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Some new metria are introduced to measure the distance between biological 
sequences, such as amino acid sequences or nucleotide sequences. These 
metrics generalize a metric of Sellers, who considered only single deletions, 
mutations, and insertions. The present metria allow, for example, multiple 
deletions and insertions and single mutations. They also allow computation of the 
distance among more than two sequences. Algorithms for computing the 
values of the metrics are given which also compute best alignments. The con- 
nection with the information theory approach of Reichert, Cohen, and Wong is 
discussed. 

1. INTRODUCTION 

A protein is specified by the sequence of amino acids composing the 
protein. Since twenty kinds of amino acids are used in proteins, a 
protein is a finite word over an alphabet of twenty letters. Biology seeks 
to discover the evolutionary relations among the set of proteins. It 
postulates that proteins have evolved in time past, and this evolution 
has produced a tree (or trees) whose terminal nodes are the extant 
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proteins. I t  is a task of biology to decide what the mechanisms and 
probabilities of the various protein evolutionary processes are. It is a 
mathematical task then to produce from existing protein sequences and 
the postulated mechanisms and probabilities of evolutionary processes 
a probable tree of the extant proteins. These matters are discussed in 
the references, but there is no adequate survey. The closest reference to 

survey is Dayhoff [3]. These tree construction methods can also be 
regarded as part of the theory of clusters or of numerical taxonomy. 
See Jardine and Sibson [4]. 

One of the major techniques used in taxonomic tree construction 
depends on the introduction of a measure of dissimilarity of sequences 
(see [l, 2, or 31). Beginning with Fitch [lo], there is a growing literature 
concerned with the distance between two protein sequences [5-171. 
The work on distances or metrics on protein sequences has grown more 
sophisticated and is no longer entirely concerned with producing 
measures of dissimilarity for the construction of evolutionary trees. 
One of the main concerns is to discover what genetic mutations are 
required to change one sequence into another. Perhaps the most mathe- 
matically satisfactory treatment to date is by Sellers [6]. The present 
paper presents some new metrics on sequences and some of their 
mathematical and algorithmic properties. 

A metric p(sl , s,) is a nonnegative function on the set S x S of pairs 
(sl, s2) of finite sequences si over a fixed alphabet. I t  is to be thought 
of as a measure of the amount of evolutionary change from the sequence 
s1 to s 2 .  (1) It  is zero if and only if s1 = s, . (2) It is assumed that 
evolutionary changes are reversible1 and therefore that p(sl, s,) = 
p ( s 2 ,  sl) for all st E S.2 (3) It  is further assumed to measure the fewest 
number of evolutionary changes (weighted according to probability) 
from s1 to s, . Hence p should satisfy the triangle inequality: 

P(S1 9 

for all s1 , s 2 ,  and ss in S. 
Sequence metrics have been introduced in the past in references [l], 

[2], [6], and [7]. The metric in [2] was suggested by T. Smith. While 
it seems to yield satisfactory results, its interpretation in terms of 

G P(S1 9 s2) + P(S2 9 Sa) 

I 

By reversible is meant that evolutionary changes and their inverses are equally 

2 However, nonsymmetric p’s can be handled within the theory of this paper and are 
probable. 

discussed in Section 7. 
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evolutionary changes is not clear. The interpretation of the metric due 
to Sellers [6] in terms of evolutionary changes is more clear. This metric 
is referred to as the s-metric. In  this paper the s-metric is generalized to 
allow for more general evolutionary changes. 

2. THE T-METRIC 

Let A be a finite set such that d E A. d is called the neutral element. 
As in [6], the following definitions are made. 

nating, only finitely many of the a, are # d, and a( E A. 

nonneutral terms are identical. 

sequences equivalent to a = ala2 *... 
Every evolutionary sequence ala2 has a member such that if a, # A ,  
then ak # d for all K < n. Let S be the set of A-sequences such that 
this property holds. S includes dd . e - .  

A finite set T of weighted transformations T: 8+ S such that each 
T E T has as its domain .9( T) and range a( T) nonempty subsets of S is 
considered which satisfies the following two conditions. 

The identity transformation I is in T.  

