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ABSlKAC'I' 

Historical records and data frequently have 
been reduced by combination of accounts. 
lem we address is that of finding all ways a given 
set of accounts could have been combined to give 
some given set of reduced accounts. 
has been developed to accomplish this task and a 
computer code in FORTRAN is given. 
some MUF data is also presented. 

The prob- 

An algorithm 

An example with 

1. Introduction 

Recent interest in accountability and safe- 
guards has prompted investigation into historical 
records and historical data. These records and 
data have been reduced by combination of accounts. 
In this situation, MUFs from various accounts were 
added to form a reduced number of MUFs associated 
with new accounts. Records on which accounts were 
combined are frequently missing. 
not even clear what accounts are candidates for 
forming the new accounts. 

Sometimes it is 

Thus the problem of current interest is re- 
tracing the (paper) tracks of an account. Our 
formulation of the problem is that we are given a 
possible set of m accounts {xl, x2, . . .)  xml which 
may have been combined to give a new set of n ac- 
counts {yl, . . . )  ynl. 
which produces as output all possibilities (if any 
exist) for producing the desired result. 

The solution is a program 

Another situation to which our results might 
be applied is when the set {xl, ...) x } are meas- 
urements of m initial accounts and the set 
Cy,, ...) yn) are measurements of n accounts which 

m 

are measured after the initial accounts were phys- 
ically combined. This situation motivates us to 
find all ways of combining x's to give y's with an 
error bound. 

In the next section we give a careful and pre- 
cise description of the problem and discuss its 
solution. 

2.  Algorithm 
-- 

To make a formal statement of the problem, some 
notation must be introduced. Let 

Y =  

and 
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where a = 0 or 1 and aij i 1 for all j. Our 

i=l 
ij 

object is to find all A satisfying the above condi- 
tions such that 

or 

th is some given error bound on the j- where 0 s e 
entry. Of course, I is equivalent to I1 if 
el = e2 = ... = en = 0. 

general situation I1 but, for ease of discussion, 
we consider case I here. To force the program to 
do case I, simply set the error vector (E) there 

j 

The program given in section 4 is for the more 

equal to 0. 

Next, we discuss the meaning of the restric- 
*en a.. = 1, this means x. was used 

1J 1 

i' 13 

tions on A. 
in the sum to obtain y Of course, a.. = 0 means 
x was not used to obtain yi. The restriction 

2 aij i 1 is interpreted as x. can be used 
i=l 
most once in all sums for the y's. Clearly, any x. 

J 
should not be used more than once. Allowing x. not 
to be used at all makes it possible to search over 

j 

3 

3 

a larger set of x's than were actually used to pro- 
duce y .  

The most naive algorithm to find possible A's 
would be to try each subset of {xl, x2, ..., xm} to 
obtain each y and reject any collections that were 
inconsistent or failed to yield y. 
algorithm, (2m)n = 2mn cases must be considered, 
For m = n = 10, this amounts to approximately 1.27 
x cases. Clearly, no existing computer can 
handle this case. 

j 
With this 

To make a faster algorithm, we now consider 
only A ' s  satisfying the restrictions aij = 0 or 1 

and 2 aij s 1 for all j . There are (n + l)m such 

cases. For m = n = 10, (n + 1) = 2.59 x 10 , 
still a large number of cases. 

i=l 
m 10 

The algorithm we employ makes an important 
modification of the scheiie mentioned in the preced- 
ing paragraph. If a candidate A is found where a 

56 

collection of rows such that the corresponding x 
sums do not yield the corresponding y values, no 
other A's which contain these rows will be con- 
sidered, 
as backtracking, greatly speeds up the running time. 

This procedure, known in computer science 

Another modification we have failed to make is 
the elimination of A's where the only difference is 
permutation of x values that are equal. 
f 1 and 0 are repeated values of x so that this 
would be an important improvement. However, we are 
unable to retain backtracking and include this mod- 
ification. 

