.; -y Theorem 3. The 
next theorem modifies Theorem 3.1 to the present problem for the sequence 
a, . . . a,. Of course, ai . . . aj can be similarly handled. Notice that h,,, > 0 
is allowed. 

THEOREM 4.1. Let a ,  . . . a, be a sequence from d" with regular functions 
( p ,  a, /I, y ,  [), 6 c 0. and m a positive integer. DeJne bj = a,- j +  ,, 1 < j < n. Let 

v = min{k 2 l : a ( a ,  . . . ak,  b, . . . b,) < 6, and 2k d n - m). 

If v does not exist, then h,, = K .  Otherwise, let 

p ( v ,  v) = a(a, . . . a,, b ,  . . . bJ, 

where the alignment for p(v ,  v) is said to end in a pair, and inductively define 
p(i, j ) ,  v < i, v < j ,  2v  < i + j < n - my to be the minimum of zero and: 

- 

(9 
p(i  - k , j  - k )  + , . . . ai, bj-&+ . . . bj), 

where 1 < k < m i n { i - v , j - v }  andeither(A)a(ai-k+l.*-ai,bj-k+l;'*bj)< 
6 and no alignments for p(i - k,  j - k), . - . , p(i - 1,  j - 1 )  end in a pair, or 
(B)a(a,-&+ , .. -ai, bj-&+ , .. bj) < Oand no alignments for p(i - k + 1,  j - k + l), 
. . . , p(i - 1, j - 1 )  end in a pair, and some alignment for p(i - k, j - k )  ends 
in a pair; 

(ii) 

~ ( i  - k , j )  + B(ai-k+ 1 . . . ai), 

where 1 < k < i - v and some alignment for p(i - k, j )  ends in a pair; 
(iii) 

p( i ,  j - k )  + B ( b j - k +  1 . . . bj), 

where 1 < k < j - v and some alignment for p(i, j - k )  ends in a pair; and 
(iv) ' 

p( i  - k ,  j - I )  + y(aiPk+ , . . . ai,  b j - r +  , . . . bj) 

where 1 < k < i - v, 1 < I < j - v and some alignment for p ( i  - k ,  j - I )  ends 
in a pair. 

Then 

h,,, = min{p(i, j )  + [(aibj;  ai+ , . . . an-j):v d i, v d j ,  
i + j < n - m, and some alignment for p(i, j) ends in a pair). 

h 

. 
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Proqf'. If {k d 1 :a(a, . . . a,,  b ,  . . . bk) < S and 2k < n - in) = 0, then 
9',,n = 0 and h,," = K. 

Otherwise, v is well defined. The main thing to  be proved is that p(i ,  j) is 
the minimum free energy of alignments of a ,  * . - ai and b, . . . bj subject to 
a, e - .  a, and b,  . . .  b, paired. The only step that can be taken, where the 
previous p(I, m)does not end in a pair, is part (A) of step (i), where p(i  - k, j - I)  
cannot have an alignment which ends in a pair. But, p( i  - k, j - I )  must 
have been obtained in steps (ii), (iii), or (iv), where its previous p ( / , m )  did 
end in a pair. Since the induction began with p(v, v), which ends in a pair, 
all alignments trace back to  p(v, v) and therefore have a, . . . a, and b,  . . . b, 
paired. 

That is the minimum value follows as in Theorem 3.1. 

. A few cases can be eliminated by the next corollary. 

COROLLARY 4.1. For Theorem 4.1, let 1 = mindd2 a@, b) < 0. Then hi,j = 0 
if 

(i) i - j + 1 < m + 2(S/1) when S/1 E I ,  or 
(ii) i - j  + 1 < rn + 2(6/1) + 2 when S/1 4 I .  

ProoJ. Obviously, the sequence a i .  . . ai must be long enougk to  have 
a loop of length rn and to  have pairing of weight < 6. To have the pairing 
in the shortest possible time, k pairs are needed, where k is the smallest 
integer k such that 0 < S/1< k (see Corollary 3.1). The result follows as 
two elements are needed to form each pair. 

A 

EXAMPLE. The simple example of Section 3, a = ggguaunnnauaggg- 
nnncccauannnuauccc, has the 33 x 33 hairpin matrix shown in Table 4.1. 
Here there is no harm in letting K = 0. 

. 5. FIRST ORDER SECONDARY STRUCTURES 

. In this section a simple algorithm is given to find the best first order 
secondary structure from the hairpin matrix H. To review first order 
secondary structures, a simple theorem is stated. This theorem follows 
easily from Definition 2.3 and was used in the proof of Theorem 2.8. 

THEOREM 5.1. A secondary structure isfirst order if and only if (i) there 
is at least one pair and (ii) ifi is paired with j then there is no more than one 
/oop in a i .  . . a j .  