Each T E T has an associated nonnegative number w( T) called 

(i) 

(ii) 

(iii) 

a = ala2 --. is an A-sequence if the sequence is nontermi- 

Two A-sequences are equivalent if the subsequences of 

An evolutionary sequence I = ala2 is the set of all A- 

(i) 
(ii) 

the weight of T which is zero if and only if T = I. 
Since T is finite, (ii) implies 

min w ( T )  > 0. 
TEr 
TZI 

Fix a j 2 1. Suppose ala2 is an A-sequence and ajai+, E .9(T).  
aj-, T(ajaj+, - . e )  where, if 

Suppose a finite set T of transformations satisfying (i) and (ii) is given. 

Then Tj is defined by Tj(ala2 e . . )  = a1 
j = 1, a, 

For a, b E S, define 

uj-, is omitted. If T E T, then define w( Tj)  = w( T ) .  

{a + b}, = { T t  Tt I Tt Tta = b}, 

where Ti, ET.  
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Thus {a -+ b}, is the set of all finite transformation sequences from T 

For a, b E S, define 
which map a into b. The set (a -+ b}, may be the empty set 0 .  

If {a ---f b}7 # 0, then, by the finiteness of 7, the above minima exist. 
If {a -+ b}, = 0, define 

1 

It is obvious that the relation p(a, b) < co is reflexive, symmetric, 
and transitive and therefore this relation partitions S into equivalence 
classes {Si>. In each Si the value of p between any two elements of Si 
is finite. 

THEOREM 1. Each equivalence class S, of S together with the function 
p (called a 7-metric) is a metric space. 

Proof. It is obvious that the function p is symmetric and nonnegative. 
Because of ( l ) ,  p(a, b) = 0 if and only if a = b. One has 

Suppose the first min on the right of (2) is attained by Ti;; Ti; ; i.e. 

and 

Likewise, suppose 

Then 

This completes the proof of the theorem. 
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3. THE RELATIONSHIP BETWEEN THE T-METRIC AND THE S-METRIC 

Sellers [6] has extended a metric d on A to a metric d on A-sequences 
and a metric iE on the set of evolutionary sequences by the formulae: 

m 

d(a, b) = d(ai , h), 

I 
i=l 

and 
d(ii,6) = min d(a, b). 

a C  
b ~ i 6  

The d metric is referred to as the s-metric. 
If one relates the weights of mutations and deletions to the metric d, 

then a gives the smallest total of the weights of the sets of mutations 
and deletions which make H and 6 identical. 

A set T of transformations will be defined for which 

+, 6) = p(a, b), 

where a@) is the member of S which is in the evolutionary sequence 
H(6), thus showing .that the 7-metric is at least as general as ;E. Define 
To- by 

9(TQ-)  = {UU2% . * *  I upu3 ... E S}  

TQ-(aa2U3 . * e )  = u2u3 *.* . 
and 
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and 

W ( a , d  = 4% b). 

The notion of the “path” of a site through a sequence of transforma- 
tions is now introduced for use in the proof of Theorems 2 and 3. 
Suppose 

b = T?& ... *’, T::(a) 

For an a i E a ,  let the sequence p , ,  p ,  , . . . , p ,  record the sequence of 
subscripts of the successors of a, and let c, , c, ,..., c, record the sequence 
of successors of ai under the 1 transformations Tj; .  One puts p ,  = i 
and c, = a i .  If ci = A ,  then pi  is designated by pi = -. If pi = -, 
then pk = - and ck = d for all k 2 j. For n < 1 suppose c, and p ,  are 
known. If Ti;;: is such that j,,, < p, , let c,+, = c, and 

if in+l = (a, b), 
P n + l  = Pn + 1 if in+, = a+, jp. pn - 1 if i,+, = a-. 

pnfl = p ,  and En+, = a if in+, = (Cn , a), 

P n + l  = - and c,+~ = A if in+, = c, -, 
pn+, = p n  + 1 and c,+~ = C, if in+, = a+. 

If jn+l > P a ,  then p,+1 = P ,  and Cn+l = cn - 
Let N = max{ j: bj # A ) .  Let P be the set of all p ,  associated with 

ai # d which are members of a. If j E {I, 2 ,..., N }  - P, we create a 
p and c sequence associated with b, as follows. Let p ,  = j and cl = bj . 
In an obvious way, we can trace p ,  and ck backwards. If p ,  = -, then 
pk = - and c, = d for all k < n and every such sequence hasp, = - 
and c, = d. 

