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In this paper we discuss some interesting symmetries that arise in conditioning random walks on 
the integers with absorbing boundaries. These results are ancillary to a study done on conditional 
expected duration of walks used in a mathematical model of cancer tumors [l]. 
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A tumor is an abnormal mass of tissue which is not inflammatory. A cancer tumor is thought of as 
arising from perhaps a single wayward cell which has lost the ability to control itself. At least this is a 
model for certain simple cases. The wayward cell starts reproducing without regard to the presence of 
other cells. Of course, the wayward cell may die before catastrophe overtakes the host organism. On 
the other hand, the single wayward cell may produce a family tree of descendants (called a clone) large 
enough to be noticeable to the host organism. In this case the descendents become a tumor. It is the 
tumor which is noticeable, and not the early cells that died without progeny. Our interest in the tumor 
growth is to estimate the expected time for the cancerous clone to reach tumor size from a single 
wayward cell, given that tumor size was reached. 

Suppose each cell has probability A (0 < A < 1) of dividing to produce two identical new cells and 
probability p = 1 - A of dying. We are interested in the process by which a single cell becomes, by this 
chance mechanism, a macroscopic clone of N cells. Although the natural model for this problem is a 
birth and death process with linear growth, we will employ the simpler model of classical gambler’s 
ruin. The classical ruin problem concerns a random walk on {0,1,. . . , N} where, if 0 < r < N, the 
probability of moving from r to r - 1 is p = 1 - A. The walk terminates when either absorbing state 0 
or N is reached. If the initial state is z, where 0 < z < N, the duration of the walk will be the number of 
steps from z to absorption. The quantity in which we are interested is the conditional duration F, of 
the walk, given that the walk terminates at N. For the cancer tumor problem, z = 1. 

Recently F. Stern [5] derived formulae for F, and for E,, the conditional duration of those walks 
terminating at 0. He also showed that E, = F, when 22 = N and 0 < A C 1. S. M. Samuels [4] showed 
that, under these conditions, even more is true: the duration of the game and the absorption point are 
independent random variables. For a numerical example relevant to the cancer tumor model, let 
z = 1, N = lo4, and A = .99. Then, using Stem’s formula with r = .01/.99, 

F, = u[(104-l)(r-1)+2.104 99- 01 -’ 
1 - r  

If the formula for F, is used with A = .01 and p = .99, it turns out that, again, F, = 10203.04.. . . We 
observed this symmetry in p and A from computer results for conditional expected duration before 
Stern’s results appeared. That the conditional duration was equal for A = .99 and A = .01 seemed to us 
a surprising and paradoxical result. The purpose of this paper is to explain and generalize this 
phenomenon. 

We begin with a random walk W on {0,1,. . . , N} with absorbing barriers at 0 and N and for 
0 r < N, transition probabilities A, for r --+ r + 1 and p, = 1 - A, for r + r - 1. Our major result can 
be summarized as follows: 

THEOREM. Conditioning the random walk W o n  absorption at one of the barriers yields a new random 
walk of the same type. If the transition probabilities A and p of W are independent of position, transition 
probabilities of the conditioned walk depend on position and are symmetric in p and A. 

It follows from this theorem that when the transition probabilities of W are independent of 
position, any function of the transition probabilities of the conditioned walk is symmetric in p and A. 
For example, the expected duration of the conditioned walk is - as we noted earlier - symmetric in 
p and A. This result underlies the results of Stern and Samuels and will be discussed more fully later in 
this note. But before doing that we want to prove our theorem. 

Proof. If q. is the probability of absorption at 0 for a walk starting at z, then 9. = AZqz+, + u,qZ-l 
with 9 0  = 1 snd (IN = 0. Parzen ([3], p. 233) gives the solution to this difference equation with these 
boundary conditions as 
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where x, = p,/A, and, by convention, np,, x, 3 1. If p.  is the probability of absorption at N for a walk 
starting at z, the value of pz may be obtained from (1) by interchanging A, and p, (thereby replacing x, 
by x;') and replacing z by N - z: 

p. = (2 i=o j = l  0 .)/(y # = o  , = 1  fi Xi). 

Clearly p.  t q. = 1. If A, = A and p, = p for 0 < z < N, then we obtain the well-known formula 
(Feller [2], p. 345) that 

L 1 - z / N ,  A = p. 