, , , , , , , . , , ,., , . . . . . . . I I .  1 ,. . , . , ,:, , . ,  

< 

* 
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I t  was not necessary to consider joins in first order structures with exactly 
one loop; but if first order structures have more than one loop, they must 
have joins. A problem is created by two hairpins separated by no elements 
of d. This is said to be a join of length 0 and is assigned a free energy of 
0 < ((0). In general, all joins have been assigned free energy 0 in the litera- 
ture; but as the addition is not too difficult, it is included here. These con- 
siderations will be important in second and higher order secondary structures 

THEOREM 5.2. For a = a ,  . . . a,,, a sequence from d", with regular func- 
tions ( p ,  ci, f i ,  7, c), 6 > 0, and m a positive integer, let H = (h,) be the hairpin 
matrix. Assume 2 0, <(k + I )  6 ( ( k )  + <(l ) ,  F,(O)  = 0, and inductively define 
F,(i) to be the minimum ofzero and the following quantities for 1 ,< j < i < n: 

- 

(0 
F,(i - j )  + hi-j+ 1. i ,  

i f  hi- j+ ,, # 0 and F,(i  - j )  ends in a (nonempty) join; 
(ii) 

Fi(i - j )  + t(0) + hi-j+I,i, 

i f  hi- j+ ,, # 0 and F,(i - j )  ends in a hairpin; 
(iii) 

F,(i - j )  + ( (ai-  j+ , . . . ai), 

i f  hi-j+ 

Then F,(a) is the minimum of the following quantities for 1 < j 6 n: 

= 0 and F,(i - j )  ends in a hairpin. 

6)' 
Fi(n - j )  + h n - j + l , n ,  

i f  h,,- j +  ,, ,, # 0-and F , ( i  - j )  ends in a join; 
(ii)' 

F , ( n - A +  t ( O ) +  h n - j + j , n ,  

i f  h,,-j+ ,,,, # 0 and F,(n - j )  ends in hrrirpin; 
(iii)' 

F,(n - i). 
{f h,,- j+  ,, ,, = 0 and F,(n - j )  ends in ( I  htrirpin. 

. 

froof.  
foundations 

If S(a) is a first order secondary structure whose 1 hairpins have 

. .  . .  . .  
l j l r k l ;  l j 2 I k 2 ;  . . .  ; r j l r k J ;  

4 
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then 
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The proof is by induction. Assume, for 1 < j < i - 1 < n - 1, that f(j) is 
the minimum free energy of a ,  . . .  u j .  Then the best such structure for 
a,  . . . a, either is a tail or ends in a join or a hairpin. The number of ways 
a ,  . . . ai can end in a hairpin are those hairpins whose numbers hi- j +  # 0 
(1 d j d i - 1). This handles (i) and (ii) of the theorem. The only other 
possible cases are where a ,  . . . a, ends in a join a i - j + ,  . . . a,. If the optimal 
structure for a ,  . . - a i - j  also ended in a join, say ak+ , * . . a i - j ,  then 

F ( i ) =  F ( k ) + < ( a , + ,  * * * a i - j ) + < ( a i - j + l  . . .  a,) 
2 F(k) + < ( a k +  1 . . . ai). 

Therefore, all necessary situations are covered by (iii). 

actually ending in a tail and (iii) becomes (iii)’. 
To complete the proof, simply note that for i = n ending in a “join” is 

As the join function complicates Theorem 5.2, the theorem isdiestated 
0. This restatement as a corollary is the practical version of the with 5 

theorem for first order secondary structures. 

CQROLLARY 5.1. Assume < = 0 in Theorem 5.2. Then 

F,(al . . . ai) = F,(i) = min{F,(i - j) + hi- j+l , i :  1 < j < i>. 

. 

EXAMPLE. The example a = ggguaunnnauagggnnncccauannnuauccc given 
at the end of Section 3 has F,(a) = -9 and the structure is shown in Fig. 5.1. 

1st hairpin from 23 to 31 ; hairpin free energy = - 3.0: 
Base number 23 pairs with base number 31 : au 
Base number 24 pairs with base number 30 : ua 
Base number 25 pairs with base number 29 : au 

Base number 14 pairs with base number 22 : gc 
Base number 15 pairs with base number 21 : gc 
Base number 16 pairs with base number 20 : gc 

Base number 5 pairs with base number 13 : uu 
Base number 6 pairs with base number 12 : au 
Base number 7 pairs with base number 11 : ua 

2nd hairpin from 14 to 22; hairpin free energy = - 3.0: 

3rd hairpin from 5 to 13; hairpin free energy = - 3.0: 
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n/n\n n/n\n n An 

FIG. 5.1. Best first order secondary structure for a .  

6. SECOND ORDER SECONDARY STRUCTURES 

Next, second order secondary structures are considered. The definitions 
and algorithms of this section are a crucial step in solving the problem of 
the best Nth order secondary structure. The hairpin matrix of Section 4 
and the algorithm of Section 5 for the best first order secondary structure 
are the tools for the solution obtained in this section. 

The first task is to study some graph theory of second order secondary 
structures. Assume the adjacency matrix of a secondary structure is A. If 

a 

(a!?') , A = A'O' + A(') + '4'2' = 

where A(*) is the first A") such that a!;) = 0 if i # j rf: 1, then A is secbnd 
order by Definition 2.3. Consider the matrix A(') in this sequence. By 
definition, A(') is the matrix for some first order secondary structure. There- 
fore, this first order secondary structure has exactly one loop or more than 
one loop. The problem of best second order structures will first be solved 
for the one loop case and then extended to the multiple loop case. 

Next, a definition is given to classify the parts of a second order secondary 
structure in such a way to make the computation of free energy possible. 
Theorems 2.2 and 2.4 are not adequate for this purpose. A lemma is necessary 
to justify the definition. 

LEMMA 6.1. Let A be a secoiicl order secondary structure and suppose 
A = A'') + A!') + A''). Assume alai+ . . . aj is a sequence of unpaired elements 
in A") and thut and a j +  ore either paired or not in the sequence. Then 
alal+, . . . (1, is zero o r j r s t  order in A"'. . 