This scheme gives one the “path” of a site through the sequence of 
transformations. Each a, becomes a b, or is deleted. Each bi comes from 
an ai or is inserted. 

THEOREM 2. If T and w( T )  are the above class of transformations and 
weights, then p(a, b) = a(&&). 
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Proof. Recall that 

We first show that for any a E H and b E 6, there is a TI E {a --+ blT 
and T, E {b + a}, such that: 

(a) The sum of weights C w ( T )  associated with TI is d(a, b). 
(/3) The sum of weights C w ( T )  associated with T, is d(b, a). 

(Recall that T$ may denote compositions of transformations from 7.)  

Since d(a, b) = d(b, a) and a and b are arbitrary, we need only show 
case a. 

There is an N such that ai = bi = d for i 2 N .  For the largest 
j < N such that a* # bj , define Tkj by: 

k = a, - (a deletion) if bi = A, 

k = bj + (an insertion) if bj # A and ai = A, 

and 

k = (aj , bi) (a mutation) if bj # A and a, # A. 

Then go to the next smallest j < j such that u, # b, . A finite number of 
applications of this rule yields a sequence of transformations in {a --.+ b}T . 
The corresponding sum of weights is 

m 2 w(T)  = d(Uj , bj) = d(a, , bi). 
5 P J l  i-1 

I 
This result implies I 

! 

p(a, b) < d(a, b) 

and therefore i 
p(a, b) < a(& 6). 

We next prove that for 

Tt .-. T:;a = b, 
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there are sequences a‘ E H and b’ E 6 such that 
1 

1 w ( T k )  z +’, b’), 
k=1 

which implies that 

p(a, b) 2 J(% 6)  

(3) 

and will complete the proof. 
As observed in the discusion preceeding Theorem 2, each a, either 

becomes a bj or is deleted. In  the alignment visualized by writing the a 
sequence above the b sequence, put bj under a, in the first case and d 
under ai in the second. In  case any bj are not listed, insert them in their 
proper positions in the b sequence with a d above them. The new a 
sequence is called a’ and the new b sequence is called b‘. One must show 
that (3) holds. 

The application of the transformation corresponds to changes in 
the sequence co c1 ... c l  . If cc1 = c1 = = c, , then no transformations 
were applied which affected the position corresponding to that c- 
sequence. Each transformation causes exactly one c-sequence to change. 
The triangle inequality for d ( . ,  a )  implies the sum of weights of the 
transformation associated with a sequence is at least d(c, , c l ) .  Therefore 
one has (3), which completes the proof. 

Theorem 2 shows that the 7-metric is at least as general as the s-metric. 
That the 7-metric is more general than the s-metric can be seen from 
the following example. Let A = (A ,  a>, w(T,+) = w(T,-) = 1, and 
w( Tclcl-) = w( Tact-) = 1.1 where 

and 

Then p(a, ) = 1. So an equivalent s-metric must have Z(a, d) = 
d(a, A )  = 1. But then d(aa, d) = 2 which does not agree with p(aa, d) = 
W(T(, , , - )  = 1.1. 

The weights used with the 7-metric need not be related to the s- 
metric on the alphabet A. For example, let A = {d, a, b}. Let w(T,-) = 

w( T,T)  = 3, w( Tb-) = w( Tb-) = 1, and w( T(a,b)) = w( T(*,,)) = 1. 
These w’s do not provide a metric on A if we choose d(a, d) = w( T,-), 
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d(b, d) = W(Tb-), and d(a, b) = w(T(Q,b)), since d(a, b) + d(b, A) = 2, 
but d(a, d) = 3. One can also allow w( T(Q,b)) Z w( T(bSQ)) and w( T,+) # 
w( TQ-), which is not possible with the s-metric. 

4. DELETIONS AND INSERTIONS OF MORE THAN ONE LETTER 

A motivation for considering 7-metrics is to allow a more general 
class of transformations than the s-metric. Specifically one wants to 
allow deletions and insertions of letter sequences of length greater than 1. 
This can be accomplished in the s-metric formalism by successive 
deletions. However, this may be a greater distance than one might 
want to permit. 

A major result of [6] is an efficient algorithm to compute distance. 
Below we define a 7-metric which includes longer deletions and insertions 
and give a Sellers-like algorithm for this 7-metric under certain conditions. 

