
Reprinted from JOURNAL OF M A T A n C A L  ANALYSIS AND APPLICATIONS Vol. 59,No.Z June 15 1977 
All Rights Reserved by Acadermc Press, New York and London Prihtcd in E&um 

A Jacobi Algorithm and Metric Theory for 
Greatest Common Divisors* 

M. S. WATERMAN 

Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87545 

Submitted by Gian-Carlo Rota 

Greatest common divisor algorithms are used to provide a natural motivation 
for considering a class of Jacobi-Perron algorithms which includes the original 
Jacobi algorithm. This work proves convergence and establishes metric proper- 
ties for one of these algorithms. The proofs generalize to the larger class of 
algorithms. Full connections with the calculation of greatest common divisors 
will be treated elsewhere. 

1. INTRODUCTION 

In 1868 in a posthumous paper, Jacobi [3] generalized continued fractions to 
two dimensions. One of Jacobi’s motivations was to characterize real algebraic 
irrationalities of degree higher than two, a problem that is still unsolved in the 
framework of Jacobi’s algorithm. Of course Minkowski, proceeding along 
different lines, solved the characterization problem in 1899 [l, p. 71. 

Perron [6] in 1907 extended Jacobi’s algorithm to n-dimensions (n 2 1) 
and proved many important results including convergence. It is useful for 
this discussion to present a version of the Jacobi-Perron algorithm. Let 
x E {(tl , t, ,..., tn): 0 < ti < 1 for i = 1,2 ,..., n}. Then define, for x, # 0, 

and 

av(x) = al(TU-l(x)) = (a;, a,”, ..., an”). 

* This work was partially supported by the National Science Foundation under Grant 
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Next define 

and 
Q, = AOAl ... AV-1 - - (4*)’ 

where i a n d j  belong to (0, I ,  ...) n}. These matrices imply 

v+ l  - 
Wjn - w;o + ul’w;l + . * -  + u,‘wk . 

The convergence result of Perron states 

lim(w’&in) = xi . 
v-m 

Much of the modern work on the Jacobi-Perron algorithm can be found in 
the books of Bernstein [l], who considers periodicity and algebraic number 
fields, and Schweiger [7]) who considers metric theory. Bernstein’s work contains 
many generalized Jacobi-Perron algorithms. 

The Jacobi algorithm (actually a class of algorithms) presented in this paper 
is not motivated by periodicity or algebraic fields but by greatest common 
divisors (g.c.d.’s). It is clear by an examinaton of two of Jacobi’s papers [2,3] that 
he was aware of the connection between his algorithm and greatest common 
divisors and in fact the Jacobi-Perron algorithm can be naturally motivated by 
making this connection clear. 

To begin, consider Euclid’s algorithm for greatest common divisors. Given a 
pair of integers (m, I ) ,  with m < 1, the algorithm is to perform 

Q(m) 1)  = (1 mod m, m) 

until 1 mod m = 0. Since 

g.c.d.(m, 1) = g.c.d.Q(m, 1)) 

the final value of the second coordinate is the greatest common divisors of m 
and 1. The connection between Euclid’s algorithm and continued fractions is well 
known and can be stated in the following fashion. Let the relation 



290 M. S. WATERMAN 

associate each pair of integers 0 < m < I with a point in [0, 1). Then 

Q(m, 2 )  = ( I  - [M m, m) N (W - [+4 = T(m/l) ,  

T(x) = ( l / 4  - [1/4 
where 

is the shift on the digits of a continued fraction. That is, if x = [a, , u2 ,...I, then 
T(x) = [a,, ,...I. 

To generalize this consideration, let an n + 1 tuple of integers be given 
m = (m, , m, ,..., m,,,) where mi < m,+, for all i. Then define 

Q(m) = (m, mod m, ,..., m,,, mod m, , q). 