Frequently, 

I 

I 

3 .  Example 

Sometimes a declared MUF is obtained by adding 
several intermediate or temporary MUFs kept by pro- 
duction people on the shop floor. If this declared 
MUF is thought to be the only MUF of interest, the 
record relating the temporary MUFs to the declared 
MUF may be destroyed, However, since the temporary 
MUFs are part of the production records, they are 
usually still available, 

7 

To make these ideas specific, suppose the fol- 
lowing information is available from the production 
people: 

Intermediate 
MUF (grams) 

10 
-50 
75 
-15 
-100 
20 

I Throughput 
(kilos) 

1.0 

1.5 

Each MUF is that declared for the operation of a 
given process in a given month. 
are given below, 

The declared MUFs 

Declared 
MUF (grams) 

10 
25 
-95 
60 
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1 
When examining the declared MUFs, the 60 gram 

One 
Thus, s4 = .9. 

puts of 2.2 kilos and 36 throughputs of .9 kilos. 
This information can then be given to the group in- 
vestigating the 60 gram MUF. 

MUF is singled out for further investigation. 
part of this investigation is to determine the 
throughput associated with this MUF. 
the throughput is not part of the record, and an 

Continuing this procedure, we find 14 through- 

Unfortunately 

attempt must be made to reconstruct the events that 
led to this MUF. 4. 

Here m = 10, n = 4, 

Define the throughput vector t by 

Running our program, we obtain 50 A matrices. 
That is, there are 50 distinct ways of combining x 
to obtain y .  
interest is in the last component of 

If A is a typical matrix, then our 

5 = A t = (sl, s2 ,  s3, s4). 
1 For the first output matrix A , 

1 . L  

0 1 1 0 0 0 0 0 0 0  .9 

.1 

1 ? = A  t , =  

0 0 0 0 0 0 0 0 1 0  

Program 

SUBROUTINE TRACE (X ,M , Y , N , E) 
DIMENSION IA(30,30). X(30), Y(30), E(30) 

********************ttt*t.*tt*tttt******************** 

M X-VALUES ARE SEARCHED TO GIVE SUMS 
EQIJAL TO N Y-VALUES WITHIN ERROR E 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
WRITE (5.100) 

WRITE (5,130) ((I .Y (I)) .I=l.N) 
WRITE (5,140) 
DO 10 I=l,N 
DO 10 J-1.M 

10 IA(I,J)=0 
I=0 

20 I=I+l 
IF (I.EQ.N+l) GO TO 70 

30 CALL ADD (IA,I,IEND,M) 
IF (IEND.EQ.l) GO TO 50 

DO 40 J=l,M 

CHK=ABS (SS) 
IF (CHK.LE.E(I)) GO TO 20 
GO TO 30 

DO 60 L=I,N 
DO 60 J=l,M 

60 IA(L.J)=g 
I=I-2 
GO TO 20 

DO 80 L=l,N 

I=N 
GO TO 50 

90 RETURN 

106 FORMAT (6X,'LIST OF ALL A SATISFYING*, 

116 FORMAT (16X,*X(*,I2.')=*.F10.5,/) 
120 FORMAT (6X,*AND*,/) 
130 FORMAT (16X,+Y(*,I2,*)=*,F10.5,/) 
140 FORMAT (/,6X.*IF A(I.J)=l,THEN X(J)*, 

150 FORMAT (/./,/,/,/,SX,***A*** 
160 FORMAT (X,30(X,Il)) 

ss=-Y (I) 

40 SS=SS+X(J)'IA(I,J) 

50 IF ((IEND.EQ.l).AND.(I.EQ.l)) GO TO 90 

76 WRITE (5,150) 

80 WRITE (5,16O)(IA(L,J),J=l,M) 

C 

*/, 16X,*AX=Y' ,/ ,6X ,*WHEKE* ,/) 

**WAS USED TO MAKE Y(I)*) 
1 

END 
SUBROUTINE ADD(IA,L,IEND,M) 
DIMENSION IA(30,30) 
IEND=0 
J=M+1 

IF (J.EQ.0) IEND.1 
IF (J.EQ.0) GO TO 50 
IT=# 
IF (L.EQ.l) GO TO 30 
LL=L-1 
DO 20 K=l.LL 

10 J=J-1 

26 IT=IT+IA( K, J) 
3b IF (IT.NE.O) GO TO 10 

IF (IA(L.J).EQ.0) GO TO 40 
IA(L, J)=0 
GO TO 10 

40 IA(L,J)=l 
50 RETURN 

END 

\ 

= (6.1, 8.2, 3.4, . 9 ) .  
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