Let a be a fixed positive integer. For 1 < m < a, define the domain 
of Tbl. .+,- to be those members of s whose first m letters are b, e - .  b, . Put 

Tbl...),-(bl...b,~+l...) = "' 

Define the domain of Tb, . .++ as s and 

Tb l...b,+(a1a2 "') = b1 bma1U2 "' 

Define T(a,b) as before. 
We say that {a --+ b}, satisfies condition M if there is a minimum 

sequence of transformations in {a ---+ b}, (i.e., T, ... Tk E {a ---f b}., such 
that 

w(Ti )  
t-1 

is not greater than any other 
k' 

1 
I 

for which TI' .-. Tk' E {a -+ b},) such that Tl e - .  Tk contains no multiple 
hits. That is, if an dement is deleted, inserted, or undergoes mutation, 
it is not changed again. If one considers the associated c, c1 cs el for 
each position in a and in b, then there are no multiple hits if {co , cl , ..., c l }  
has at most two distinct elements. 
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For brevity let 

AK = ala2 aB A A * * -  

and 
Bj = 6,b2 *.. bj d d . . I  

where A, = d d... and Bo = d d... . Let 

P z b ,  b) = P l ( h  a). 

The length of a E s is the number of ai # d. The following theorem 
is analogous to Theorem 2 of [6]. (Put 3 = A - d.) 

THEOREM 3. Suppose a and b in S and the length of a(b) is M ( N ) .  
Let T be the set of transformation consisting of the following types: ( 1 )  T(a,b) 
for every a,  b E 3, (2) Tbl...b,+, Tbl...b,- for all sequences b, ... b,, 
1 < m < a. Suppose {A, -+ B,), (0 < k f M ;  0 < j < N )  satisjies 
condition M. Obviously pl(Ao, Bo) = 0. Then p1(A2 , B,)(O < i < M ,  
0 < j < N ,  i + j # 0)  is the minimum of the following values: 

Pl(Ai-k 9 4 )  + w o ( - b + l . . . L ? - ) ( l  d k < min(% 0 
Pi(&l 9 B+l) + w ( T ( a i . b j ) ) ,  

fl(Ai 9 Bj-k )  + w(Tb3-t+l***b,+)(1 < < min(or,j)), 

where pl(Ap , B,) is ignored if p or q is negative and an index set is 
empty the corresponding quantities are not computed. 

T t  E {A, 3 BJ, has 
no multiple hits, then the T’s may be reordered in any order and thej’s 
appropriately changed so that the resulting transformation sequence is 
also in {Ai -+ Bj}, . 

There are three cases to be considered with regard to the fate of a, 
under a minimum mapping in {A,-+ I?,>, . (i) a, is deleted. (ii) a, is 
unchanged or undergoes a mutation to bi . (iii) b, is inserted at the end 
of the sequence. 

We place the T that carries out the operation in (i), (ii), or (iii) in the 
first (right-most) position. 

Proof. Fix i and j. It  is evident that if Ti; 
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In case (i), T f ;  (a, 
Ti; 
in {Ai -+ Bj}T , then Tf; 

ai) = a, ai+, 1 < 12 < min(a, i ) .  Thus 
T:; E {Ai-k + Bj}T and, if T = Ti; e - .  Ti; has minimum weight 

Tf;  has minimum weight in {Ai--k + Bj}, and 

9 B,) = P~(AI--K v Bj) + W(Ta,-r+l*. .a,-)* 

Case (iii) is handled in a similar fashion. 

one sees that Ti; e - .  Ti; E {Ai-l + Bi-,}, , so that 
In case (ii), let Til = I if ai is left unchanged. Reasoning as in case (i), 

p l ( 4  9 Bj) = ~l(Ai-1,  Bj-1) + W(T(a,.b,)), 

which completes the proof. 
Next consider the number of steps required in the algorithm of 

Theorem 3. If a < min{M, N}, there are essentially 2a + 1 values to 
find the minimum of for each i and j. Thus the algorithm runs in ap- 
proximately (2a + 1) MN steps. If a = max{M, N), the number of 
steps is approximately 

or of the order MN max{M, N} steps. 
Theorem 3 can be used, in an obvious way, to construct an induction 

which will calculate pl(a, b). The value of p2(a, b) is then calculated 
from p2(a, b) = pl(b, a) and 

Aa, b) = max(pl(a, b), pp(a, b)) 

COROLLARY. If W( T(a,b)) = W( T(b,a)) a d  W (  Tb, ... b,-) = w(Tbl...bk+), 
(1 < k < a), then 

pda, b) = p2(a, b) = p(a, b). 

