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Locating Maximum Variance Segments 
in Sequential Data' 

T. R. Bement' and M. S. Waterman' 

An automated method is presented for the identification ofpeaks in sets of sequential data. The 
method is based upon the location of those segments with maximum variance and has the 
advantage of guarding against the masking of small-scale effects by large-scale effects. The 
procedure is illustrated with data taken aspart of the National Uranium Resource Evaluation 
project. KEY WORDS : algorithm, sequential analysis, data processing. 

INTRODUCTION 

Many types of investigations in geology and other disciplines are related to 
the problem of locating segments possessing certain properties in a set of 
sequential data. The problem that motivated the algorithms reported here 
involves the interpretation of sets of sequential data taken as part of the 
National Uranium Resource Evaluation (NURE) project. Figure 1 is a set of 
digitized data of an airborne scan of the gamma-ray signal from 'I4Bi taken 
along a transect. This scan, although unusual because of the extremely high 
peak at A caused by an exposed uranium deposit, was chosen as an example 
because it illustrates a particular problem encountered in the analysis. A 
desirable procedure for recognizing certain types of segments should not 
allow relatively large-scale effects to mask small-scale effects. 

The problem of recognizing specific types of segments in sequential data 
has been considered by several authors. Hawkins and Merriam (1973) present 
a method of dividing such data sets into homogeneous zones based on 
minimizing within-zone variation. Kulinkovich, Sokhranov, and Churinova 
(1966) published an algorithm for identifying boundaries of beds in borehole 
profiles. Their algorithm is based on a search for the maximum change be- 
tween two consecutive records in a log. 

The purpose of the methods reported here is to present an automated 
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Figure 1. Digitized z14Bi scan taken by airborne gamma-ray detectors 
along transect. 

technique for locating peaks such as those at A, B, and C in Figure 1. The 
algorithms are based on determining the location of segments whose variance 
is maximal. 

ALGORITHMS 

Denote the data by xl,xz, . . ., x,, where N is the number of observations in a 
scan. The object of the algorithms proposed here is to select the most hetero- 
geneous segments. This problem does not seem to have been considered 
previously in a mathematical fashion. 

Our measure of heterogeneity is the sum of the variances of the selected 
segments. The variance of the segment xi,xi+ 1, . . ., xi is, as usual, defined to 
be 

u ( i , j )  = ( j -  i)-' C (xI-2(i,j))' 
j 

I - i  
where 

and 

j 
z(i,j)=(j-i+l)-' C xl ,  

u(i , i)  = 0 

I = i  

When we select the k segments nl to m i ,  n, to m,, . . ., n, to m,, we compute 
the sum of the variances 

o(n1,ml) +u(nZ,mZ) +' ' +u(nk,mk) 
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as the measure of heterogeneity of those k segments. The largest such sum 
with 1 S n l  I m l  <n2 I m ,  < < n k l m k I  j is denoted by Sk(j) (note that 
Sk( j) is undefined if k >j) .  

Our algorithm for computing &(N) proceeds as follows: 

Si(1) = 0, 1 I i I N  

Sl(j)= max{S,(j-l), max u ( l , j ) } ,  2 l j ~ N  
l < I < j  

... 

The algorithm can be easily justified. The value of Si(j) is either the optimal 
choice of i segments from x1,x2, . . ., x j -  , or it must be the situation that the 
last segment ends with x j .  If the latter is the situation, it must be true that 
Si(j) is the maximum of u(Z,j) plus the S value for the optimal choice of i- 1 
segments from x1,x2, . . ., x l -  , for some I in the interval from 1 toj -  1. This 
completes the justification of (1). Clearly, the algorithm (1) can be program- 
med easily. Essentially, the number of operations to compute &(N) is pro- 
portional to kN(N+ 1)/2. 

Of course, S(N) = max &(N) can be calculated as indicated, but it is 
useful for considering stopping rules to have a more efficient method of 
computing S(N).  The following algorithm solves this problem. 

