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Metric trees are dendrograms which show the phylogenetic relationships 
for a set of contemporary species. These dendrograms have numerical 
values attached to the branches. If the sum of these values on the branches 
between any two contemporary species is equal to the dissimilarity between 
these two species, the metric tree is said to be additive and possess an 
additive dissimilarity matrix. Metric trees and additive matrices are dis- 
cussed and the uniqueness of the metric tree for an additive dissimilarity 
matrix is shown. A simple algorithm is given to generate the metric tree 
for an additive dissimilarity matrix. This algorithm is extended to non- 
additive dissimilarity matrices through the use of linear programming. 
Finally, some results for cytochrome c sequences are presented. 

- 
1. Introddon 

A protein is specified by the sequence of amino acids composing the protein. 
Since 20 kinds of amino acids are used in proteins, a protein is a finite word 
over an alphabet of 20 letters. Biology seeks to discover the evolutionary 
relations among the set of proteins. It postulates that proteins have evolved 
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in time past, and this evolution has produced a tree (or trees) whose terminal 
nodes are the extant proteins. It is a task of biology to decide what the 
mechanisms and probabilities of the various protein evolutionary processes 
are. It is a mathematical task then, to produce from existing protein sequences 
and the postulated mechanisms and probabilities of evolutionary processes, 
a probable tree of the extant proteins. These matters are discussed in the 
references, but there is no adequate survey. The dosest reference to a survey 
is Dayhoff (1971). These tree construction methods can also be regarded 
as part of the theory of clusters or of numerical taxonomy. See Jardine & 
Sibson (1971). 

Recently, Moore, Goodman & Barnabas (1973) have outlined 8 number 
of the properties of evolutionary trees reconstructed under the additive 
hypothesis of Cavalli-Sforza & Edwards (1967) from molecular sequence 
data. Using some ideas from graph theory they define the neighborhood 
of a given network (tree topology) in terms of nearest neighbor interior 
vertex interchanges. Using this definition they propose an algorithm for 
searching a part of the very large space of all possible networks to obtain 
a network satisfying the additive hypothesis for a given dissimilarity matrix. 
Several mathematical results are given. However, they fail to prove the 
convergence of their algorithm, they do not discuss the uniqueness of a 
given network resulting in an additive dissimilarity matrix, and they do not 
discuss the conditions which must be satisfied by a dissimilarity matrix to 
insure it is additive. Some of these points have been discussed by Buneman 
(1971) and by Dobson (1974). 

We shall discuss metric trees and additive dissimilarity matrices and give 
a uniqueness proof. We prove convergence of a simple algorithm to generate 
the metric tree for an additive dissimilarity matrix. We make a comparison 
of the Moore e? al. (1973) algorithm with our algorithm. 

Finally, we discusss the implications of additivity to the evolutionary 
reconstruction problem and give an extension of our algorithm to non- 
additive data through the use of linear programming. 

While the additive hypothesis surely is an oversimplification of the process 
of evolution, it is of the utmost biological importance to fully understand 
the additive hypothesis. Then it will hopefully be possible, as Goodman, 
Moore, Barnabas & Matsuda (1974), Moore et ul. (1973) and this paper 
emhattempt, to carry these insights over to a better understandingofevolution. 

2, DeMtiolEp 

We recall the definition of a metric space Mas a non-empty set of elements 
to which a non-negative real number dr, is assigned to every pair i, j in M 
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and has the following properties : 
d, > 0 f o r i # j ,  (1) 
dfj = 0 for i = j, (2) 
4, = dji for all i and j, (3) 
dij < d,+dkj for all i, j and k. (4) 

vertices with a non-negative real number, called edge length, assigned to 
A metric tree (unrooted) is a connected graph with no cycles of n terminal 

each of the 2n - 3 edges. Each vertex has degree 1 or 3. (There are terminology 
difficulties caused by allowing an edge to have zero length.) The terminal 
vertices are exactly those of degree 1. 