The transformations Tca,b) and T(b,a) are inverses of each 
other, as are Tb1...bk- and Tb, ...?,+ . Thus if a sequence of T’s is in 
{a -+ b}, , there is a corresponding sequence of inverse mappings in 
{b + a}, and the weights, by the symmetry assumptions, are equal. 

Proof. 

THEOREM 4. The hypotheses of Theorem 3. are satisfied if we def ie  
w(T(,,b)) = A,, , T.U(T~~. . .~~*)  = Akf (1 < k < a) and require 

A,, < A,, d A,, < ... < A,, , 
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and 

Proof. We show that there is some minimum sequence in {a --+ b}7 
which has no multiple hits. It is sufficient to consider pairs of transforma- 
tions acting on the same site. We shall show they can, in each case, 
be replaced by equivalent transformations, which do not act on the same 
site and whose weight is less than or equal to the sum of the weights 
of the pairs of transformations. 

The three types of transformations (insertion, deletion, and mutation) 
allows nine categories of pairs of transformations. However any trans- 
formation followed by an insertion cannot act on the same site and three 
of the nine categories are eliminated. 

A mutation followed by a mutation, both on the same site, must be 
of the form T(b,c)T(a,b) which has the weight 2)b and this pair can be 
replaced by T(,,J which has weight A,, . 

A deletion followed by a mutation or deletion cannot act at the same 
site. An insertion followed by a mutation must be of the form T(,,,b) 

(where I < i < k )  which has the weight A,, + A,+ . This pair 
can be replaced by Tal...a,-lba,+l...ak+ which as weight A,+ . 

A mutation followed by a deletion has the form Ta:,..ak-T(b,a~) 
(where 1 < i < k )  and weight A,- + A,. We replace this pair by 
T%...at--lbOl+,....Qk- which has weight Ak- . 

The remaining category is an insertion followed by a deletion. Suppose 
this pair is of the form T,  ,... ,,-Tu ,... ,,+ where i < j < 1 < k,  or 
i 5 j < k < I ,  or j < i < l < k ,  or j < i < k < I .  This pair has 
weight Ar-.j+i- + Ax-$+,+ . Suppose i < j < 1 < k .  Replace the previous 
pair by T, ,... a,-la,+l...ak- , which has weight A ( k - l ) + ~ - i ) +  = &-a-(r-j)+ < 
A,-,+,+ . Suppose i < j < k < I .  Replace the original pair by Tak+l...u,- 
T,,...,,-,+ with weight A1-,- + A.j-t+ < A1-,+,- + The remain- 
ing two subcases are handled in the same way. 

5. AN EXAMPLE 

Suppose A = {A ,  a, b, c}. Suppose all single mutations have weight I ,  
all single deletions and insertions have weight 1, and all double deletions 
and insertions have weight 1.1. Theorem 3, the Corollary, and Theorem 4 
all apply. Suppose a = abccaaa and b = abaaa. (We omit writing the 
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terminal A’s.) Table 1 is a matrix of values from Theorem 3. The first 
row has the values 

TABLE 1 

Double Deletion and Insertion Distance Calculation 

A U b C C a a a 

0 1 1.1 2.1 2.2 3.2 3.3 4.3 
1 0 1 1.1 2.1 2.2 3.2 3.3 
1.1 1 0 1 1.1 2.1 2.2 3.2 
2.1 1.1 1 1 2 1.1 2.1 2.2 
2.2 2.1 1.1 2 2 2 1.1 2.1 
3.2 2.2 2.1 2.1 3 2 2 1.1 

TABLE 2 

Single Deletion and Insertion Distance Calculation 

A a b C C a a a 

0 1 2 3 4 5 6 7 
1 0 1 2 3 4 5 6 
2 1 0 1 2 3 4 ’ 5  
3 2 1 1 2 2 3 4 
4 3 2 2 3 2 2 3 
5 4 3 3 3 2 2 2 
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For comparison, Table 2 is a matrix for the distance if double deletions 
and insertions are not allowed. The double deletion distance is 
p(a, b) -= 1.1. (the value in the lower right-hand corner). The single 
deletion distance is J(a, b) = 2. 

