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Abstract . 
A class of multidimensional greatest common divisor algorithms is studied. Their 

connection with the Jacobi algorithm is established and used to obtain theoretical 
properties such as the existence of digit frequencies. A technique of D. H. Lehmer's for 
Euclid's algorithm is generalized for efficient computation of the multidimensional 
algorithms. For triples of integers, two algorithms of interest are studied empirically. 

1. Introduction. 

The efficient computation of greatest common divisors (gcds) has recently 
received attention, notably by Knuth [SI. One of the reasons for the interest in 
this subject is rational arithmetic where the integers tend to be large. The study of 
greatest common divisors and their efficient computation involves number theory, 
probability theory, and computer algorithms. This paper considers an algorithm 
stated by Knuth [S, p. 3001 to compute the greatest common divisor of n integers. 
The connection of this algorithm with n-dimensional continued fractions will be 
utilized. 

First, consider Euclid's algorithm for finding greatest common divisors. Given a 
pair of integers (ml, mz) where rn, <m,, the algorithm can be represented by 

(1.1) Q(mi,mz) = (mzmodmi,mi) 

Of course, 

gcd (mi,mz) = gcdQ(mi,mz) 

so that the algorithm terminates when the first coordinate is 0. The second 
coordinate is then equal to gcd (inl, m2). 

It will be useful to review the connection between Euclid's algorithm and 
continued fractions. Let 
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associate each pair ( m , ,  m,), O s m ,  <m, ,  with a point in [0, 1). Then 

where 

It is well known that Tis  the shift on the partial denominators of the continued 
fraction expansion of x E [0, 1). Thus, if x = [a,,  a,,. . .], then T ( x ) =  [a,, a3,.  . .]. It 
is important to notice that the integer [mz/ml] in (1.1) for the first step of Euclid’s 
algorithm is the first digit in the continued fraction expansion of m,/rn,. Of course, 
this is true for the following digits as well. 

In 1938, D. H. Lehmer [6] introduced a technique which is very useful for the 
efficient computation of gcd (m, ,  m,). Suppose m,,  m, are multiprecision integers 
and mi,  m;‘, mi ,  m;’ are single precision integers such that 

Then, 

If 

E] = E] = a, then [z] = a 

and 

or 

and the procedure can be repeated, doing arithmetic only with the single precision 
integers, until the a’s disagree. Then a single multiprecision catch-up step can be 
performed. See Knuth [S, p. 3051. 

Next, Euclid’s algorithm is generalized to an n + l  tuple of integers m 
= (m, ,m, , .  . . , m , + , )  with nz l .  Suppose m i < m n + ,  for 1 S i < n +  1. Then define 

Q(m) = (m,  mod m,,  m3 mod m,,  . . . , m,+ , mod m,,  m , )  
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Again, 
gcd (m)  = gcdQ(m) . 

Each m is associated with a point in [0,1)” by 

Now 

where 
T ( x  I,..., x,) = ($-E] ,..., 2-[$]9K-[;]). 1 

The new transformation T is the shift on the partial denominators of the n- 
dimensional continued fraction of Jacobi and Perron [7]. Much is known about 
these continued fractions, including their convergence. The books by Leon 
Bernstein [l] and Fritz Schweiger [7] contain full accounts of the modern theory. 
However, not much attention seems to have been given to the problem of greatest 
common divisors and their connection with n-dimensional continued fractions. 

For the purposes of computing greatest common divisors, however, Q is not the 
most efficient n-dimensional algorithm. Let the function 0 be a permutation 
defined on a vector by making the smallest component the first component of the 
new vector and leaving all other orders unchanged. Then define 

(1.3) P(m)  = 0 ( Q ( m ) )  

and 

S(x) = O ( T ( x ) ) .  

The transformation P allows the next step of the algorithm to divide by the 
smallest component of Q(m), thereby reducing the largest component of Q(P(rn)) 
as compared to Q(Q(m)).  