For a set of n elements, a dissimilarity matrix D is an n x n matrix of non- 
negative real numbers D = (4,) associated with each pair of elements 
satisfying conditions (l), (2) and (3). This set of n elements is a metric space 
if and only if the matrix D satisfies condition (4). 
An n x n  dissimilarity matrix D = (dtj) is said to be additive if there 

exists a metric tree of n terminal vertices such that the sum of edge lengths 
along the shortest path between terminal vertex i and terminal vertex j 
equals dij for all i and j .  Thus an additive matrix is a metric space. The 
necessary and sufficient condition which the dissimilarity matrix must 
satisfy to be additive has been proven by Buneman (1971) and later by 
Dobson (1974). This is the four-point condition: For all sets of four elements, 
there exists some labeling of the elements, say i, j ,  k and I such that 

(5) 
If these six distances are interpreted as the edges of a tetrahedron, then the 
sums of opposite sides form the sides of an isosceles triangle. This is to be 
compared with an ultrametriu in which every triangle is isosceles. 

I 

I 

dij+d, = dj,+& 2 du+djk 

t 

3. AdditiveMetricTms 

(1 P 

FIG. 1. 
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Theorem 1 

one metric tree which yields that dissimilarity matrix. 

Proof 
Such a metric tree exists by definition and we need only prove its 

uniqueness. Let a, 8, y be terminal Vertices. We wish to iind edge lengths 
a, b, c as shown in Fig. 1. This gives the system of equations 

d,, = a+b, dq = a+c, d,, = b+c, 
with the unique solution: 

(1 = ( d ~  + 4,- d&, 
b = (d, + d,, - day)/& 
C = (do7+dpr-dnp)/2. 

Let D be an additive dissimilarity matrix. Then there is one and only 

The triangle inequality assures that a, b and c are non-negative. Therefore 
there is a unique metric tree for any three terminal vertices. 
Now assume, as shown in Fig. 2, there are two metric trees for the 

terminal vertices a, 8, y,  6. 

Y 

FIG. 2. 

One has bl+b2 = b and cl+c2 = c. The assumption of distinct trees 
implies bl + c2 > 0. But this implies that the metric tree formed by 8, y,  6 
is not unique. Thus it is impossible to have two distinct trees for four 
terminal vertices. 

Assume there are n > 4 terminal vertices and that there are two distinct 
tree topologies for these vertices. Each interior vertex of a tree has an 
associated partition {Al, A2, A3}  of the terminal vertices and each subset 
{a, 8, y }  of terminal vertices determines a unique interior vertex. In the 
partition, AI = {a : a is a terminal vertex associated with the ith edge con- 
nected to the interior vertex}. Let {a, fi, y }  determine partition {Al, Azr A 3 )  
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for the first tree and a distinct partition {Bl ,  B,, B3} for the second tree. 
If each of the partitions for every triplet were the same, then the tree topologies 
would be the same. For each e E Ai, there is a j such that e E Bp If AI = B, 
for all e, the partitions are the same. Thus, for some e, & € A f  n B, and 
Af  # Bp Let 6 E A, and 6 # Bp But this is the situation of Fig. 2 and is 
therefore impossible. 

Finally, the edge lengths for the two trees will be shown to be equal. 
First consider a terminal edge with terminal vertex cc and interior vertex Y. 
The vertex Y determines the partition {{a}, A2, A3}.  Choose f l  E A ,  and 
y E 4. The metric tree determined by a, fly y is unique which implies the 
terminal edge lengths in the two trees are equal. 

Next consider an interior edge. Each interior edge partitions the terminal 
vertices into {Cl, C,, C,, C,} where Ct = {a:  a is a terminal vertex asso- 
ciated with the ith edge joining the given interior edge}. Choose ccf E Cf for 
i = 1, 2, 3, 4. The metric tree determined by al, a,, a3, a, is unique which 
implies the interior edge lengths in the two treea are equal. This completes 
our proof. 