Finally, we remark that the matrix of Table 1 gives an alignment or 
best matching between sequences in the same manner that Sellers 
obtains best matching in the single insertion and deletion case. Our 
alignment is: 

a b  c c  a a a  

a b  A u u u  

6. CONNECTION WITH INFORMATION THEORY 

Reichert, Cohen, and Wong [5, 8, 91 have studied an application of 
information theory for determining the quality of alignment of two 
biosequences. Their papers [5, 81 are related to this work, although 
they do not obtain any mathematical results for their model. The 
transformations they consider are insertion, deletion, substitution, 
and unequal replacement. 

Suppose one associates a probability pi  with each transformation 
T4 and with any sequence of transformations Tj; T i ; ,  the probability ni=, pi, . Reichert et al. choose the element of {a -P b}, such that the 
associated information, 

1 

1a-b = - logpi, 
k-1 

is minimized, which is equivalent to maximizing nL=, p i ,  . T o  associate 
this with what we have considered, take eo, > 0 (identity transformation 
is not allowed) and put 

wi = --logpi. 

The distance between two sequences and the resulting alignment can 
then be computed as in Sections 3 and 4. 
The model of Reichert et al. includes a location cost which is omitted 

im the above correspondence. It should be possible to change the weights 
e€ the transformations to include the consideration of location costs, 
but this has not been carried out. The model of Reichert et al. also 
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includes the concept of a “mutation machine” whose motion and action 
is specified by the sequence Ti;  - a -  Tj; . 

On page 45 of [8] multiple hits are excluded so that the set of possible 
alignments is finite. In our treatment, the concept of the path of a site 
through a sequence of transformations makes possible a mathematically 
precise definition of multiple hits. Then, in Theorem 4, these concepts 
are used to exclude such occurrences in our algorithm. 

Finally, the efficiency of the algorithm in [8] is that, for insertions and 
deletions of any length, it runs in approximately M2N2i4 steps. Recall 
that our algorithm runs in approximately M N  max(M, N} steps. If 
insertions and deletions of length a < min(M, N} are allowed, our 
algorithm runs in approximately (2a + 1) MN steps. Reichert et al., 
do not consider limiting the length of insertions and deletions, but, for 
that case their algorithm should run in approximately a2 MN steps. 

7. QUASIMETRICS 

In  the introduction, metric measures of dissimilarity were presented. 
Of the three requirements for a metric measure of dissimilarity, perhaps 
the requirement of symmetry is the least realistic. The assumption that 
p(sl , s2) = p(s2 , sl) for all s1 , s2 E S implies that evolutionary changes 
are reversible. Here it will be shown that the assumption of symmetry 
can be dropped in the previous work. 

A quasimetric space p ( s I ,  s2) is a nonnegative function on S x S 
which satisfies 

Then it is easily seen that Theorem 1 becomes: Each equivalence class 
Si of S together with p1 is a quasimetric space. 

The computation of pl(a, b) has already been handled by Theorem 3 
and Theorem 4, which gives sufficient conditions for the hypotheses of 
Theorem 3 to be satisfied, does not require symmetry. 
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8. THE +DISTANCE 

This section extends the notion of distance between two sequences 
to a distance among n sequences: the n-distance. An algorithm which 
computes this distance is given. The algorithm also gives the alignment 
of the n sequences which has least weight. These alignments can then be 
used in ancestral reconstruction in which an alignment is interpreted as 
a common ancestor of the n sequences. Evolutionary tree construction 
can be based on the method. 

Suppose pn maps A" to the nonnegative real numbers and 
p , (A ,  A,..., A )  = 0. Then extend p" to n A-sequences by the formula: 

m 

f -1 

Then pn is extended to n evolutionary sequences by 

where the minimum is taken over all a"), a(*), ..., a'") in the respective 
equivalence classes. Due to the requirement of an A-sequence to have 
only a finite number of terms not equal to A and p ( A ,  A,,, . ,  A )  = 0, we 
have the existence of the minimum. Also 

0 \< ijn(B"', z(e) ,..., P) < 00, 
ijn(if, if ,..., if) = 0. 

For 1 < i < n, consider 

where a t )  # A and a'i) E S. Each such sequence in Swill be represented 
by 

If a'i) = if, we represent a(i) by A .  