Proof. Ifuiai+, . . . aj  were(at 1east)second order in A''), then uiui+ . . . aj 
could not be unpaired in A"). 

DEFINITION 6.1. Let A be a second order secondary structure and suppose 
A = A")-+ A("--+ A'') as in Definition 2.3. For A"), let LO be the set of 
loops, LA,  the set of ladders, IL the set of interior loops, B' the set of bulges, 
J the set ofjoins, T the set of tails. and let B = B' - I L  - J .  
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(i) Assume a ,  . . . uk E LO. Ifo,  . . . ak is a loop in A"', a ,  . . . L(k is said 
to  be a zero order loop in A'''. Otherwise, u,  . . . ak is said to be a j r s t  order 
loop in A'''. These relations are written as a ,  . . . ak E LOo and a, ' . . a, E LO,, 
respectively. 

(ii) If a ,  . . . a, E B, then, if a ,  . . . a, is a member of B in A''', a, . . . a, 
is a zero order bulge in A''' or a ,  . . . 0, E Bo.  Otherwise, a ,  . . . a, is called 
a Jirst order bulge in A''', which is written as u, . . . a, E B ,  . 

(iii) Assume (a ,  . . . a,, b ,  . . . b,) E IL. If this pair of sequences is an 
interior loop in A''', then the pair is said to be a zero order interior loop in 
A'''. Otherwise, the pair is said to  be a first order interior loop in A'''. These 
relationsarewrittenas(a, . . .  a,,b, . . .  b , )EILoor (a ,  - - . a , , b ,  - . .  ~ , ) E I L , ,  
respectively. 

(iv) Assume a, . . . a, E J. If this sequence is a join in A''', then it is 
said to be a zero order join in A'''. Otherwise, a ,  . . a, is said to be a first 
orderjoin in A'''. These relations are written as a ,  . . . a, E J o  or a, . . - E J ,  , 
respectively. 

(v) If a ,  . . . a, E T, then if a, . . . al, is also a tail in A('), at . . . ak is said 
to  be a zero order tail in A'''. Otherwise, a ,  . . . a, is said to be a first order 
tail in A'. These relations are written as a ,  . . . a, E To and a ,  . . . 3, E TI, 
respectively. 

(vi) LA, will be called the set of zero order ladders in A('). 
(vii) A sequence in A'') is called a cloverleaf if the sequence is a hairpin 

The following theorem shows that Definition 6.1 adequately describes 

in A(') and the loop sequence in A(') has exactly three loops in A'''. 

second order secondary structures. 

THEOREM 6.1. Any second order secondary structure can be uniquely 
decornposerlintothesetsLO,, LOI,B,,BI,ILO,IL,,Jo,J1, T o ,  T , , a n d L A o .  

Proof. +Theorem 2.2 asserts that A"' can be uniquely decomposed into 
loops, ladders, bulges, joins, and tails. These ladders are LA,.  Lemma 6.1 
and Definition 6.1 allow decomposition of the remaining sets, say Q, into 
Qo and Q i  . 

The free energy functions of Definition 3.1 are not adequate to directly 
define the free energy of a second order secondary structure. The main 
difficulty is associated with I L ,  and B,, where i t  is not entirely clear from 
the literature how to assign the free energy. The approach taken here is 
motivated by DeLisi [4]. 

DEFINITION 6.2. 
regular functions. 

Let d be an alphabet, 5 a join function, and (p, a, /?, y. [) 

. 
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(i) A function r is called a replacement function if, for each ((I, h)  E .d2 

(ii) I t  will be useful to let to = t, a0 = a, Po = B, ; jo  = y, and io = <. 
(iii) Letcr, . . . a,beasequencein B , , J , ,  LO,, T,,oroneofthearguments 

in I L , .  Then, as a sequence in A''', a ,  . . . a, is composed of a tail a,  . . . ( i I 1 ,  

a hairpin, a join ai, . . . ai l , .  . . , a hairpin, a join aim.  . . aim, a hairpin, and 
a tail u12 . . . ak.  Notice that there must be at least one hairpin in this sequence, 
unless, perhaps, (1,  . * . ak is an argument of IL , .  Now define 

such that p(a ,  b) = 1, r(u, b) is a finite sequence of elements of d. 

R(a, . . . a,) 

= a ,  . ' .  u l l r ~ ~ l , + ] ~ ~ i l - l ~ ~ ~ ~ ~ i , , ~ ~ ~ ~ j ~ r ( ~ j ~ + ] ~ ~ ~ ~ - l ~ ~ l ~  . "ak? 

;,(a, b; a ,  . ' ' U k )  = ( ~ ( a ,  b;  R(u, ' * ' ak)), 

fll(al . ' . a k )  = f l O ( R ( a l  ' ' ' a k ) ) ?  

Yr(a1 ' * . a,, bi . . . bi) = yo(R(ai . . . ad, R(bi . ' . bi)), 

where, if a, . . . ak is unpaired in A''), R(a,  . . . ak) = a,  . . . a,. 

Next, the above concepts are used to give a definition of the free energy 
of a second order secondary structure. 2. 

DEFINITION 6.3. Assume a is a sequence in d", where 5 is a join function, 
( p ,  a, jl, y, () are regular functions, and r is a replacement function. Let S(a) 
be a secondary structure of no more than second order. Then the second 
order free energy associated with S(a) is defined by 

F,(S(a))  = 1 CO(W0) + 1 C l ( W 1 )  + 1 Fl(t1) 
wo E LOO w1 E L 0 1  t i ~ T i  

+ 1 t O ( U 0 )  + 1 t l (01 )  + 1 Bo(-uo) + 1 B l b A  

. +  1 Yo(Y0) + 1 Y l ( Y l ) +  1 ~ O ( Z 0 ) .  