S(0) = 0 

S(j) = max {S(l-l)+u(l,j)}, 1 I j l N  

The reasoning for this algorithm is similar to that for algorithm (1). The 
number of operations is proportional to N(N+1)/2. Because S(N)  is the 
maximum variance that can be obtained by the removal of segments, it is 
useful to compare &(N) with S(N).  Another procedure would be to compute 
S ( N )  and then select all segments which had larger variance than a pre- 
assigned percentage of StN). 

The problem of locating the boundaries of the segments which give the 
sum of variances equal to &(N) or S(N) is similar to the corresponding 
problem in Hawkins and Merriam (1973) but, in our situation, both upper and 
lower boundaries must be handled. 

One useful modification of the algorithms is to impose the restrictions 
that all segments must be of minimum width w and maximum width W. 
These modifications are included easily in the algorithm. As presented, the 

(2) 

l < l <  j 

I algorithms have w = 1 and W = N.  One useful feature of these modifications 
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is the reduction of computat:on time. For example, with w = 1, the computa- 
tion time for S,(N) is proportional to kW(W+ 1)/2. For N = 1000, the use 
of W = 100 reduces computation to approximately lo-' times that required 
for W = 1000. It should be pointed out that the algorithm of Kulinkovich, 
Sokhranov, and Churinova (1966) is equivalent to our algorithm with W = 2. 

An interesting property of algorithm (1) is that, if all xi are not members 
of a segment used to compute &(N), then &(N) I&+ l(N). Therefore, we 
feel algorithm (1) need not be used to remove segments beyond the point 
when each xi is the member of some segment. However, examples exist where 
continuing beyond this point increases the total variance. Of course, stopping 
rules of the sort that terminate computation when the value 1 - s&(N)/&+ , ( N )  
or 1 -&(N)/s(N) is less than some specified value are reasonable and can 
be used. 

Clearly, our algorithm will handle functions other than variance, and, 
whereas other such functions are being studied, variance seems satisfactory 
for our purposes. Also, by replacing max by min in (1) and imposing suitable 
restrictions such as w >  1, a choice :of k segments whose sum is minimized 
can be determined. This could be used to locate homogeneous segments if 
that were the question of interest. A variant of (2) arose in connection with 
a problem in molecular biology (Waterman, 1976). Also, the algorithms can 
be used for questions of interest in numerical analysis (see Hawkins, 1972, 
for a similar analysis). In addition, a multivariate extension similar to 
Hawkins and Merriam (1974) should be possible. A theoretical paper is being 
prepared where these and other points will be dealt with in detail. 

I 1 1  I 1  I 1 1 1  I I 1  
1 2 5 4 S 6 7 8 9 1 0 1 1 I 2 1 5  
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Figure 2. Hypothetical data illustrating increasing and decreasing seg- 

ments at A and C, flat spot at B, and a peak at D. 
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Table 1. Segments with Maximum Total Variance from Data in Figure 2 
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Number of Total 
segments variance Boundaries 

1 
2 
3 
4 
5 
6 

7 

8 

9 

10 

4.0 10-12 
6.0 8-10 11-12 
7.0 5-7 8-10 11-12 
8.0 1-3 5-7 8-10 11-12 
8.0 1-3 I 5-7 8-10 11-12 13-13 
8.0 1-3 4-4 5-7 8-10 11-12 

13-13 
7.5 1-3 4-4 5-6 7-7 8-10 

7.0 1-3 4-4 5-5 6-6 7-7 

6.5 1-1 2-3 4-4 5-5 6-6 

6.0 1-1 2-2 3-3 4-4 5-5 

11-12 13-13 

8-10 11-12 13-13 

7-7 8-10 11-12 13-13 

6-6 7-7 8-10 11-12 13-13 

Maximum total variance = 8.0 

A FORTRAN program implementing these algorithms has been 
written for a CDC 6600 computer at Los Alamos Scientific Laboratory. An 
elementary example, shown in Figure 2, is used to illustrate the method. In 
Table 1, results up to S,,(13) are given. Of course, SI3(13) = 0 because each 
of the 13 selected segments has only one point. By almost any stopping rule, 
computation would proceed to j  = 5 segments where S4(13) = S,(13). Then 
the boundaries f o r j  = 4 would be chosen. The four segments, when taken 
together, comprise regions A and C and the peak at D in the data of Figure 2. 
This illustrates the property of the algorithm that a peak will appear in at 
least two segments, made up of the ascending and the descending portion. If 
A-B-C is considered as a peak, note that only A and C are identified, leaving 
the flat segment B. 