- - 
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Then in can be defined on such sequences by 

pn(&) ... ... a,, (2) ,..., U P )  -.. a,(=)) 

The next theorem yields an algorithm to compute this number. 

THEOREM 5 .  The quantity 
(1) ... a(') (2) ... (2) (n) ... 

i n ( %  z1 9 41 az, ,'**, a1 

where not all arguments are A ,  can be found by taking the minimum of the 
following 2" - 1 quantities: 

pn(ajz) ..* a,,-,, , a?) * * .  (2) ... , ... n 

( *) 
(1) .(2) .(VI) -i- Pn(aZ,.€, 9 ly"2 ).*') ,".efl) 

where ci = 0 or 1, A .  
If a?) *.. U T )  =: A ,  then omit computations of (*) which involve ei = 1. 

Since all sequences in S are A after a certain point, there is an 
I > 0 such that, for some by' 

= E~ = = E ,  = 0 is excluded, and ay) 
~ 

Proof. 
by' E a?) a($' 

1, ' 

= pn(p ... p ,  b?) ... b1(2) ,..., bi"' ... p )  
I-1 

(1) (2) (1) (2) = pn(& 9 bi ,*.., P) + p n p ,  , b, ,.**, bin)) 
(-1 

= p , ( p  . e *  p - f a  ,..., b?' .*. @\) 

(1) bk) + pn@, 2 2 , . * a ,  P). 
The last equality is true because if the sequences of length 1 - 1 were 
not minimal, then the sequences of length I would not be minimal. 

Take I to be the smallest integer such that not all b'j'), ..., by' are 
equal to A .  Therefore the possibilities in our last equation are identical 
with the 2" - 1 possibilities described in Theorem 5. Moreover, each 
of 2" - 1 possible numbers in Theorem 5 is greater or equal to the 
minimum value. This completes the proof of the theorem. 
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b 
A 0 1 2 3 4  
b 1 2 2 3 4  
c 2 3 3 3 4  4 
c 3 4 4 4 5  

For n = 2, there are 22 - 1 = 3 possibilities: 

p&l * - *  %, 9 b, --. b2J 

= min&(a, .** uz1 9 bl -.. &*-A + p z ( 4  bl,), 

p z ( 4  .*. a,,-, 9 bl *.. bZ*-l) + pz(a2, 9 bzJ, 

h(a1 - * *  %,-l 9 bl -.. at,) + Pz(a2, 9 4. 
This is the algorithm given by Sellers. 

In  general we can use Theorem 5 to compute &(a:') -.. a") 1, ,..-, 

in finding the minimum of (at most) 2" - 1 numbers. For implementa- 
tion on computers we note that it is not necessary to store an n-dimen- 
sional array with dimensions ZI + I ,  la + I ,  ..., 1, + 1. Entries can be 
discarded after they will not be needed in computing future minima. 

Before discussing the computation in more detail, consider the 

.:"' ... a'n' ) in (Il + 1)(Z2 + 1) (I, + 1) steps where each step consists 

problem of defining p3 on AS. Let A = {a, b, c, d, A} ,  and define p3 on 
A3 by 

0 if a = p = y  

2 if none of a, 8, y are equal. 
ps(a, 8, 7) = 1 if exactly 2 of a, 8, y are equal I 

This definition is motivated by 

where 
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(iii) (iv) 
(b) A a b c b  (c) A a b c b  

b 
2 

c 4 4  2 

Therefore jj3(a, b, c) = 3 which results from the tri-alignment 

a b c b  
d b c c  
a b c A  

Of course, for this alignment, 
4 c p3(ai(l), u p ,  a!)) = 1 + 0 + 0 + 2 = 3. 
(-1 

The following scheme is used in reconstructing ancestral sequences. 
For each minimal alignment dl), d2),  a@) consider ai’), ai2), If at 
least two of a:”, ala), ul3) are equal, then that is the ith element in the 
ancestral sequence. Otherwise all three are distinct and we use {all), 
a:’), a:”’> as the ith element in the ancestral sequence. 

For our alignment, then, the ancestral sequence is 

abc{b, c, A} .  

9. CONCLUSIONS 

These new metrics should help in the investigation of the evolutionary 
relationship between two proteins by allowing more realistic evolutionary 
steps. It would be of interest to compare the new metrics for various 
lengths of insertions and deletions with existing metrics for a set of 
proteins. The problem of which metric and tree construction technique 
to use in the construction of evolutionary trees is a very difficult problem 
that may never be satisfactorily solved. 