4. Theseqneatial Algorithm 

An algorithm will now be described which allows construction of the 
unique metric tree for an additive dissimilarity matrix D. Pick any two 
terminal vertices and construct the unique metric tree. Now assume the 
unique tree has been constructed for a subset C, of k 2 2 terminal vertices. 
Pick any remaining terminal vertex y and also a and f l  from C,. Find the 
unique tree with terminal vertices a, fl  and y. If the new interior vertex does 
not coincide with an already existing interior vertex on the path from 
CI to fl, it has been added properly to the tree. In case the new vertex does 
not coincide with an existing vertex on the path from a to f l ,  cc or f l  is replaced 
by a terminal vertex on the adjoining edge of the tree on which y must lie, 
and repeat the above. 

Since there are k external vertices, the procedure must be done at most 
k- 1 times. (Actually for larger k, one c811 do much better than that.) There- 
fore, if the final tree has n terminal vertices, the problem of constructing the 
tree for three points will be done at most t 

I 

(k-2)  = (n-l)(n-2)/2 
k=3 

times. This algorithm finds the unique metric tree since theorem 1 states that 
each subset of k terminal vertices has a unique tree and this tree must be a sub- 
tree of the unique tree for additive D. We summarize this result in theorem 2. 
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Theorem 2 
The sequential algorithm described above yields the unique tree for an 

additive dissimilarity matrix D. 

We remark here that Moore et d. (1973) have an algorithm which seems 
to converge in the case of an additive D. However, they offer no proof of. 
its convergence, a fairly complicated function must be evaluated and 
minimized for each topology, and they are forced to work, at each step, with 
networks using all terminal vertices. In their example with ten terminal 
vertices, it takes ten cycles or.an examination of 160 alternative topologies 
to converge to the unique tree. Using the sequential algorithm we obtain 
the unique network in eight cycles by a few minutes of hand calculation. 

5. Additivity and Molecular Sequence Data 

In general, dissimilarity data obtained from molecular sequences such as 
cytochrome c or hemoglobin are non-additive. This appears to be independent 
of the metric used to generate the dissimilarity measure between sequences. 
The simplest sequence metric is that defined by Sellers (1974~). This metric 
counts the minimum number of sequence element changes and deletions 
required to make any two sequences the same. One interpretation of such a 
number is the total number of mutational events involved in the evolution 
of any pair of sequences from their most recent common ancestor. Multiple 
changes at the same site are counted as a single event. Thus, as shown in 
Fig. 3(a), multiple hits can prevent additivity. The distances for Fig. 3(a) 
are d12 = dI4 = d,, = d34 = 2 and di3 = d24 = 4. The miltiple hits here 
are not to be confused with the “multiple hits” identified in realprotein 
sequence data (Fitch & Margoliash, 1967). In those cases, the reference is 
not to the historical events but to the fact that for some given alignment 
between three or more molecular sequences, in some position three or more 
different elements are found. Non-additive data can also result from evolu- 
tion without multiple hit events as shorn in Fig. 3(b). The distances for 
Fig. 3(b) are dI2 = d34 = 2, d23 = 3, and d13 = di4 = d24 = 4. The non- 
additive condition here is clearly not a result of “misalignment” in measuring 
the contemporary distances as no deletion or insertion events are involved. 
The relatively small distance between sequences (2) and (3) can be inter- 
preted as convergent evolution. 

The distances in Fig. 3(c) are d12 = d13 = d34 = 2, d14 = d23 = 3 and 
d24 = 4. These satisfy the four point condition and lead to the additive tree 
[Fig. 3(d)]. The resulting internal branch lengths are not the original (historical) 
ones. This is in part a result of allowing non-integer branch lengths. 
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FIG. 3. (a) is M example of multiple hits for which the four point condition is not satis- 
fied. (b) is an example of evolution without multiple hits for which the four point condition 
is not satisfied. (c) is an example satisfying the four point condition. The numbers along 
the branches indicate the site changed, counting from left to right. For simplicity there has 
been only one event along each branch. (d) is the additive tree resulting from the sequential 
algorithm given in section 4. Here the numbers along the branches are the internal lengths 
Obtained. 