In this paper the pairs of transformations (Q, 7‘) and (P, S)  will be studied. A 
theoretical basis will be stated for the algorithms, some problems associated with 
the computer algorithms will be solved, and some numerical studies will be 
presented. One result of special interest is the generalization of Lehmer’s method 
to the n-dimensional situation. Lehmer’s method has been generalized to the 
Gaussian integers [4] but this may be the first multidimensional generalization. 

2. Properties of the Algorithms 
A great deal is known about the shift, T, for the n-dimensional continued 

fraction. The emphasis here will be on the metric theory [lo]. The shift, T, is 
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ergodic and there exists a measure p T - l  (n-dimensional Lebesgue measure) such 
that T is measure preserving with respect to pT. Then, by the ergodic theorem 
[lo19 

for almost all x E (0,l)” where a = (a,,.  . . , a,) and B(a)  = {x E (0,l)” : a = ([x,/x,], 
. . ., [x,,/xl],[l/x,])}. Therefore (2.1) states that the long run average number of 
times, when a is obtained by iterations of T, is pT(B(a) )  for almost all x. 

Recently, the metric theory of the transformation S was obtained by the author 
[lo]. The continued fraction associated with S was shown to converge and the 
ergodic theory established. Consequently, 

for almost all x E (0,l)” where ps - l is the invariant measure for S. It is interest- 
ing to note that for T the set of possible a satisfies 

for all i 0 S a, 4 a, 

1 6 a, 

while for S they satisfy 

1 6 a, 6 a, for all i . 
Of course the transformations Q and P defined in (1.2) and (1.3) imply that our 
interest is exactly in T and S defined on rationals, and the rationals are a set of 
Lebesgue measure zero. However, other work by the author [9] has considered 
this problem. Let A,={O/m, l/m,. . ., ( m -  l)/m}, and Ck(a)={x E (0,l)” : ak+l(x) 
= a } .  Then 

where p is pT or pS.* This statement shows that rationals, on the average, have the 
same long run digit frequencies that almost all x have. 

Thus, if approximate values of p(B(a))  are obtained,.an estimate of the normal 
size of a, in a =  (al , .  . .,a,) can be made. If the a, are very likely to fit in single 
precision words, the efficient computation can proceed without difficulty. For 
Euclid’s algorithm, a, will be less than lo00 about 99.856 percent of the time [S ,  p. 
3051. Estimates of digit frequencies for n=2 will be made in section 3. 

* The symbol X denotes “the, number of‘. 
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Next, the problem of generalizing Lehmer’s method to n dimensions is 
considered. The solution was begun in a paper [2] on ergodic computation with 
Jacobi’s algorithm for n=2.  Also, the proof given there is incomplete. Define 

Clearly 

(2.4) 
! 

Y(Xl,. . . , x,) = (?,. . .,3,l) 
x1 x1 

T ( x )  = Y ( x ) - a ( x )  

where, as above, a ( x ) =  ([x2/xl],. . . , [ x J x l ] ,  [l/xl]). The relation (2.4) will be 
used to generalize Lehmer’s method. First, a crucial lemma is proved. 
R. W. Johnson made the observation that Y maps hyperplanes into hyperplanes 
is not sufficient to establish Lehmer’s method. 

LEMMA 2.1. The transformation Y takes any simplex in (0,l)” into a simplex. 

PROOF. Let ao+alxl  + a 2 x 2 + .  . . +a,xn=O be a hyperplane and x1 +O. Then 
a o ( l / x l ) + a l  + a 2 ( x 2 / x 1 ) + .  . . +a,(xJxl)=O which is a hyperplane in the image of 
Y. It is easy to check that Y is a continuous one-to-one mapping. Since a line can 
be obtained as an intersection of n -  1 hyperplanes, Y maps lines into lines. 