Of course the greatest common divisor of m is equal to the greatest common 
divisor of Q(m). Now define 

which associates each m with a point in ([0, 1))n. Also 

where Tis the transformation associated with the Jacobi-Perron algorithm above. 
If Q is examined from the point of view of computing greatest common 

divisors, however, it is clear that m, should be the smallest of all the m i .  In 
fact Knuth [4, p. 3001 states this algorithm in his book “Seminumerical Algo- 
rithms.” In this way the algorithm should converge faster. Therefore let m 
be a vector such that 0 < m, < m, < < m,+, . The relation N associates m 
with avector inI* = {(t ,  ,..., tJ: 0 < tl < t ,  < < tm < l}. If O(s, ,..., s,) = 
(st, , sip ,..., si,) E I*, then it is natural to define, for t E I*, 

S(t) = O( T(t)). 

The object of this paper is to state explicitly the Jacobi algorithm associated 
with the transformation S and to prove convergence and metric properties of the 
algorithm. The work closely follows Schweiger’s treatment [7] of the Jacobi- 
Perron algorithm and previous work on multidimensional F-expansions [9]. 
It turns out that any permutation will also define a Jacobi algorithm as well as 0 
and this point will be returned to in the last section. It should be noted that Paley 
and Ursell [a consider a similar class of continued fractions which they treat 
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in a quite different fashion. The explicit motivation of greatest common divisors 
does not appear there and the result of this paper that seems to have an analog in 
[q is Lemma 3.l(b). 

2. DEFINITION AND CONVERGENCE OF THE ALGORITHM 

In this section the Jacobi algorithm associated with S is defined and con- 
vergence of the algorithm is shown. Let I* = {x E (0, 1 y: 0 < x, < x, < ..- < 
x, < 1). For x GI* define 

a(x) = ([?I ,.-, [%I [‘I) 1 

and 

If t E (0, ly, let O(t) = (til , tf, ,..., ti,) €I*. Then, S is defined by 

S(x) = O( T(x)). 

Next let u(x) be a permutation such that 

u(x) S(x) = T(x).  

That is, we require sal = t ,  ,..., sun = t ,  . Finally, define & to be the identity 
permutation and 

al(x) = a(x), d(X)  = u(x), 
a*(x) = a(S*-l(x)), d(x) = u(Sf-l(x)) for i > 1. 

Let N = {x E I*: (Sn(x)h = 0 for some k >, O}. The set N is contained in the 
intersection of I* with a countable union of hyperplanes, and consequently N 
has n-dimensional Lebesgue measure equal to 0. This assertion about N can be 
shown as in [7, Lemma 1.11. Consequently the set of interest will be 

I = I *  - N .  



292 M. S. WATERMAN 

The first observation is that, for Y 1, 

Next, martices analogous to those of Perron are defined. This step is the key 
to the results for the algorithm. Let 

..................... 
0 0 ... 1 0 

0 0 * * .  0 1 

..................... 
0 0 *.. 1 a," 

These matrices are exactly those defined by Perron and correspond to a(x). 
Next the matrices for u(x) are defined. Let E be the (n + 1) x (n + 1) identity 
matrix. Define 

Z-l = Z, = E, 
and 

Zv = (aij), i, j = 0, 1 ,..., n, 

ai5 = 1, if j = u:+~ - 1, 
where, for i < n, 

= 0 otherwise; 
and 

an5 = 1, if j = n, 
= 0 otherwise. 

Finally, define 

Q~ = (A:)), i, j = 0, 1 ,... , n, 
by 

Qo = E 
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and 

Now Zv-,Av is a row permutation of the matrix Av with the nth row left 
unchanged. The ith row (i < n) of Z v J v  is zero except for a 1 in the j = 0:;: - 2 
column and u:;;-~ in the nth column. Therefore 

! A$) = A!?, where 1 = uj+, - 2, 

I AjY:!\ = A!Yn , 

v-1 

, and 
n-1 

A%’ = u,YA!Yn + a;~;-~Ai? .  
j=O 

Notice the relationship between the multiplication of matrices in the definition 
of SZ, and Eq. (2.2). Matrices corresponding to the permutations have been 
inserted between the A,. 

The next theorem represents the components of x and will be used to show 
convergence. 

