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The connection between Euclid’s algorithm and continued fractions is 
given in a fashion that allows easy generalization to higher dimensions. 
We explore this generalization which yields Jacobi’s algorithm and two- 
dimensional continued fractions. In addition, the computer science 
problem of efficient computation of Euclid’s or Jacobi’s algorithm is solved 
by generalizing a technique of D. H. Lehmer. Also, some open problems 
are mentioned for Jacobi’s algorithm. 

1. Introduction 
The Doctor of Arts (D.A.) programme at Idaho State University was 

created in 1971 and is designed to be a terminal degree programme in 
mathematics with an emphasis of undergraduate teaching. The programme 
includes a thesis. This paper is an account of some of the contents of one 
such thesis. The first author (R.W.J.) was the thesis student and the second 
author (M.S.W.) was the thesis adviser. 

Since an honest attempt to direct D.A. theses requires a rethinking of the 
classical Ph.D. thesis idea, it is perhaps of interest to list some of the criteria 
that the second author has developed with the help of his students. The thesis 
should be on a topic strongly connected with undergraduate mathematics and 
should not be a ‘ weak ’ Ph.D. thesis. The topic, of course, should not be 
inaccessible to a student with a broad course background (such as D.A. students). 
The thesis should accomplish something of value to some group of mathe- 
maticians, mathematics teachers or scientists. Publishable work, while 
publication has never been a primary goal, has almost always followed. I t  is 
hoped that the thesis student will find that doing mathematics is enjoyable, 
relevant and possible. This view of the D.A. thesis is not necessarily standard 
as there is not yet a universally accepted view. 

An area rich in D.A. thesis topics is computer science, especially as set 
forth by Donald Knuth [l, 21. One of the major interests of modern computer 
science is the study of algorithms where an algorithm is defined as a set of rules 
to accomplish a given task. Of course, the search for efficient algorithms is the 
main task. Frequently, if a problem can be posed as an algorithm problem, 
then new problems and insights follow. 

t This work was performed under the auspices of the United States Energy Research 
and Development Administration. 
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Such a study has been made of Euclid’s algorithm by Knuth [ l ,  pp, 293-3381. 
Jacobi’s algorithm has been studied in a similar manner by the authors. We 
have found what is perhaps a new way of showing the connection between 
Euclid’s algorithm and continued fractions. This leads in a natural way to a 
two-dimensional generalization known as Jacobi’s algorithm [ 3 ] .  I n  our 
opinion a natural motivation for Jacobi’s algorithm has not been given before and 
this motivation, along with related material, will be presented below. 

2. Euclid’s algorithm and continued fractions 
The usual statement of Euclid’s algorithm [4] is to begin with m2 > m, > 0 and 

derive the following set of equations 
m2 = alml + rl 

m, = a2r1 + r2 
. . .  (2.1) 

and show rn-l = gcd (rn,,m2) (rn-, is the greatest common divisor of m, and m,). 
For our purposes this algorithm will be written in the form: 

( 2 4  I Q(mi,mz)= (mz mod mi,mi) 
= (m2 - [m2/mllm,’ml) 

where [ ] is the usual greatest integer function. 
now be referred to as Euclid’s algorithm. 

Repeated operation by Q will 
Of course 

gcd (m19m2) = gcd Q(m17m2) 
and the algorithm ends when the first coordinate is zero. The second 
coordinate is then gcd (ml,m2). 

Knuth states [ 11 that Euclid’s algorithm is the world’s oldest non-trivial 
algorithm. It is perhaps even more surprising that Euclid’s algorithm is one 
of the most efficient practical methods of computing greatest common divisors 
used on computers today. There are even several unsolved problems of 
interest that involve Euclid’s algorithm [ l ,  p. 3331. 

The connection between continued fractions and Euclid’s algorithm is well 
known [4], but it will be useful here to derive it in a different manner. Let 
O<rn,<m2 be associated with a point in [0, 11 by 

then 

where 

Now, if 

(m19m2) IV m1lm2 (2.3 1 

Q ( m 1 ~ 2 )  = (m2 - [ m z l m , l m 1 4  N mzlml- [m2/m,l= T(m1 I 4  
T(x)  = 1 /x - [ 1 /XI 

X =  1 = [a1,a*, .I 
1 
I 

1 
a3+ . . .  
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is the simple continued fraction expansion of x, then 

Therefore T ‘ slides ’ the partial quotients of x along. 
on the digits of the continued fraction. 

algorithm, 
Q(m19m2) = (m2- [m2lmJm1,mJ 

utilizes exactly the same integer [m2/m,] in (2 .2)  as is used for the first partial 
quotient in the continued fraction expansion of x. This observation is true for 
succeeding partial quotients as well. 

T( [al,a2, . . .I) = [a2,a3, . . .I 
T is known as the shift 

It is important to notice that a, = [m2/m,] and that the first step of Euclid’s 

I 

3. Lehmer’s method 
In a paper that has become quite well known in computer science, Lehmer [ 5 ]  

in 1938 published a technique that is very useful for efficient computation of 
gcd (m1,m2) when m, and m2 are large (multi-precision) integers. Lehmer’s 
motivation was to find correct partial quotients of an irrational that was known 
correctly to a certain number of decimal digits. 