Thus for real sequence data in which multiple hits and convergent evolu- 
tion are highly probable, additivity is not expected and if existent its relation- 
ship to the true historical tree is unclear. This is, of course, the case in most 
protein sequence data. For example, Dayhoff (1973) asserts that among 
34 cytochrome c sequences studies more than half the sites are thought 
to have undergone more than one change. This is probably the case in most 

It has been of interest in the past to find the metric tree resulting in a D' 
as close to an additive D as possible. Buneman (1971) has suggested an 
algorithm for finding such a metric tree. His method results in a D' < D 
which does not seem to be a useful cbndition, since one reason for non- 
additivity is the occurrence of multiple hits. Therefore, we conjecture that 
the condition D' > D is more biologically reasonable. Goodman et ul. (1973) 

i protein sequence data. 
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propose an algorithm apparently satisfying this condition for non-additive 
data. Their algorithm is a direct extension of their additive data tree recon- 
struction algorithm. However, as noted earlier, the convergence properties 
of this approach are unknown. 

A justification of these approaches may rest on the idea that for con- 
servative proteins (small rates of change in time) multiple changes have been 
rare. It is then conjectured that trees which are free of multiple hits are, 
with a high probability, additive. 

6. The Extension of the Sequential Algorithm 

An extension of the sequential algorithm which obtains the proper tree 
for additive dissimilarity matrices is used to study the problems of non- 
additive dissimilarity matrices. The algorithm for possibly non-additive 
dissimilarity matrices is as follows. Its justification is that it works in the case 
of additive dissimilarity matrices. Suppose there are n contemporaries given. 
The tree is built up as before from an initial metric tree of three terminal 
vertices by adding successive terminals. Suppose that a tree of k < n 
terminal vertices has been constructed. The addition of a new edge to all 
2k - 3 existing edges is tested. The location of the new edge is determined by 
finding the minimum value of some linear function of the edge lengths, 
under some set of linear constraints. This latter procedure is called linear 
programming [Hadley (1962)l and has been applied to the ev61utionary 
sequence problem by Beyer, Smith, Stein & Ulam (1974). This procedure 
continues until a tree of n terminal vertices is created. 

The weakest meaningful linear constraint appears to be the imposition of 
the metric properties (l), (2), (3) and (4) on the edge lengths of the tree. 
This demands that the s u m  of edge length through the metric tree comccting 
each pair of terminal vertices be equal to or greater than the corresponding 
dissimilarity matrix D. This last constmint has not been imposed in most 
earlier studies (Fitch, 1972; Goodman et d., 1974). 

The choice of the linear function of edge lengths, properly called the 
“objective function”, is somewhat arbitrary. We have, considered three 
functions of the edge lengths: first the unweighted sum 

2n- 3 

of edge lengths. This choice of objective function has been intqreted as 
minimizing the totd evolution. The second objective function used is the 
sum over the present deviations between the path through the tree connecting 
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terminal vertices and the corresponding element in the dissimilarity 
matrix D, 

Here the sum over i E {S,, s k }  denotes the sum over the edges in the tree that 
connect the terminal vertex for sequence S, to that of S,. This objective 
function was first suggested by Fitch & Margoliash (1967). Finally, a third 
objective function was used, 

differing from the second only in the use of a x2-type weighting. 
1. The linear constraints used with all of these objective functions are 

e, 2 0 for all i 
and 

for all sequences S, and S,, the metric constraint. 
It can be shown that any finite solution to the problem occurs at a vertex 

of the convex polyhedron, whose faces are the boundaries of the half spaces 
determined by the linear constraints. For example, consider the case of a 
three by three dissimilarity matrix D 