In  connection with the construction of evolutionary trees it is possible 
that the method of reconstructing ancestral sequences with the 3-metric 
will be of value. We feel such an investigation should be carried out. 

In conclusion, it should be remarked that one of the authors (M.S.W.) 
has used the multiple insertion and deletion metric as a tool to solve 
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the problem of prediction of RNA secondary structure. The secondary 
structure problem is quite distinct from the problems handled in this 
paper, but these metrics are fundamental in the solution. The work on 
secondary structures will appear elsewhere. 

Note Added in Proof. Section 4 discusses multiple insertions and deletions. The notion 
of the path of site through a sequence of the more general transformations has been 
omitted by oversight. If multiple insertions or deletions overlap a site previously altered, 
then the transformations cannot be reordered and the argument given in Theorem 3 fails. 
To correct this alter the definition on p. 6, so that every A has a position number. Then 
there are no multiple hits if each position has been acted on or overlapped by at most 
one transformation. 

REFERENCES 

1. w. A. BEYER, T. F. SMITH, M. L. STEIN, AND s. M. ULAM, Metrics in biology, an 
introduction, Los Alamos Scientific Laboratory report, LA-4973, 1972. 

2. W. A. BEYER, T. F. SMITH, M. L. STEIN, AND S. M. ULAM, A molecular sequence 
metric and evolutionary trees, Math. Biosci. 19 (1974), 9-25. 

3. M. 0. DAYHOFF et al., “Atlas of Protein Sequence and Structure,” National Biomedical 
Research Foundation, Silver Spring, Maryland. 

4. N. JARDINE AND R. SIBSON, “Mathematical Taxonomy,” John Wiley and Sons, New 
York, 1971. 

5. T. A. REICHERT, D. N. COHEN, AND A. K. C. WONG, An application of information 
theory to genetic mutations and the matching of polypeptide sequences, J. Theor. 
Biol. 42 (1973), 245-261. 

6. P. H. SELLERS, On the theory and computation of evolutionary distances, SIAM J. 
Appl. Math. 26 (1974), 781-793. 

7. S. M. ULAM, Some ideas and prospects in biomathematics, Ann. Rev. Biophys. 
Bioeng. 1 (1972), 271-292. 

8. A. K. C. WONG, T. A. REICHERT, D. N. COHEN, AND B. 0. AYGUN, A generalized 
method for matching informational macromolecular code sequences, Comput. Biol. 
Med. 4 (1974), 43-57. 

9. D. N. COHEN, T. A. REICHERT, AND A. K. C. WONG, Matching code sequences 
utilizing context free quality measures, Math. Biosci. 24 (1975), 25-30. 

10. W. M. FITCH, An improved method of testing for evolutionary homology, J. Mol. 
Biol. 16, 9, (1966). 

11. S. B. NEEDLEMAN AND C. D. WUNSCH, A general method applicable to the search for 
similarities in the amino acid sequence of two proteins, J. Mol. Biol. 48 (1970), 
443-453. 

12. D. SANKOFF, Matching sequences under deIetion/insertion constraints, Proc. Nut. 
Acad. Sci. 69(1), (1972), 4-6. 

13. J. E. HABER AND D. E. KOSHLAND, An evaluation of the relatedness of proteins based 
on comparison of amino acid sequences. J. Mol. Biol. 50 (1970), 617-639. 

14. M. J. SACKIN, Crossassociation: a method of comparing protein sequences, Biochem. 
Genet. 5 (1970), 287-313. 



SOME BIOLOGICAL SEQUENCE METRICS 387 

15. D. SANKOFF AND R. J. CEDERGREN, A test for nucleotide sequence homology, Technical 
Report 122, Centre de Recherches MathCmatiques, UniversitC de Montreal, Montreal, 
Canada. 

16. A. J. GIBES AND G. A. MCINTYRE, The diagram, a method for comparing sequences, 

17. W. M. FITCH, Locating gaps in amino acid sequences to optimize the homology 
EUY. J. Biochm. 16 (1970), 1-11. 

between two proteins, Biochem. Genet. 3 (1969), 99. 

Printed by the St Catherine Press Ltd., Tempelhof 37, Bruges, Belgium. 

_- I 