Suppose x and y belong to the simplex. Let L(a, /I) denote the line segment from 
a to /I. Now, Y ( x )  and Y ( y )  belong to Y ( L ( x , y ) ) ,  and Y ( L ( x ,  y)) lies on a line. 
Since L ( x , y )  is connected, Y ( L ( x , y ) )  is connected and it follows that 

W ( X ) ,  ‘y(Y))  = W 4 X , Y ) )  * 

But, if equality did not hold in the above set relation, the one-to-one property of 
Y would be violated. Therefore, Y maps line segments into line segments. 

Any point in the simplex (in the domain) can be written as x = C a i x i .  By 
rewriting this relation as 

+.. .  , Q l X l  +a2x2 
a1 +a2 

x = (a l  +a2) 

it can be seen that 

~ U ( X )  = BiY(x i )  

where OsBi and 1.  This completes the proof of the lemma. 
Next Lehmer’s method is generalized to the Jacobi algorithm. 

THEOREM 2.1. Let y l , .  . . , Y , + ~  belong to (0,l)” and let x belong to their closed 
convex hull. Assume a ( y 1 ) = a ( y 2 ) = .  . . =a(yn+l). Then a ( x ) = a ( y , )  and T ( x )  
belongs to the closed conuex hull of T(yl), . . . , T ( y , +  l). 

PROOF. Lemma 2.1 states that Y maps any simplex in (0,l)” into a simplex. 
Thus Y ( x )  belongs to the closed convex hull of Y ( y l ) , .  . ., Y ( Y , , + ~ ) .  But if the 
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integer parts of the coordinates of each Y(yi) are identical, then a(x)=u(yi) and 
Y(x)--a(x)=T(x) must belong to the closed convex hull of T(y , )=Y(y , )  

The situation for the transformation S is slightly more complicated. Recall that 
- 4 Y 1 L .  . - 7  T(Yn+l)= ~ ( Y ~ + 1 ) - - 4 Y ~ + l ) .  

S(x) = O(T(x)).  

Let a(x) denote the permutation performed by 0. 

THEOREM 2.2. Let yl;y2,.  . . , Y , , + ~  belong to { t :  O < t l = < t i = < l  for l S i = < n }  and let 
x belong to their closed convex hull. Assume a(yl)=a(y2)=a(y,,+,) .  Then a(x) 
=a(yi). Zfalso a ( y l ) = o ( y , ) = .  . . = ~ ( y , , + ~ ) ,  then a(x)=o(yi)  and S(x) belongs to 
the closed convex hull of S(y,), . . . , S(y,,+ J. 

PROOF. That a(yl )=  . . . = ~ ( y , , + ~ )  implies a(x)=a(y,) follows from Theorem 
2.1. Since convexity and interior points are preserved under permutation, a(yl )  
= . . . =a(y , ,+J  implies that o(x)=a(y,). Finally, it is clear that S(x) belongs to the 
permuted set. 

From Theorems 2.1 and 2.2, it is clear that it is necessary to find yl , .  . . , Y , , + ~  
such that x belongs to the closed convex hull. Also, this must be done by some 
algorithm which can be programmed. This task is begun in the following theorem. 

THEOREM 2.3. Let x belong to (0 , l )” .  Choose z in the same set so that zi < x i  for 
1 6 i 5 n and define (ci > 0) yi = (z l , .  . . , zi - 1, zi + ci, zi + l,. . , , z,,) for 1 S i 5 n and 
y,+ ,  =z. Then x belongs to the closed convex hull of y1,y2 , .  . . , Y , , + ~  if and 
only if 

PROOF. Now x belongs to the closed convex hull of y l , .  . . , Y , , + ~  if and only if 
n+ 1 

x = aiyi 
i = l  

where ai>=O and Cl2: ai=  1 .  
But 

N + l  

aiyi = z +  (alel . .  . .,a,,&,,) 
i = l  

and this implies 

(xl -z1,. . .,X,-Z,,) = (U1E1,. . .,an&,,) 
which holds if and only if 

x i  - ai 
Ei 

, l s i s n .  ai = - 
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Then 

For the converse, let ai = xi - zJq, 1 5 i 5 n, and a,, + = 1 - Cy= a, 2 0. 
It must be pointed out that this does not yet solve the problem for 

computational purposes. The criteria of whether or not x belongs to the closed 
convex hull defined by z and e = (q,. . . ,E , , )  is stated in terms of x. The purpose of 
Lehmer's method is to deal with single precision y i  and avoid the multiprecision X. 