D =  6 0 6 .  6 : 1) 
The three triangle inequality constraints 

el+ez 2 6 
el+e3 2 2 
ez+e3 2 6 

and the non-negativity constraints e, 2 0 confine the solution to at most 
the four vertices formed in Fig. 4. The co-ordinates of these four vertices 
are: (6, 0, 6), (1, 5, l), (2, 6, 0) and (0, 6, 2). The second vertex is the 

minimizes all three of our objective functions, the first one with a value of 
seven and the second and third with the value of zero. In all four possible 
solutions at least three of the constraints are satisfied. This is one of the 
properties of these linear programming solutions : any solution makes a 
minimum of 212-3 constraints into equalities since there are 2n-3 
variables e,. 

b additive solution; i.e. it gives equalities in equation (6) and therefore it 
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he' 

The next theorem shows that at least n- 1 distinct pairs of terminal 
vertices are additive in the linear programming solution. 

Theorem 3 
For an n x n  (n 2 3) dissimilarity matrix D, the assignment of edge 

lengths e, by linear programming with constraints equations (6a) and (6b) 

yields at least n- 1 of the triangle inequalities as equalities and at most 

n - 2  e, can be equal to zero. 
C) 

Proof 
For n = 3, the only topology is shown in Fig. 5. 

FIQ. 5. 

At least two of the e, must be non-zero, for otherwise, say, 0 = e, +e2 2 d12. 
Assume that for n terminal vertices at least n-1 e, must be non-zero. 

Now consider a tree with n + 1 terminal vertices. At least one of the associated 
terminal edge lengths must be non-zero. Otherwise D has a non-diagonal 



ADDITIVE EVOLUTIONARY TREES 209 

zero element. By the induction hypothesis at least n- 1 of the e, in the tree 
with the non-zero terminal edge length deleted must be non-zero. But 
n- 1 + 1 = n = (n+ 1)- 1 and the induction is completed. Hence for a 
tree with n terminal vertices at least n -  1 e, must be non-zero. 

There are a total of 2n- 3 el of which at least n- 1 are non-zero. Thus 

at most n-2 el can be zero. This implies that at least n- 1 of the 

triangle inequality constraints are equalities. 
In summary, it is the metric tree and the associated constraints which 

determine the vertices of the associated convex polyhedron. Linear pro- 
gramming chooses the vertex of this convex polyhedron which minimizes 
the objective function. 

(3 

-? 

7. Application to Molecular Sequence Data 

Three dissimilarity matrices for 18 contemporary cytochrome sequences 
were computed using Sellers’ (1974b) sequence metric. This metric requires 
a metric on the set of amino acids. The first matrix, D,, was obtained by 
the metric which assigns the distance 1 to pairs of unequal amino acids. The 
matrix D, is shown in Table 1 and is the matrix used in the analysis for 
Tables 2 and 3. The matrix D, was obtained using a Fitch & Margoliash 
(1967) type codon element metric on the set of amino acids and D, was 
obtained using Sneath’s (1966) chemical metric. These three D’s, the extended 
algorithm for non-additive dissimilarity matrices given above, and the three 
objective functions form the basis of our computer analysis. The results 
are summarized as follows. 

First, the final metric tree depends on the order in which the terminal 
vertices are added. Secondly, the metric trees depend very little on which 
objective function or which dissimilarity matrix is used. No order of addition 
for any objective function resulted in a topology in complete agreement 
with the more accepted evolutionary trees (see Fig. 3 in Beyer et ul., 1974). 
The addition of the rattlesnake later in the algorithm gave results more in 
agreement with accepted evolutionary trees. The problem of the position 

(1970) and is believed related to the closeness of the rattlesnake and human 
cytochrome c’s. Table 2 shows the dependence on the order of terminal 
vertex addition. Following Goodman et ul. (1974), all trees resulting from 
the interchange of a single pair of nearest neighbor internal vertices were 
studied. In all cases in Table 2, the tree found by the extension of the sequential 
algorithm was a local objective function minimum among these nearest 