While Knuth [ l ]  does not write out a proof of Lehmer’s method, our 
techniques from the previous section allow an easy proof. Let m, and m2 be 
the multi-precision integers mentioned above and let m1’,m2’,m,”,m; be single 
precision integers satisfying 

m1’/m2’ < mJm2 < rn;/m: (3.1)  
I t  follows that 

and, if 

then 

Consequently, 
T(m:/m;) = m;/m,“ - a < T(m,/m2) < T(ml’/m2’) 

and the procedure beginning with ( 3 . 1 )  can be repeated doing only single 
precision arithmetic until the a’s (partial quotients) disagree. Then one 
multiprecision catch up step is performed and the procedure can be repeated. 

The above conditions 
are satisfied with 

m;/m: < m2/ml < m2’/m1’ 

[m,‘/m,‘] = [m;/m,”] = a  

[m2lm,l= a 

T o  illustrate, consider m2=2953641 and m,=2718281. 

m,’=2718 m,“ = 2719 
m2’ = 2954 m; = 2953 

The word size of our computer is assumed to be four. 

ml’ m,’ a’ mi’ m,“ a” 

2718 2954 1 2719 2953 1 
236 2718 11 234 2719 11 
122 236 1 145 234 1 
114 122 1 89 145 1 

8 114 14 56 89 1 
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On the last line a’ # a” so that it is only certain that a, = 1, a2 = 11, a3 = 1, a4 = 1, 
and 1 < a ,  < 14. The calculation proceeds by 

ml m2 1 
m2 - m1 ml 11 

12m1-11m2 m2 - m1 1 
12m,-13m1 12m1- l l m ,  1 

- 23m2 -I- 25m, 12mz- 13m1 ? 

so that only the last line of multiprecision calculation need be done to continue 
the computation: 

gcd (2718281,2953641) = gcd (106039,23282). 

4. Jacobi’s algorithm 
In a posthumous paper in 1868 Jacobi published a generalization of continued 

fractions to two-dimensions [3]. An effort was made to characterize cubic 
irrationals as Lagrange had characterized quadratic irrationals with the one- 
dimensional continued fraction. This effort failed to characterize all cubic 
irrationals and the problem of whether this is possible with any Jacobi algorithm 
has never been settled. It has been a fruitful area and Bernstein has written a 
book on the subject [6]. 

An introduction to Jacobi’s algorithm is provided by considering three 
integers 0 < m, < m2 < m3 and 

Q(m1,m2,m3) = (ma- [mz/m~lmd%- [ m 3 1 m ~ l m ~ , m ~ )  

Again 

gcd (m1,m2,m3) = gcd Q(ml,m2,m3) 

and Q is seen to be a natural generalization of Euclid’s algorithm. An 
examination of another paper of Jacobi’s [7] shows that he was aware of the 
connection between his algorithm and greatest common divisors. 

If each such triple of integers is associated with a point in (0, 1)2 by 

(m1,m2)m3) (m1/m3,m2/m3) 

then 

Q(m19m27m3) N (mZIm1- [mz/mlI)m3Im1- [m3lmlI) = T(m1/m3,m~/m3) 

where 

T(x1,xJ = (xzlx1- Cx2/x11,1/x1- [1/.11) 
The transformation T i s  the shift on the digits of the two-dimensional continued 
fraction defined by Jacobi but that subject will be omitted here. 

The transformation Q is probably not the best method for finding the 
greatest common divisor of three integers. We conjecture that the algorithm 
defined by 

is faster, but no comparison, theoretical or experimental, has appeared. 
gcd (gcd (m1)m2),m3) 

. 
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5. Generalized Lehmer’s method 
I t  is not entirely trivial to generalize Lehmer’s method to two-dimensions. 

This was, in fact, begun in [8] for another problem and will be completed here. 
Define 

then 

where 

The crucial bserv tion is that Y maps triangles (with their interior) in (0,1)2 
into triangles (with their interior) in ( 0 , ~ ) ~ .  T o  prove this we first let 

06 + alx + ory = 0 
be a line with x Z 0 .  Then 

4 + 011 + 012bJlx) = 0 
is a line in the image of Y.  Since Y is continuous, the interior of a triangle is 
mapped to the interior or exterior of the triangle in the image. The interior 
of the triangle in ( 0 , ~ ) ~  has finite area but the exterior has infinite area. Let A 
be the triangle in (0,1)2. Then, by a change of variable theorem [9, p. 2711, 
if J(x,y)  is the Jacobian of Y-l, 

area of Y(A)= J IJ(x,y)ldxdy= j ~ - ~ d x d y <  cg 

The last inequality follows from the boundedness of y 3  on a closed subset of 
(0,1)2. 