~ O E J O  ~ I E J I  XOEBO X I  E B I  

X O E I L O  Y l C l L l  zoeLAo 

Of course, F,(S(a)) = 0 if S(a) has no pair. The second order p e e  energy for 
a is given by 

F,(a) = min F,(S(a)), 

where Y = {S(a):S(a) is of no more than second order, w a loop in S(a) 
implies w has no more than melements, and z a ladder in S(a) implies a(z) < 6). 
If Y* = 9' n { S ( a ) : A " )  has no more than one loop), then let 

S(a)E Y 

F,*(a) = min F,(S(a)). 
S(P) E ?/ 
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Remark. I t  is easy to see from Definitions 3.2 and 3.3 that F2(a) and 
F,*(a) can be found from the functions r, <, p ,  a, B, y ,  [, and a procedure for 
calculating F , ( S ( b ) )  for any sequence b. 

The next theorem generalizes the algorithm for F,*(a) to F,*(a). 

THEOREM 6.2. Let a ,  . . . a, be a sequence from d" and assume the func- 
tions ( p ,  a, p, y ,  [) are regular, € is a join function, r is a replacement function, 
and 6 ant1 in xitisf.. the contlitions of the definition of F2*. Dejne 

b . = a  n - ] + l ,  . 1 G j G  n, 

and p(0 ,  j )  = p(i, 0) = 0 for 0 < i, j ,< n. Then, for 0 < ij and i + j G n - m, 
inductively define p(i, j )  to be the minimum of zero and: 

(9 
p(i - k, j - k) + a(ai-k+ . . . ai, bj-k+ . . . bj), 

where 1 < k < min{i, j }  and a(ai-k+ . * . ai, b j - k +  I * . . bj) G 6 ;  
(ii) 

..c 
p ( i  - k,  j )  + min D y ( c ( i - k +  * * - ai); 

where 1 ,< k < i - 1 and some alignment for p(i - k,  j )  ends in a pair; 

v = o ,  1 

(iii) 

p(i , j  - k) + min pv(bj-k+l . . . bj), 
r = o ,  I 

where 1 < k < j - 1 and some alignment for p(i, j - k )  ends in a pair, and 
(iv) 

p ( i - k , j - 1 ) +  min yv( ~l~-~+,...a~,h~-,+,...b~), 

where 1 < k < i - 1, 1 < 1 < j - 1, and some alignment for p(i  - k, j - 1 )  
ends in a pair. 

Then 

F,*(a) = min{p(i, j )  + min Cv(a,b,; ai+ , . . . an- j )  

v = o ,  1 

* 

a *  -- 

v = o ,  1 

: i  + j < n - m and some alignment for p(i, j )  ends in a pair), 

where F,*(a) = 0 if the abore set is empty. 

Proof. The proof proceeds exactly as in Theorem 3.1 as soon as the 
inequalities of ( p ,  a, /), 7, i) regular are shown to hold with subscripts of 0 

. .  
, . .  . _ . . . . , . . . . .  . . .  , .  . .  
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and 1 inserted in a consistent manner. For example, to show the inequality 
P ( k  + I )  d P ( k )  + P(/), it may be necessary to show that 

P , ( k  + 1 )  d B , ( k )  + P o ( / ) .  

The difficulty is in inserting the proper choice of 0 or 1 as subscripts. This is 
done below in a case-by-case fashion for the steps of Theorem 3.1. 

The first situation is to assume p(i ,  j )  is the minimum free energy for align- 
ments of a,  . . . ai and b,  . . . bj.  If A = A‘O’ is the adjacency matrix for the 
best second order structure with the structure for A(’ )  having exactly one 
loop, let aibj be the foundation of that loop. The free energy for a, * * . ai 
and b, * . bj in this structure satisfies p ( i , j )  < e < 0. As before, assume 
p ( i , j )  < e. Suppose first that 

* 

F2*(a) = e + Cv3(aibj; ai+ . . . a,- j) 

and 
p ( i , j ) = p ( i - k , j - / ) + ~ ~ ~ ( a ~ - ~ + ~  . . . ~ ~ , b j - I + ~  . - . b j ) .  

Then 
p ( i - k , j -  I ) +  C v 2 ( a i - k b j - l ; U i - k + l  . “ a n - j + l )  -L 

< p ( i , j )  + Cv3(aibj; ai+ 1 . . . ~ , - j )  < F,*(a), 

where the structure for c,, is formed by “addition” of the structures for C,, 
and c,,. Therefore, v2 = 1 if and only if max{v,, v3} = 1. The first inequality 
holds since lo(/ + q + n) < yo(/,  n) + c0(q) holds for the replacement bulges 
and loops. 

To complete the first situation, assume F,*(a) is as above and suppose 

p ( i , j )  = p( i  - k j )  + P v l ( a i - k +  1 . . . ai), 

Then, 

.p(i - k ,  j )  + C v 2 ( O i - k b j ;  U i - k +  1 ’ ’ . U n - j )  

< p(i, j )  + CV3(uibj; ai+ . . . an- j )  < F,*(a). 

Again, v2 = max{v,, v3]. 