THEOREM 2.1. If 1 < i < n, 0 < v, and P(x)  = y, then 

Proof. Let v = 0 and 00 be the identity permutation. Then y = So(x) = x 
and, for 1 < i < n, 

Next let v 2 1, P-l(x) = y, P(x) = S(y) = z and assume 
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Since S( y) = z, 
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rnlr1 = 4 - 1  + %:-1 9 

1/33 = an” + 2,”” - 

Y1 = (4-1  + %,-,)/(4 + %”+ 

If a,,” = 1 and z,,,” = 0, then 

Therefore, for 1 < i < n, 

The last step follows from the remarks about A:::’) preceding 
The theorem follows by taking ratios of this last equation. 

the theorem. 

The following corollary follows immediately from Theorem 2.1. 

COROLLARY 2.1. If x = F(a1 + u’F(a2 + e-. + o.-lF(aV) -*), t h ,  for 
1 < i < n ,  

- &+1’ 
d -  r.n /A%) 

To prove convergence of the algorithm, a definition of a cylinder of order v 
is required. Let 

and 
bi(x) = (d-l(x), a*(x)), 

B,(bl, ..., b”) = {x: b’(x) = b‘, 1 \< i < v}. 

Sometimes B”(b1, ..., bY) will be abbreviated to B, . Next let 

B,(x) = {y: bf(y) = b*(X), 1 < i < v}, 
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and define 
( (v)  = sup diam B,(x). 

Clearly t ( v  + 1) < ( ( v )  < 1. The algorithm will converge if lim,,+m [ (v)  = 0. 
The next theorem, following a result of Fischer [7, p. 471, shows the convergence 
is geometric. 

I E I  

THEOREM 2.2. For v < 1, E(.) = 0(6)”, where 

e = (1 - (n + i ) - n y .  

Proof. Since A::JAtL E B(bl, ..., bY), it is sufficient to show 

By the definition of Al:;t”, for some permutation T, 

n 
A%)/&) = c , + ( ~ I y : , - j ) / ~ $ - j ) )  

j-0 

where 

An = anAk’/A%) and h 5 - - a” n,Ao.n (”+n-’)/Ak). 

It is easy to see that hj >/ 0, xy-l A, = 1, and, since 1 < adu < anu (see Lemma 
3.1(c)), An 2 l/(n + 1). It  is easy to show by induction that 

n = c  
$4 

where g >, 1, hj‘) >, 0, A:) >/ (n + l)-Q, and AP) = 1. Then 

Next, for 1 <g < h < a ,  

Adding and subtracting x inside the leftmost member of the above inequality 
and using a form of the triangle inequality shqw that 
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3. METRIC THEORY 

The theorems of this section will follow from the theory presented in [7] or 
[9] as soon as some preliminary results are established. Let m be Lebesgue 
measure on (0, lp. Then m normalized on I will be defined by 

h(A) = n!m(A). 

Part (c) of the next lemma was used in the proof of Theorem 2.2. 

LEMMA 3.1. For some t E I ,  let B ,  = Bv(t)  for v 2 1. Then 

(a) 
(b) det 52, = f l ,  
(c) 1 Q a,’ Q a: < - * *  < and for i 2 1, 
(d) A:’’) \< A:’’) for 1 < j  Q n. 

Proof. (a) If B,  = BV(bl,..,, b”), then F(al + olF(..* + F(aV + t) e..)) is 

(b) det SZ, = det(52V-1) det(ZVWl) det(A,) = det(Q,-,) (f 1) (- lp. 
(c) Since Sd--l(x) = y satisfies 0 < y1 < < yn < 1 for i 2 1, then 

< l/yl and the result follows. 

(d) Since 52, = do and 0 < 1, A$ \< Ah:; and the result holds for v = 0. 

S’(B,) = I  so that h(SVBV) = 1, 

defined for all t E I .  

1 < y2/yl < ys/yl < 

Assume that (d) holds for v \< m. If j’ < n, then 

v-1 At:” = A$, where I = u * + ~  - 2, 
and 

AkJ1  = AOen (U) . 
But 

and (d) follows by induction. 
Next, following [9] for t E Z let 

Then, if B, = B(bl ,..., b”), 

The next theorem follows [7, Lemma 2.41 and is a key result in establishing 
the metric theory. 
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THEOREM 3.1. For v 2 1 let B, = B(bl, .... bY) and f, = nIZl OfbC. Then the 
absolute value of the Jacobian off,, , J,, , satisjies 

Proof. Note that, if x = n:=l ofbi(y), then Syx = y. Therefore Theorem 2.1 
implies 

5-0 

Thus, for 1 \< i, j < n, 

ax. 
det (s) = f det (s) 

The determinant on the right-hand side of the last equation is equal to 

0 Aibil) - A(&'+') A1.n-1 b+l) - X1AO.n-i ( V + l )  det ( 1 0.0 .......................................................... 