Let us now compute the probability of a left step conditioned on absorption at a given boundary, 
say at z = n. Let P denote the probability measure associated with W, L the event of the first step left, 
BN the event of absorption at N, and S, the event of being at z for O <  z < N. Then 

P(L  1 S, n B N )  = P ( L  f l  S, 17 B , ) / P ( S ,  n BN) 

- 1 t x , + x I x 2 t ~ ~ ~ + x l x z ~ ~ ~ x ~ - 2  
1 t x , + x l x 2 + ~ ~ ~ + x l x z ~ ~ ~ x , - l  . 

To investigate whether this formula for P ( L  1 S, fl BN) is symmetric in A and P, we replace Xi by X i '  

and p, by A, = pL,x;' to obtain 

- CL. 

In general, (2) and (3) will not have the same value unless xi is independent of j .  But if the xi are 
independent of j ,  they will agree and have as a common value: 

A similar analysis for the first step right, R, leads to the formula 

P ( R I S , f l B , ) = A e y ; l =  { ' 

Therefore, in either case, the conditional transition probabilities for uniform xj are symmetric in p 
and A. This completes the proof of the theorem. 

In the remainder of the note, the transition probabilities A, p are independent of position. The 
formulae in the case of absorption at zero are 
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( P #  A).  
A N - z + l  - p N - z + l  

CL N - r  
p ( L  1 SZ n Eo) = A ~ - z  - 

(These formulae are derived by interchanging A and p, interchanging L and R, and replacing L by 
N - L. But A is still the probability of a right step.) If we assume p < A and let N + m, we obtain the 
probabilities conditioned on absorption at zero of a random walk on the nonnegative integers: 

P ( R  I S, n Eo)+ p and P(L I S, fl Bo)+ A. 

This yields a new random walk in which left and right probabilities are interchanged, a result noted by 
0”. Waugh [6] who attributes it to D. G. Kendall. 

Our theorem applies directly to the classical gambler’s ruin problem, and it is in that context that 
we can relate our work to that of Samuels and Stern. In the ruin problem players A and E start with a 
and b dollars, respectively. They repeatedly toss a coin which has probability A of heads, 0 < A < 1. A 
wins one dollar from B whenever heads occur, while E wins one dollar from A whenever tails occur. 
The game continues until one of the players has no money left. Samuels [4] showed that if a = b, the 
duration of the game is independent of who wins it. That is, if D is the duration of the game (Le., the 
number of tosses in the game) and W = 1 or 0 according to whether A or E wins, then 
P(D = d 1 W = 1) = P(D = d 1 W = 0) for all d. (Stern derives explicit expressions for the conditional 
expected duration, and notes symmetry if a = b). 

Suppose now that our gamblers begin with equal fortunes a = b. We denote by g the reflection of a 
game history g obtained by interchanging heads and tails. This permits us to distinguish between a 
symmetric event, a set of game histories S for which g E S implies g E S, and an antisymmetric event 
in which g E S implies .g S. (For example, the set of game histories for which D = 10 is a symmetric 
event, whereas the set of game histories in which A wins is an antisymmetric event.) With this 
terminology we can generalize Samuel’s theorem in the following way: In the classic gambler’s ruin 
with equal initial fortunes, if  E is a symmetrit event and F is either of the antisymmetric events “ A  wins” 
or “B wins”, then E and Fare independent. If E is the event “ D  = d” and F is the event “A wins”, 
then one obtains Samuels’ theorem that the duration of the game is independent of who wins. 

To prove this denote by PA the probability measure for the games with probability A of 
heads. Then since PA ( g )  = P, (g), one has PA {E 1 F} = P, {E I F} = P, { E  I - F}. By the theorem, 
P,{EI - F } = P A { E )  -F} and thus P A { E I F } = P A { E I  -F}. Hence 

This relation simplifies to the desired statement of independence: PA {E f l  F} = PA { E J P ,  {F}. (The 
case of PA {F} = 0 or PA { - F} = 0 can be handled separately.) 

We are indebted to Dr. G. I. Bell for suggesting this problem and for discussions and to Professor S. M. 
Samuels for pointing out connections betweeen our results and other work. Work on this paper was performed 
under the auspices of the United States Energy Research and Development Administration. 
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