The problem, of course, is to deal with the coordinates of x when the 
coordinates are ratios of multiprecision integers. Let 0 < c 5 d be multiprecision 
integers and, if d has fl places base 10, let 

I '  

e = [c/lOS-"], f = [d/lO@-"] . 

Thus e and f a re  the leading digits of c and d. For a lower bound on x i  = c/d use 
zi = e/(f+ 1). Then to compute a bound on xi - z,, consider 

c e e + l  e e + f + l  o < - - - <  ---= ~ 

d f + l  f f+l f(f+1) 
1 +elf+ l/f 2 +  l/f 2 +  lo-" - - <- 

f + l  - - f+ l  f + l  
It is convenient to consider ci of the form ci = y/f+ 1. It is sufficient, by Theorem 
2.3, to have xi - ZJE, 5 l/n so consider 

n(2 + 10-a) I&.=- Y 
f + l  - ' f + l  ' 

Therefore, y22n+nl0 -"  is a sufficient number of places. Since y should be an 
integer, use y=2n+[nlO-"]+l. 

For the numerical work reported on in section 3, n = 2 and w = 9 is often used. 
Then y24+2*10- ' ,  so that for complete certainty y = 5  should be used for 
finding y,, y,. However, the earlier approximations are usually conservative and 
y = 4 can be used. To clarify these concepts, a simple example is given. Let w = 4 
and 

m = (2718281828, 3141592654, l O O 0 ~ 0 0 )  

(X = (.2718281828,.3141592654)) . 
The point corresponding to L is 

(2718, 3141, 1OO01) 
I .  

and the points corresponding to y, and y, (y = 5 )  are 

(2723, 3141, 1OOO1) 
I and 

(2718, 3146, SOOOl) 

BIT 17 - 31 
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Some additional results for the generalization of Lehmer's method are 
necessary. Above, a practical technique of generating a simplex containing x was 
presented. If the sequence of transformations and digits are denoted by 

' m = m O  

m2 = Q2(m), a2 = (a;,&. . . ,a, , )  2 

mk = Qk(m), ak = (ai,a:,. . . , a i ) ,  

then Lehmer's method can assure that, say, all k of these digits d,. . . , a k  are 
correct. However, for the process to continue to step k +  1, the vector Qk(m)  is 
required. 

To obtain Qk(m) from a',. . . ,ak  and m, notice that 

my = (1,0,. . .,O).mo = c y . m o ,  

= (O,O,. . . , l ) * m o  = c j l+ l*mO.  

Next assume cf- l,  . . . , cb;', are vectors of integers of length n + 1 such that 
mi- l  = c i -  1 .  ,O 

1 1 

. . .  
= ck;', .mO . 

Then, by the definition of Qi, 
= , i-l-,imi-l 

2 1 1  

. . .  
m L  = mi-l + - .;mi,- 

mb+l = mi-1 1 

and, by substitution, 
= (c\-l-aici-l 

)amo 

= (cf;', - &f- 1 )  m0 

= c i - l . n t O  
1 

Therefore c: can be defined in terms of ci-',. . . , c " + ~ ,  i - 1  and ai so that no 
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0.57 

0.50 

1.00 

1.30 

1.13 

0.83 

1.07 

0.90 

1.20 

1.37 

multiprecision arithmetic need be done until the sequence of correct ai terminates. 
The argument can be repeated for the algorithm P and is omitted here. An earlier 
related result can be found in Blankenship [3]. 

This completes the discussion of the algorithms. Next, numerical results in the 
case n = 2 will be presented. 