To show p(i, j )  had the optimal property desired, three cases were con- 
sidered in Theorem 3.1. Case (i) proceeds without change. For Case (ii), 
assume the minimum free energy for ( I ,  . . . ui and b, . . . hj has the form 

r $ - j )  = r ( i , j  - k )  + / j , , (b j -k+ I . . . hj), 

and p(i ,  j - k )  < r ( i , j  - k) .  First, suppose an alignment for p(i. j - k )  is of 
the form 

p ( i , j -  k ) = p ( i - I , j - k ) + P , , , ( t ~ ~ - ~ + ~  - . . a i ) .  

, 

t 
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Then (v2 = max{v,, v3}) 

p(i - I ,  j - I )  + yvz(ai-I+ . . . a i ,  b j -k+  . . . bj) 
< p ( i , j  - k )  + D v , ( b j - k +  1 ' ' . bj) < r$- 

Next, suppose p( i , j  - k) is of the form 

p( i , j  - k - I )  + b ~ l ( ~ , - k - l + l  ' '  " J - k ) '  

Then, with v2 = max{v,, v 3 } ,  

p(i,  j - k - I )  + by, ( b ~ - k - l +  1 * . . bj) * 

< p(i, j - k) + f i v , ( b j - k +  . . . bj) < r*(i, j ) .  

The last situation for case (ii) is 

p(i, j - k) = p(i - 1, j - k - 4)  + Yvl(ai- l+1 . . . ai, b j - k - q +  1 ' . b J - k ) -  

Then with v2 as usual, 

p(i - I ,  j - k - 4 )  + yv2(ai-l+1 - .  ai7 b j - k - q +  1 ' . bj) 
< p(i, j - k )  + f i v , ( b j - k + l  * ' . bj) < r*(i , j) .  

.c Now, proceed to case (iii), where 

. r*(i, j )  = r(i - I ,  j - k) + yv,(ai-,+ . . . ai, bj-t+ 1 . * . bj), 

and assume p(i - I, j - k) < r(i - I, j - k). First, assume an alignment for 
p(i - I, j - k) such that 

p( i - I ,  j - k) = p( i - 1 - q, j - k) + &(ai - - q  + . . . ai - 
Then 

p(i - I - q , j  - k )  4- y , , z ( U i - l - q + l  . . . ai, b j - k + l  ' '  . bj) 
< p(i - I ,  j - k) + yvn(ai-r+l . . . ai ,  b j - k + l  . . . bj) < r*(i , j) .  

The last 'situation is for 

It is possible to obtain results analogous to Corollaries 3.1 and 3.2 and to 
Theorem 3.2. Those results were to reduce computation in F,*(a). But for 
F2*(a) much more serious difficulties are encountered, and a discussion to 
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make computation feasible will be given later in this section. Presently, the 
discussion will be aimed at algorithms for F,(a). 

The first task is to generalize the hairpin matrix H. 

DEFINITION 6.4. Let the sequence a = a,  . . . a, be given along with 
regular functions ( p ,  a, jl, 7, i), a join function (, and a replacement function 
r. Define the second order hairpin matrix H',' to be the symmetric n x n 
matrix with h!?) = 0 for 1 < i < n and, for 1 < i < j < n, 

h13' = min F, (S) ,  
SE Y,, 

Yij = { S ( a i .  * . aj):S = S(ai. . . aj)  is no more than second order, w a loop 
implies w has at least rn elements, z a ladder implies a(z)  < 6 < 0. 
If S is first order, S has exactly one loop and p(ai ,  ai) = 1. If S is 
second order, the structure corresponding to  A") has exactly one 
loop and p(ui, aj) = 1).  

* where 

If Yij = 0, h!f' = K .  

of Theorem 4.1 is easily made for H"). 
Theorem 4.1 handled the algorithm for computing H. The modifica2ion 

THEOREM 6.3. Theorem 4.1 holds for  H(*) ij r E {B, y, (;} is replaced by 

It is also easy to generalize Theorem 5.2 and Corollary 5.1. Only the 

min{T,,, T,} and h,,, is replaced by hi::. 

generalization of the corollary is given here. 

THEOREM 6.4. Assume 5 E 0 in Theorem 6.2. Then 

F,(a, . . . ai) = F,(i) = min{F,(i - j )  + h!2_)i+ l . i :  1 < j < i } .  

Theorem 6 4  completes the general discussion of the best second order 
structure. The next section will handle the problem of best Nth order second- 
ary structures. 

Now the computational problems associated with Theorem 6.2 are taken 
up. Results corresponding to Corollary 3.2 and Theorem 3.2 no longer 
hold for second order structures. Even more important is the computation 
of and y , .  Attention is now restricted to a smaller class of first order 
bulges and interior loops. 

7 

' 

DEFINITION 6.5. Let Y** = y* n {S (a ) :b ,  . . . b, a bulge, join, or tail in 
A'" implies b,  . . . h, has no more than one loop in A', ' ) .  Then define F:* by 

F:*((I) = min F, (S(a ) ) .  
S ( U ) E  Y ** 
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An n x n symmetric matrix HP, called the hciirpin bulge matrix, is defined by 

h c  = min{h,, + B,(a i . .  . a j ) : i  < k < I < j ) .  

Similarly, an ( n  x n)' symmetric matrix H' called the hairpin interior loop 
matrix is defined by 

hY(i, j; k, I )  = min{hirf + h,.,, + yl(ai  . . . ai, a, . . . at): 
i d  i f <  j' d j a n d  k d k'd I'< j } .  