1 A k )  ... 
.............................. 

= (xl A k )  ... A1.n-1 ( U + l ) )  

The last equality follows by Theorem 2.1 and the proof is easily completed. 
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The next corollary establishes condition (C) for S. 

COROLLARY 3.1. I f  B, = B,(bl, ..., bY), then, for t E I ,  

Proof. By Theorem 3.1, 

SUP I J”(t>l < 
and 

> (~fi))-~-’ (1 + n)-n-l. 

The last inequality follows from Lemma 3.l(d). 

theory of S. 
The next theorem follows from [9] or as in [7] and establishes the ergodic 

THEOREM 3.2. There exisls a probability measure p on I such that p - A ,  
S is a measure-preserving transformation for p, and S is ergodic under p or A. This 
implies that the ergodic theorem holds and, for anyg which i s l e b e s p  integrable on I ,  

for a.a. x. 

The ergodic theorem implies that digit frequencies exist for almost all x E I. 
Therefore not only does a = (2,3) have a limiting frequency (for n = 2) but 
a = (2, 1)  also does. 

Next, some conclusions related to Rohlin’s formula are stated. See [9, Sec. 51 
for a discussion of these concepts and for general proofs. 

THEOREM 3.3. The transformation S is an exact endomorphism and is mixing 
of all degrees. Moreover, for a.a. x, 

+ lim Y-1 log A(B,(x)) = + lim v-l log pB,(x) 
V+W v - m  

The entropy of S, h(S),  is  the negative of the last quantity above. 
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In exactly the same manner as that of Schweiger [7, Lemma 7.101, the entropy 
can be related to A& . 

COROLLARY 3.2. lh~ , ,+~((n  + l)/v) A:' = h(S).  

Nest Kuzmin's theorem is given, which states the rate of convergence of a 
sequence of functions to the (unknown) density of p. For a proof see [8]. 

THEOREM 3.4. Let Yo satisfy 0 < m < Yo < M and I Yo(x)  - Yo(y) l  < 
K I x - y I for X, Y E I .  Then define fw Y >, 0, 

y ~ + ~ ( x >  = yv ( fb (x ) )  I J.*(x)l - 
(o,a)-b 

I t  then follows that 

I 
I Y"(4 - A 2 (41 < B W ,  

where A = sYo dh and B are constants independent of x. 

Results on the mixing of S follow from Theorem 3.4. 

4. CONCLUSION 

It is clear from the proofs of Theorems 2.1 and 2.2 that attention need not be 
restricted to the specific order permutation considered here. In  fact the entire 

observation joined with the generalized Jacobi-Perron algorithms of Bernstein 
[l] makes a very general class of Jacobi algorithms. We hope to study these 
algorithms in later work. 

Since the motivation for this paper was greatest common divisors, it is also 
of interest to consider the set I = {x: .IC, \< xi for 1 < i < n}. That is, the appro- 
priate permutation would be to make the smallest xi the first component, leaving 
all other orders unchanged. The observation from computing suggests that this 
operation is faster than an ordering of all n components and should be used. The 
metric theory for this transformation is essentially harder but it is possible. The 
normalized Lebesgue measure is A(A) = nm(A), C = (n + l)n+l, and 
L = I/(n - I)!  (See [8] for a discussion of these terms.) 

1 Section 2 holds with any sequence of permutations chosen in any fashion. This 
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The implications of this work for computing greatest common divisors with 
the transformation Q( m) will be treated elsewhere. Several associated results 
will be obtained, the relationship with expansions of rationals will be treated [lo], 
and some numerical experiments including estimates of dpldh and the entropy 
of S will be given. 
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