0.73 

0.67 

0.93 

0.77 

1.17 

0.63 

0.93 

0.77 

1.10 

1.37 

3. Empirical Results. 
In this section, the algorithms corresponding to P and Q will be studied 

empirically for n = 2. The algorithm for P will be denoted as the Jacobi algorithm 
without order while that for Q will be denoted as the Jacobi algorithm with order. 
The large integer arithmetic was carried out on the Maniac 11. 

First, we consider the digit frequencies and invariant measures for P and Q. 
Table 1 gives the approximation to the density of the invariant measure 
corresponding to T(Q) that was found in [2]. Similarly, the approximate density 
for S ( P )  was found and is given in Table 2. Both of these results and the 
succeeding empirical results were obtained by iteration of the algorithms on the 
vector m = (MI, mZ, m3) where 

0.80 

1.03 

0.53 

0.67 

0.83 

0.77 

1.00 

0.90 

1.47 

1.33 

Table 1. Approximation of the density of the invariant measure for the Jacobi 
algorithm without order. t 

0.90 0.93 

0.63 0.40 

0.50 0.53 

0.90 0.60 

0.57 0.87 

1.00 0.67 

1.10 0.97 

0.67 0.77 

1.23 1.03 

1.13 1.00 

x2 I 
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0.63 
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- 
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0.63 
- 

0.57 

0.67 

0.90 

0.83 
- 

1.13 
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200 

m1 = c 
m2 = c 

i =  1 

200 

i = l  
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( 5 [ 2 ( 2 0 0 - i ) + 1 1 1 3  - [ 5 [ 2 ( 2 0 0 - i ) +  1113/243])243i 
9 

[ 5 2 6 ( 2 0 0  - i)/243])243i , (526'200 - i ,  - 

and 

m3 = 2'60° . 

Each mi requires 2589 decimal digits. 

If B,(x) is the set of numbers with the same first m a as x, then the entropy of S 
or T (h(S) or h(T) )  satisfies 

A(B,(x)) ,., e-mh(S) 

or 

A ( B , ( x ) )  - e - m h ( T ) ,  

Table 2. Approximation of the density of the invariant measure for the Jacobi 
algorithm with order. Numbers on the diagonal refer to the upper left triangular 

x2 

1 .o 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

t portion of the square. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
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for almost all x. It was found in [Z] that 

h(T)  z 3.5. 

Similarly, h(S) was approximated by 

h(S) z 4.9 . 

This is the first indication of the more rapid convergence of S. The area of B,(x)  
behaves like e-3 .5m for T while it behaves like e-4.9m for S. 

Next, digit frequencies are considered. Since a = (al, a2) with O<al sa2 ,  the 
“size” of (I is considered to be equivalent to a2. Of course, the larger a2 cause the 
algorithm to converge faster, but frequent occurrences of multiprecision a, would 
cause difficulties. In Table 3, this last possibility is seen not to occur. Again, the 
transformation S will tend to have larger digits than T and, thus, converge faster. 

r 

Table 3. Digit frequencies for the first 1000 a for both Jacobi algorithms. 

Size 
of a, 1 2 3 4 5 6 7 8 9  

.433 .164 .095 .064 .039 .029 .025 .018 .004 
Frequency 
for T 

Frequency 
for S .221 .173 .130 .070 .052 .057 .037 .031 .025 

Size 
of a, 1&99 100-999 1 m 9 9 9 9  104-cc 

.115 .014 .Ooo .Ooo 
Frequency 
for T 

Frequency 
for S .175 .023 .005 .001 

Next, the two algorithms and some of their Lehmer modifications are 
compared. On the Maniac 11, running times are easily available in seconds. It 
should be mentioned that 

~ 5 0 6 0 ( ~ )  = ~ 3 5 3 1  (m) = (0, 0,64) . 

I *  

Therefore, 

gcd (m) = 64 . 



476 M. S. WATERMAN 

The 5060 iterations of P took 420 seconds while the 3631 iterations of Q took 370 
seconds. 