Computation of H B  is now considered. The assumptions on B are r are 
consistent with the literature. 

THEOREM 6.5. Let the assumptions of Theorem 6.2 hold. Assume 

p(c, 1 . ck) = p ( k )  independent of c1 . . . ck, 

p is a strictly increasing function, 

and 

r(a, b) = r for all (a,  b) such that p(a, 6 )  = 1. 
-L 

Then, if hkI = hiojo, (i) and (ii) below hold: 

(i) If 

then 

h{. = hiojo + B(r + j + ;,, - i - jo). 

(ii) If 
h$ = hipi. + B(r + j + i' - i -f), 

then 
j ,  - io < j' - i'. 

Proof. (i) The hairpin weight for io . . . j, is 

hioio + ) ( r  + j + io - i -io), 
and the best possible weight for any remaining structure is 

min h,, + B(r) = h' + p(r).  
(k .0 * h j n )  
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The conclusion of (i) holds if 

hiojo + P(r + j + io - i - j,) d h' + /?(r). 

(ii) Assume the conclusion is false. Then 

j' - i '<  j o  - io, 

or 

io - j ,  < i' -f, 

. and 

p(r  + j - i + io - j o )  < p(r  + j - i + i' - j'). 
Then 

203 

. 

hiojo + p(r  + j  - i + io - j , )  < hyf + p(r  + j - i + i' - j'), 
which is a contradiction. 

Next it is seen that if /? is linear for arguments greater than or equal to  I 
then HI can easily be computed. -L 

THEOREM 6.6. Let the assumptions of Theorem 6.5 hold and suppose 

p(r  + k )  = B(r) + ssk where sI > 0. 

Then 

h c j + l  = min(h5 + S p ;  hk, j +  + P(r + k - i ) :  h k ,  j +  1 < 0, i < k < i}. 

Proof. Let 
hcj = hiojo + P(r + j - i + io - j,) 

= hiojo + P(r) + s s ( j  - i + io - j,). 
? 

Now, if ' 

b h t j + l  = h i , j . + f i ( r +  1 + j - i + i ' - j ' )  
= hi.j .  + b(r) + sP( j  - i + io - io) + sp, 

where i d i' < j' < j ,  then i' = io and j' = j,. The other possibilities are 
covered by j' = j + 1 and are included in the above minimization. 

It is now clear that HP can easily and efficiently be computed. However, 
HY is a very large computational job. By making another linearity assump- 
tion, HY can be computed from the algorithm for HP. 
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THEOREM 6.7. Let the assuniptions oJ’ Theorem 6.2 hold und ussunie 

y(c1 . . . ck, d l  . . . d,) = y ( k  + I )  independent ofcl . . . ck and dl . . . d,; 
y is  a strictly increasing function in each argument; 
r(a, b) = r for (a, b) such that p(a, b) = 1 ; and 
y(r + k )  = y(r) + syk where s, > 0. 

Then, lip = min{hi,j. + sy( j - i + i’ - j ’ ) :  hi.i. < 0} ,  

h7(i, j ;  k ,  I )  = min{y(r) + s,r + ht; + hp,y(r)  + s,(l - k + 1) + h v ,  
y(r) + sy(i - j + 1) + h f t , y ( j  - i + 1 + I - k + 1)). 

ProoJ. Assume hY(i, j;  k, I )  has a hairpin in ai . . . ai or ak . . . a,. Then, in 

hY( i , j ;  k, I )  = hiojo + hrolo + yl(ai . . . ai,  a , .  . . a,) 

the case both have hairpins, 

= hiojo + hkolo + y(2r + j - i + io - j o  + I - k + k, - I,) 
= hiojo + h,,, + y(r) + sy(r + j  - i + io - j ,  + I - k + k, - I,) 
= y(r) + syr + (hiojo + s y ( j  - i + io - j , ) )  

..i + (hkolo + sy(l - + kO - 10)). 

In case exactly one has a hairpin, say a, . . . ai ,  

hY(i,j; k ,  I )  = hiojo + yl(ai . ai, ak . . . a,) 
= hiojo + y( (r  + j - i + io - j,) + (1  - k + 1)) 
= y(r) + (hiojo + sy( j - i + io -io)) + (0 + s,(I - k + 1)). 

In case neither have hairpins, 

hY(i, j ;  k ,  I )  = yl(ai . . . ai, ak . . . a,) = y ( j  - i + 1 + I - k + 1). 

Now H5 can be used in steps (ii) and (iii) of Theorem 6.2 and HY in step 
(iv) to compute F:*(a). 

EXAMPLE. The example a = gggirniinnnauagggrinncc~auarinnuauccc. given 
at the end of Section 3 and 5 has F,*(a) = - 12 if R ( o ,  . . . nk)  = I .  (That is, 
any hairpin is replaced by a sequence of length 1.) The structure for F2*(a) 
is a cloverleaf and is shown in Fig. 6.1. 

Ladder regions for the second order hairpin : 

Base number 2 pairs with base number 34 : gc 
Base number 3 pairs with base number 33 : gc 
Base number 4 pairs with base number 32 : gc 

i 
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7 

g-c 

FIG. 6.1. Best second order secondary structure for a.  
.I 

The loop has a hairpin from 5 to  13, 

Base number 5 pairs with base number 13 : ua 
Base number 6 pairs with base number 12 : au 
Base number 7 pairs with base number 11 : ua 

another hairpin from 23 to  31, 

Base number 23 pairs with base number 31 : au 
Base number 24 pairs with base number 30 : ua 
Base number 25 pairs with base number 29 : au 

and a final hairpin from 14 to 22. 