\ of the rattlesnake in an evolutionary tree was noted by Gibbs & MacIntyre 





ADDITIVE EVOLUTIONARY TREES 21 1 

TAEILB 2 
Examples of objective function dependence on order of terminal vertex addition 
in the extended sequential algorithm. A set of 18 cytochrome c protein sequences 
were used in this example. Order 1 is: 1-2-3-4-5-6-7-8-9-1 0-1 1-12-13-14-15- 
16-17-18. Order 2 is the single link cluster order (Jardine & Sibson, 1971): 
1-2-3-4-6-7-8-5-9-1 2-1 3-1 0-1 1-1 4-1 8-1 5-1 6-1 7. The third order is obtained from 
an average linkage cluster analysis ( J a r b e  h Sibson, 1971): 1-2-13-11-10- 
7-8-6-5-4-3-9-12-14-15-16-1 7-18, and the fourth order differs on& in the 
point of &ition of the rattlesnake: 1-2-13-1 1-10-7-8~5~-3-9-12-15-16-17- 
18-14. The distance from the accepted tree is the number of nearest neighbor 
vertex interchanges required to convert to the accepted evolutionary tree 

~ 

I *  

4 (Beyer et al., 1974) 
~~~ ~ 

Order of fi (&I) Distance from 
Addition (objective function) accepted tree 

1 15-75 
2 16.52 
3 15.61 
4 14.92 

2 
4 
5 
8 

Accepted tree 16-13 0 

neighbors. However, in other computer runs on a larger number of cyto- 
chrome c sequences exceptions were found to this local minimum property. 
Since the extension of the sequential algorithm does not always converge 
to a global minimum, subtrees of optimal trees are not necessarily optimal. 

To circumvent the metric tree dependence on the order of terminal vertex 
addition, the order of addition was made to depend on the objective function 
value. This was done by testing the addition of all remaining sequences 
associated with terminal vertices and adding the one giving the lowest 
value of the objective function. This was continued until all terminal vertices 
were added. This approach results in a tree composed of optimal subtrees. 
Table 3 compares this method with the above. The trees are again nearest 
neighbor vertex minimum. 

In conclusion, we find our metric tree construction algorithms do 
not necessarily give a global minimum. Therefore, since it is not practical 
to search all trees for, say, 18 terminal vertices, we recommend searching 
biologically reasonable trees. As concluded by Buneman (1971) in his study 
of the properties of additive metric trees, the ability to reconstruct evolution 
using the sequence metric approach may be limited. It has been noted 

c 
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TABLE 3 
An example comparison of the extended sequential algorithm, orders A through 
F, with G which is the order obtained by minimizing f3 ({e,}) for each possible 
additional terminal vertex. Note: three topologies have lower f3's including A, 
the one resulting in the more biological topology. The order numbers refer 
to the cytochrome c listed in Table 1 plus the one for the silkworm (19). The 

dissimilarity matrix D, used is given in 3(b) 

Order of 
addition 

fs ( 6 1 1 )  
(objective function) 

(a) 
A 3- 9- 1-11-15-16-17-18-19 
B 18-17-16-19- 9- 3- 1-11-15 
C 18-17-16-15-11- 3- 9- 1-19 
D 1- 3- 9-15-11-19-16-17-18 
E 19-18-17-16-15-11- 1- 9- 3 
F 19- 9-18-15-11- 3- 1-16-17 
G 1- 3- 9-15-19-16-11-17-18 

2.459 
2.459 
2.547 
2.603 
3 -002 
3 eo49 
2-603 

3 0  
9 9 0  
1 15 11 0 

11 15 13 19 0 
15 20 18 24 18 0 
16 28 26 32 26 30 0 
17 27 25 31 25 29 26 0 
18 27 25 31 25 29 26 21 0 
19 36 34 40 34 38 44 43 43 0 

(b) 

3 9 1 11 15 16 17 18 19 

(Dayhoff, 1971) that the n x n dissimilarity matrix contains considerably 
less information than the original sequences. This has led some 
investigators to prefer an ancestral sequence reconstruction approach. 
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