APPLICATIONS 
As mentioned in the introduction, the data in Figure 1 results from flying 
a transect at approximately 120 mph and digitizing the 214Bi radiation level 
at 1-sec intervals. The numbers along the horizontal axis are record numbers 
and the data set consists of 1150 points or records. It was hoped the algorithms 
would provide an automated method of locating A, B, and C, and that the 
large-scale effect of A would not mask the smaller effect of B. 
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Table 2. Segments with Maximum Total Variance from Data Shown in 
Figure 1 

Number of Total 
segments variance Boundaries 

1 5.993E+ 5 740-747 
2 7.868E+ 5 740-746 747-748 
3 8.968E+ 5 740-746 747-748 749-760 
4 9.141E+5 740-746 747-748 749-760 995-1010 
5 9.241E+ 5 740-746 747-748 749-760 982-997 998-1006 
6 9.326E+ 5 740-746 747-748 749-760 784-799 982-997 

998-1006 
7 9.378E+ 5 740-746 747-748 749-760 784797 798-808 

982-997 998-1006 
8 9.406E + 5 740-746 747-748 749-760 784797 798-808 

982-997 998-1006 1090-1091 
9 9.426E+ 5 740-746 747-748 749-760 784-797 798-808 

982-997 998-1006 1090-1091 1119-1144 
10 9.493E + 5 740-746 747-748 749-760 784-797 798-808 

982-997 998-1006 1090-1091 1119-1144 1149-1150 

Maximum total variance = 9.623E+ 5 

A run of the program was made with this data where the length of the 
longest segment to be removed was restricted to 50 or less. (That is, W = 50.) 
The results are given in Table 2. The regions A, B, and C of Figure 1 are each 
identified after the selection of seven segments. The region at A is composed 
of three segments. The total variance “identified” after the selection of seven 
segments is 97 percent of the maximum total variance in the scan. Because the 
large peak at A has such an influence in this’percentage, it is interesting to 
evaluate the contribution of regions A and B to total variance in the absence 
of C. By subtracting the effect of C from the total variance and from the 
variance associated with the first seven segments, one finds about 62 percent 
of the variability has been identified. The last three segments to be selected 
identify regions D and E. Again ignoring the region C, one finds that when all 
ten segments have been selected, nearly 72 percent of the maximum total 
variability has been identified. 

ACKNOWLEDGMENTS 

The authors wish to express their appreciation to R. K. Zeigler for his many 
helpful suggestions. 



Locating Maximum Variance Segments in Sequential Data 61 

REFERENCES 
Hawkins, D. M., 1972, On the choice of segments in piecewise approximation: Jour. Inst. 

Math. Applications, v. 9, no. 2, p. 250-256. 
Hawkins, D. M., and Merriam, D. F., 1973, Optimal zonation of digitized sequential data: 

Jour. Math. Geology, v. 5, no. 4, p. 389-395. 
Hawkins, D. M., and Memiam, D. F., 1974, Zonation of multivariate sequences of digitized 

geologic data: Jour. Math. Geology, v. 5, no. 3, p. 263-269. 
Kulinkovich, A. Ye., Sokhranov, N. N., and Churinova, I. M., 1966, Utilization of digital 

computers to distinguish boundaries of beds and identify sandstones from electric log 
data: Intern. Geology Rev., v. 8, no. 4, p. 416420. 

~ 

Waterman, M. S., 1976, Secondary structure of single-stranded nucleic acids: draft. 