Base number 14 pairs with base number 22 : gc. 
Base number 15 pairs with base number 21 : gc. 
Base number 16 pairs with base number 20 : gc. 

? . 7. Nth ORDER SECONDARY STRUCTURES 
t 

_- 
Finally, Nth order secondary structures are considered. This section is a 

direct generalization of Section 6. The structures of this section are not easy 
to visualize, but hopefully the work on second order structures provides a 
natural motivation. Also, at the conclusion of this section, a result is given 
to characterize the solution of the best secondary structure (of any order) 
for a given sequence. Due to the previous work of Section 6, the results of 
this section will be briefly stated and proofs omitted. I t  is assumed through- 
out that N 2 2. 

First, the components of an Nth  order structure are classified. 

h 
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DEFINITION 7.1. Let A be the adjacency matrix for an Nth order second- 
ary structure and suppose A = A'') + A'" + . . . + A"-') + A ( N )  as in 
Definition 2.3. A"-') is first order and let LO be the set of loops, LA, the 
set of ladders, IL  the set of interior loops, B' the set of bulges, J the set of 
joins, and T the set of tails, and let B = B - IL. 

(i) Assume a, . . . ak E LO. If a, 1 . . ak is a loop in A('), a, . . . a, is a zero 
order loop in A''). Otherwise, a ,  . . . ak is said to be an ( N  - 1)st order loop 
in A''). These relations are written as a, * . . ak E LO, or a, . . . a k  E LON- ,, 
respectively. 

(ii) If a ,  . . . a k  E B, then, if a, . . . a k  is a bulge in A''), a, . . *  ak is a zero 
order bulge in A'') or a,  . . a, E Bo. Otherwise, a, . . * ak is called an ( N  - 1)st 
order bulge in A'') or a ,  * . - a, E BN - , . 

(iii) Assume (a, . . . a k ,  b, . b,) E IL. If the pair is an interior loop in 
A('), it is said to  be a zero order interior loop in A''). Otherwise, the pair is 
said to be an ( N  - 1)st order interior loop in A('). The relations are written 
as (a, * . ak, b, * 

(iv) Assume a, . . ak E J .  If this sequence is a join in A''), it is said to be 
a zero order join in A('). Otherwise, it is said to be an ( N  - 1)st order 
join in A''). The relations are written as a, . - * a k  E a, E J ,  or a, . - . ak% J N -  ,, 
respectively. 

(v) If a, - * * ak E T and a, - - . a k  is also a tail in A''), then a, . . . a k  is 
said to be a zero order tail in A''). Otherwise, a ,  . a, is said to be an 
(N - 1)st order tail in A''). The relations are written as a, . . * a k  E To or 
a, . - . ak E TN- ,, respectively. 

b,) E IL, or (a, . . . ak, b,  . b,) E ILN- ,, respectively. 

(iv) LA, will be called the set of zero order ladders in A''). 

THEOREM 7.1. Any N t h  order secondary structure can be uniquely de- 
composed into the sets LO,, LO,- , ,  Bo, BN-1, IL,, ILN-,, J , ,  JN-,, To,  
TN-,, and LA,. 

It is clear that for N > 2, JN - , , for example, could be further decomposed. 
However; this will not be necessary for the algorithm given below and is 
therefore omitted. 

The functions c,,  /I,, and y ,  are extended in the following manner. Let 
a, . . . ak be a sequence in BN -, , say. Then define 

b N - l ( a l  . ' . ak) = /jN-Z(R(al ' .  ' ak)), 
where R is defined on a, . . .  ak considered as a sequence in A"-'). The 
remaining functions C N -  , and y N - ,  are similarly defined. 

DEFINITION 7.2. Let a E dN where ( is a join function, p, a, /j, y,  [ are 
regular functions, and r is a replacement function. Let S(a) be a secondary 

t 

F . 

h 
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structure of no inore than Nth order. Then the Nth orderfree energy jbr S(a) 
is defined by 

FN(S(a)) = 1 c O ( w O )  + 1 i N ( W N )  + 1 FN-l(t) 
wo E LOO WNELON-L f E T N - 1  

+ t O ( C 0 )  + 1 <,"(ON) + 1 p O ( X 0 )  + flN(XN) 
UOEJO L'N E J s - 1 xn E Bo XNEBN- 1 

+ 1 Y O ( Y 0 )  + 1 YN(!" )  + 1 ao(z0). 
? O E l L O  JSEILN- I Z O E  LAO 

If S(a) has order less than N ,  let S(a) E TN- 1. The Nth order free energy for 

FN(a) = min FN(S) ,  

where Y = {S(a):S(a) is no more than Nth order, w a loop in S(a) implies 
w has no more than m elements, and z a ladder in S(a) implies a(z) 6 6). 
If Y* = Y n {S(a):A"-') has no more than one loop), then define 

FN*(a) = min FN(S). 

t a isgiven by 

S € Y  
J 

S € Y *  
.i 

The proof of the next theorem follows that of Theorem 6.2. 

THEOREM 7.2. Let a E dn and assume p ,  a, B, y ,  [ are regular, 5 is a join 
function, r is a replacement function, and 6,  m are as in the definition of F&). 
Define 

bj = an- j +  1, 

p ( 0 ,  j )  = p( i ,  0) = 0, 
l < j < n ,  
0 < i, j < n. 