For the Lehmer algorithms, after each stage at which multiprecision arithmetic 
was done, the procedure was to include L more decimal places than had been 
previously used. This made it unnecessary to locate the largest place in the 
transformed nt. The procedure was found to stabilize at a certain number of digits 
for the triangle approximation. This number of digits tended to be about 2L. With 
L=9,  5000 P iterations took 169 seconds and 3600 Q iterations took 153 seconds. 

Table 4 gives running times for Q, the Jacobi algorithm without order, without 
the Lehmer algorithm and with L = 9  and L=30. Table 5 gives similar 
information for P. 

Table 4. Running times for the Jacobi algorithm without order. 

Number of Digits Time Time for Q, Time for Q, 
Iterations Remaining for Q L=9 L=30 

0 2589 0 0 0 

500 2330 77 24 20 

1000 2088 146 45 38 

2000 1679 262 84 75 

3000 1060 346 119 108 

Table 5 .  Running times for the Jacobi algorithm with order. 

Number of Digits Time Time for P, Time for P, 
Iterations Remaining for P L=9 L=30 

0 2589 0 0 0 

500 2241 93 29 25 

1000 1884 172 57 49 

2000 1166 292 103 92 

3000 459 357 136 130 

It is an interesting question to determine how many single precision steps are 
performed during each Lehmer cycle. In each of the following cases, 500 iterations 
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were performed. For the Jacobi algorithm without order (Q) and L = 9, the mean 
number of steps per cycle, 5, was 16.7 with a standard deviation, s, of 4.21. For L 
=30, X =  50 and s =  14.88. For the Jacobi algorithm with order (P) and L=9,  2 
= 12.5 and s = 3.26 while, for L = 30, 2 = 38.46 and s = 10.11. Clearly, the ordering 
operation causes P to have fewer single precision steps per Lehmer cycle. 

\ 

I i .  
Another study that can be performed is a search for the optional value of L for 

m. For Q, the Jacobi algorithm without order, lo00 iterations were performed I 

and timed for L = 5(1)50. The time for L = 5 was 58 seconds and the time for L = 9 
was 45 seconds. The minimum time for 38 seconds was at L = 30. At L = 50, the 
time was 51 seconds. 

I 

4. Conclusion. 
Generally, the results of section 3 indicate that, for n = 2, the Jacobi algorithm 

with order is superior to the Jacobi algorithm without order. However, the usual 
algorithm to compute the gcd of three integers uses Euclid’s algorithm to proceed 
in a pairwise fashion: 

gcd b 1 9  m21 m3) = gcd (1111, gcd (m2, m3)) . 
We conjecture that, on conventional machines, the pairwise algorithm is faster 
than any Jacobi algorithm. Unfortunately, no such study, theoretical or empirical, 
has yet appeared. However, it is possible that on vector machines, such as the 
CRAY-1 or the CDC STAR, the Jacobi algorithm be faster than the pairwise 
algorithm. 

It is interesting that examples can be found where the Jacobi algorithm with 

observation is due to R. W. Johnson who found the example of m= (1396, 7694, 
8593). The Jacobi algorithm with order takes 6 steps to find gcd (m) = 1 while the 
Jacobi algorithm without order takes 5 steps. If it is possible to characterize when 
this unexpected occurrence takes place, then it might be possible to devise an 
algorithm which alternates between ordered and unordered steps, and which 
would converge faster than P or Q. 

Along these lines, Kronecker [8] has shown that the least remainder algorithm 
never takes more iterations than any other Euclidean algorithm. Is there a 
corresponding result for the Jacobi algorithm? 

Also, Lame’s theorem [8] gives the maximum number of divisions required to 
find the greatest common divisor using the Euclidean algorithm. The number of 
iterations does not exceed five times the number of digits in the smallest integer. 
Such a result for the Jacobi algorithm would involve some generalization of 
Fibonacci numbers which would be the worst case. 

, order takes more iterations than the Jacobi algorithm without order. This 

* 
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