The utility of our observation about Y comes from a consideration of (5.2). 
If (x,y) belongs to the triangle formed by three points and if the a( , ) values 
are identical for these points, then T(x,y) belongs to the triangle formed by the 
three T ( ,  ) values. Thus Lehmer’s method has been generalized if (x,y) 
belongs to an easily found triangIe. 

Assume 0 < q,w < x and x <y. 
Then (x,y) belongs to the triangle formed by (w,x), (w + E+) and (w,x + c2) 
if and only if 

A A 

This completes the proof of the above assertion. 

b 

The triangles we consider are right triangles. 

(x - W)/.l+ (Y - 4 I . 2  < 1 

(x,y) = %(W,4 + %(W + El,Z) + %(W,Z + 42) 

(5.3) 
This follows since (x,y) belongs to the triangle if and only if 

where 

* But this means 

8 

a i 2 0  and %+orl+or2=1 

(x,y) = (w + %El,Z + 01242) 
or 

Clearly 

Now 

if and only if (5.3) holds. 

011 = (x - w)/q, 012 = (y - x ) / c 2 .  

011 > 0,a2 > 0 

CY()= 1 - orl - or2= 1 - (x- w)/q - (r- X ) / E 2  2 0 



312 M .  S .  Waterman and R. W .  Johnson 

The final step in the generalization of Lehmer's method is, given a vector 
of three integers corresponding to (x,y), to find a vector of three integers 
corresponding to (w,z) and to find appropriate E ,  and e2. This is handled 
in the following manner. Take the vector of leading places of (m1,m2,m3), and 
add 1 to the leading digits of m3. Then add 5 to first component for the second 
vector and add 5 to the second component for the third vector. A proof for this 
procedure is contained in [lo] and is omitted here. 

T o  clarify these concepts, consider the vector (129345,37713,197645). Again 
the computer word size is assumed to be four. The triangle is formed by 

m,' = 1293 ml"= 1298 m,"' = 1293 
m2'= 377 m2"= 377 m,"' = 382 
m i  = 1977 m3" = 1977 m3"' = 1977 

As calculation for all three triples is lengthy to present, only that for m' appears. 

1293 377 1977 0 1 
377 684 1293 1 3 
307 162 377 0 1 
162 70  307 ? I 

~ ~ ~~ 

At the last step a' = (0,l) =a" but a"' = (0,2). The calculation proceeds by: 

ml m2 m, a1 aa 

m, m2 m, 0 1 
m2 m3-m1 m, 1 3 

m, - m2 - m, m, - 3m2 m2 0 1 
m, - 3m2 2m2 + m, - m3 m3 - m2 - m, ? ? 

The last line of multiprecision calculation yields 
gcd (129345,37713,197645) = gcd (16206,7126,30587). 

6. Some open problems 
First an attempt is made to indicate what work has been done in connection 

with the above material. In  performing Q(m1,m2,q) ,  the last coordinate is 
always the largest but the first is not always the smallest. I t  seems clear that a 
permutation of the first two coordinates to assure the first coordinate is smallest 
would speed computation. A study of such algorithms has been done in [ll] 
and [12] where the problems are handled in n (rather than two) dimensions. 
Other details connected with computational problems are dealt with in [12]. 

However, examples can be found where the permutation algorithm takes 
more steps. For example with (1396,7694,8593), the permutation algorithm 
takes six steps to find the greatest common divisor is 1, while the usual Jacobi 
algorithm takes five steps. An interesting problem would be to characterize 
those vectors of integers where this unexpected occurrence takes place. I t  
would also be of interest to find how often this happens. 

Along these lines Kronecker [4] has shown that the least remainder algorithm 
never takes more steps than any other Euclidean algorithm. As must now be 
clear, there are many Jacobi algorithms. Which one, if any, always takes no 
more steps than any other Jacobi algorithm? 
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Also Lame’s Theorem considers the maximum number of divisions required 
to find the greatest common divisor using the Euclidean algorithm. The result 
is that the number of steps does not exceed five times the number of digits in 
the smallest integer. Is there such a 
result for the Jacobi algorithm? What integers correspond to the worst case 
and are there Fibonacci type numbers for the Jacobi algorithm? 

The proof uses Fibonacci numbers. 

7. Conclusion 
I 

8 4  

I t  is our hope that this paper has been of interest to teachers of mathematics 
and to students of number theory and computer science. Lehrner’s method 
deserves more notice especially among undergraduates who are assigned the 
task of finding the first seven (say) correct partial quotients of r. 

Also the introduction to the Jacobi algorithm should be of interest as it is 
an easy way to discover the transformation T .  We have found no completely 
easy way to the two-dimensional continued fraction however. 

Computer programmes (in FORTRAN) have been written to calculate 
greatest common divisors of three integers by both Jacobi’s algorithm and the 
generalized Lehmer method, Also, the modification of Jacobi’s algorithm to 
always divide by the smallest of the three integers and its Lehmer modification 
have been programmed. Descriptions of these algorithms with the listings of 
the four programmes can be obtained by requesting reference [lo] from the 
second author. 
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