Then inductively dejne p(i,j) for 0 < i j ,  i + j < n - m to be the minimum 
of zero and: 

9 (i) 
p ( i  - k ,  j - k )  + ct(ai-k+ . . . ai,  b j -k+  . . . bj), 

where 1 < k < min(i, j )  and a ( ~ ~ - ~ +  . . . n j ,  b j -k+  . . . bj)  d 6 ;  ' 
(ii) 

p(i  - k ,  j )  + min P Y ( i i i - k +  . . . 4, 

where 1 < k < i - 1 cind some cilignmentjbr p ( i  - k ,  j )  ends in a puir; 

v = O , N  

(iii) 

p ( i , j  - k )  + min pr(bj-k+, . . . b,), 
Y =  0, N 
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where 1 < k < j - 1 and some uliyiiment for p( i ,  j - k) eiitls in  a pair ;  and 
(iv) 

p ( i  - k ,  j - 1 )  + min y , . ( ~ ~ - ~ + ,  . . . a i ,  b j - , +  , . . . bj), 

where 1 i k < i - 1 , 1  i 1 < j - 1 ,  and some alignment for p(i - k ,  j - I )  ends 
in a pair. 

Then 

FN*(a)=min{p(i,j)+ min ~ y ( a i b j ; a i + ,  

Y =  0, N 

r = O ,  N 

i + j i n - m and some alignment for p ( i , j )  ends in a pair}, 

where FN*(a) = 0 ij the above set i s  empty. 

DEFINITION 7.3. Define the N t h  order hairpin matrix H'" to be the sym- 
metric n x n matrix with 

h$') = min FN(S) ,  
S E Y , j  

1 < i < j' < n, 

where Yi j  = {S(a i .  . . ai) = S:S is no more than Nth order, if w if a loop 
then w has at least m elements, if z is a ladder then a(z) < 6 < 0. If S is first 
order, S has exactly one loop and p(ai, ai) = 1 .  If S is order 0 > 1, the struc- 
ture corresponding to has exactly one loop and p(ai, aj)  = 1.  If 
9.. = 0, hl,N) = 0.1 v 

'THEOREM 7.3. Theorem 4.1 holds for H'" if 7 E { p, y,  [} is replaced by 
min { f0, t N )  and h,, i s  replaced by hi:). 

THEOREM 7.4. Assume 5 = 0 in Theorem 7.2. Then 

F,(a, - . . a i ) =  FN(i)=min{FN(i-j)+ h!'!\+l,i:l i j i  i). 

Finally, the order of the best structure for a is characterized in terms of the ' 

algorithm. 

THEOREM 7.5. The order N of S(a) sirch thrrf FN(S(a)) = min, F,(a) :' 

sat isfes 
N = min{M:H(") = H ' M + l ) )  

1 .  

8. CONCLUSION 

A general algorithm for the evaluation of free energy can be obtained 
from the above work. (i) First, set J' = 0. ( i i )  Then evaluate all hairpins in 
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the structure and add the free energy to j .  (iii) Replace the evaluated hairpins 
using the replacement functions. (iv) If the new structure is unpaired, 1' is 
the free energy of the original structure. Otherwise go to (ii). 

If replacement functions are found to be the wrong approach, then (iii) 
can be altered. For example, it might be necessary to have a loop function 
of order 1,2, . . . . The approach used in this paper, then, is easy to generalize 
to fit more accurate models. It does seem entirely adequate for current 
information. 

A computer program is being developed, and a preliminary version was 
used for the naive example given above. As an example of its power, a 
portion of the first order loop in the Min Jou flower model [18] is examined 
using the same (combinatorial) energy assignments given in the earlier 
example. The sequence of length 68 is 

7 

4 

a = ucaaacgacgcuaacgacucccuuagcccaaagg 

. uagaaaauccucuggaacguaacggaauuguuau, 

which composes a first order structure of three loops in the flower modfl. 
There are 21 bases in the joins for this structure, and 16 base pairs (including 
two gu pairs and two ladders with only one base pair). The algorithm (with 
parameters as specified earlier) predicts a best single loop hairpin of F1*(a) = 
- 12 with 12 bases in the tails, and 17 base pairs with no gu pairs. The best 
first order structure of F , ( a )  = - 12 has 12 bases in tails and joins and 17 
base pairs. Of course, more precise energy functions would make the com- 
parison more realistic, but the two structures given above seem to improve 
on that portion of the flower model. The three structures are displayed in 
Fig. 8.1. 

A study is being planned in which good estimates of the energy functions 
will be used to Vtudy a set of tRNAs. Of course, that work will be useful in 
a final evaluation of this paper, and the results will be compared with other 
studies. We conjecture that, except for minor modifications, the algorithms 
proposed are the most efficient possible for determination of secondary 

While the ladder function a given in this paper is strictly additive, it is 
important to note that it can be modified to handle general a. In particular, 
nearest neighbor effects [24] can be treated by adding a (negative) free 
energy for adjacent bonds. This allows the use of the best estimates of the 
energy functions. 

Finally, the connection between the graph theory of secondary structure 
of single stranded nucleic acids and that for secondary structure in single 
stranded proteins is currently being considered. 

' 
, 
, structure on computers. 
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FIG. 8. I .  Secondary structures for a portion of the coat protein gene. (a) Structure appearing 
in the flower model. (b) best hairpin, and (c) best first order structure. 
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