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Section Editor: I. J. Good 

Please be succinct but Zucid and interesting. 

C1. LEAST SQUARES WITH NONNEGATIVE REGRESSION COEFFICIENTS 

In the literatute, various types of inequality restric- 
tions have been considered for regression problems. 

Waterman (1974), a solution utilizing existing regression 
programs is  given €or the problem with the restriction that 

all regression coefficients be nonnegative. Armstrong and 
Frome (1976) give a branch-and-bound solution to this problem, 
while Khuri (1976) shows that more general inequality con- 
straints can be reduced to the nonnegative restrictions men- 
tioned above. 

In 

In this note, the procedure of Waterman is modified to 
reduce the number of unrestricted problems that must be solved. 
First we review the original procedure. 

Let X be a given m x n matrix of rank m Ln and Y an n- 
dimensional column vector of responses. The problem is to 
miniinize 

L(X) - I(Y - XTAI 
subject to the constraints 

Xi 0 for i 

If the usual, unconstraine- 

T T  T 
= (Y .- x X) (Y - x a) 

= 1, 2, ..., m . 
L T -1 

A solution A = (XX ) XY satisfies 
(2), then X solves the constrained problem. 
solution to the constrained problem must be a boundary point 

Otherwise, the 
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of ([0, 
perform all possible regressions where one or more A 

are set equal to zero. 
picking the A satisfying (2) such that L(A) is smallest. 

and therefore at least one Ai = 0. To proceed, 

in (1) 
The nonnegative problem is solved by 

i 

The modification proposed here is based on the following: 
THEOREM Let A denote the solution to the nonnegative problem 

and A denote the solution to the unconstrained problem. 
j ( 1 5  j < m) of the components of A are negative, then at 

* 
A 

If 

least one of the corresponding j components in A * is zero. 
A 

Proof Assume j of the components of X are negative, and, 
withqut loss of generality, let us assume they are the first 
j components. 
for all 1 

A A 

That is, Ai 2 0 for all i > j , and Ai < 0 
i < j. - * A 

Then Xi 2 0 and Ai 2 0 if i > j, and thus aA 

Suppose A 

+ * i 
(l-a)Ai 

exists ais 0 a < 1, so that a X + (1-a ) A  > 0. Now, 

cbose a = min{al 1 and consider the vector aA + 

0 if i > j and 0 - -  a < 1. * 
> 0 for all i 5 j. Then, for i f j, there 

A * i 

i i i  i i  A 

'a '***raj 
6 .  Then for 1 2 1  L m ,  6 > 0 and 

i -  

where the first inequality comes from the triangle inequality 
for n o m  and the second inequality is due to i b&g the ' 

best unconstrained solution. 

Thus, we have L(S)  L L(X * ). But, if L(6)  = L(a  * ), we 
have a contradiction, since A * is the unique beat constrained 
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t one X = 0. To proceed, i 
rere one or more X in (1) 
atlve problem is solved by 
:hat L(X) is smallest. 
L I s  based on the following: 
h to the nonnegative problem 

i 

iconstrained problem. If 
X are negative, then at 
nnponents in X is zero. 
3 of X are negative, and, 

* 
A 

assume they are the first 
all i > j, and Xi < 0 

A 

A 

j, and thus aX + I 

s Then, for i < j , there 
+ (l-al)Xi > 0. Now, 

msider the vector aX + 
' > O a n d  'i - 

- * 
A 

4 

i 

om the triangle inequality 
A 

is due to X being the 
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* solution, and, if L(S)  < L(X * ), we contradict the fact the A 

Hence, we cannot have X * > 0 for all i 5 j, and thus at 
least one of the Xi, * i 2 j, is i zero. 

As an immediate consequence of this result, if X A has ex- 

in X * I s  zero. Although X A will frequently have more than one 

I s  the best constrained solution. 

actly one negative component, then the corresponding component 

negative component, the result can still be utilized. 
X has negative values in the El, E2, ..., 11 components. 

Then, solve the k (nonnegative) problems where k exactly one of 
the El, ..., E components is set equal to zero. 
the result is to be reapplied to each of these problems and 

care is to be taken not to duplicate computation. 

and Frome (1976) but our result is much stronger. 

sions. 
16 regressions. 

Suppose 
A 

Of course, k 

The proof of our result is similar to that of Armstrong 
The four- 

variable example they give is reduced to 13 of 2 4 116 regres- 
Using our technique, the problem is reduced to 4 of 

(Their "Nodes" 1, 2, 4, 5.) 
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