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ON THE APPROXIMATION OF INVARIANT MEASURES 
FOR CONTINUED FRACTIONS* 

M. S .  WATERMAN 

ABSTRACT. Kuzmin’s theorem gives a sequence of functions 
which converge to the density of the invariant measure of n- 
dimensional continued fractions. The convergence is uniform 
and geometric. This paper gives bounds on the rate of con- 
vergence for two natural approximations to the sequence of 
functions given by Kuzmin’s theorem. 

1. Introduction. The metric theory of continued fractions, for n > 1, 
does not at this time include the form of the absolutely continuous in- 
variant measure for the associated shift transformation. Numerical as 
well as theoretical results have been obtained for this measure. 

In [l] some ergodic computations were performed in order to 
approximate the invariant measure for Jacobi’s algorithm (the 2-dimen- 
sional continued fraction). Although an approximation was obtained, 
certain measure theoretic difficulties made an estimation of error in the 
approximation impossible. Thus it is of interest to find a technique 
where an estimate of the error is possible. 

After Schweiger proved the existence of the invariant measure, 
Kuzmin’s theorem was proved for n > 1 in [6], Kuzmin’s theorem, 
generalized to n-dimensions, gives a sequence of approximates to the 
density of the invariant measure which converges uniformly and geo- 
metrically. Many metric results, such as a geometric rate of mixing, 
follow from this theorem. 

The purpose of this paper is to give bounds on the rate of conver- 
gence of some natural approximations to the sequence of functions in 
Kuzmin’s theorem, The evaluation of these functions involves 
summing over a countable set. To illustrate our techniques in a simpler 
setting and to provide some bounds for Gauss’ measure, we deal with 
the one-dimensional case first. It should be pointed out that each of 
our approximation theorems depends on the measure of sets whose 
continued fraction expansions have bounded partial quotients. 
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2. Gauss’ Measure. In this section we consider one-dimensional 
continued fractions. For x E (0, l )  and [ 3 denoting the greatest 
integer function, define 

ak(x)  = al(Tk-’(x)), k 2 2. 

The integers al (x) ,  a2(x), * are the partial quotients in the continued 
fraction expansion of x. We define the vth order cylinder generated by 
x to be $(r) = {y : ai(y) = a&), i = 1,2, - e ,  v}. We will use [al, a2, 

- -1 to denote the finite or infinite continued fraction l/al + l/a2 
+ - * .  If P(x) = 0, then the continued fraction expansion of x is 
finite. Note that T maps (0,l)  into (0,l). The mapping T does not 
preserve Lebesgue measure A, but does preserve Gauss’ measure p. 
This measure p is defined by 

Gauss found that X{a : P(a) < x }  has the limiting value, as v+ 00, 

log2(l + x). It is easy to see that p(0, x) = lo&(l + x). This result can 
be obtained from the individual ergodic theorem. Gauss posed the 
problem of estimating the difference between the approximate and 
limiting values. Kuzmin in 1928 solved this problem by a consideration 
of the sequence of functions defined in the next theorem from [ 31 . 

THEOREM 1. De$neYv recursively by 

(3) 

whereYosatis$esO < rn SOo(x) S Mand p o ( x )  - Yo(y)l S Nix - y J .  
Then we have 

(4) 

where a = S/Yo( t )  dt and b are $xed constants and u(v) = 

The motivation for this theorem is that h(x) is the density of the 

ess supo<t<lA(&(t))* 

invariant measure for T if and only if h(x) satisfies Kuzmin’s equation: 
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It can be shown ([4] ) that a(.) < 3 (2/(3 + G))Y 

ing lemma from [ 31 . 
Let Q = {1,2, * * - }, A useful form of (3) is contained in the follow- 

LEMMA 1. yV,,(x) is  dejhed as in Theorem 1, then 
v 

(5 )  Y&) = E Vo($(x))I$’b)L 
Q” 

where $ ( x )  = [a , ,  a2, * *, a, + x ]  for each a = (a l ,  a2, e ,  a,) E Q”. 

For the remainder of this section we take Y o ( x )  = 1, so that (5) be- 
comes 

944 = E I$’(x)I* 
Q” 

Applying the chain rule for derivatives to$ ’ ( x ) ,  we obtain 

Since Q is infinite, it is of some interest to approximate V,,(x) by 
summing (6) over a selected finite subset of Qv. We first consider 

4%) = E I$’(X)I’ 
(1,2;..,N}’ 

(7) 

The next theorem gives bounds on the rate of convergence of Y,,. 
THEOREM 2. ZfV,,(x) and AN(x) are defined as in (6)  and (7), 

2 
(8) 

< 2  1 -  l-- )( 1-5) ”-’). ( ( N + l  

PROOF. Let I N y  = {1,2, * -, N } ”  and f N u  = Q - INy. Then 

According to Renyi [ 41 , we have 
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We now conclude 

1 
2 A($) d Ydx) - AN(x) S 2 x A(&). 

To bound Er; A( 4) we follow Khintchine [ 3, p. 701 , who derives 
a lower bound. Let 4(k) be a cylinder of order Y such that a,, = k and 

rN” IN” 
(9) 

C &,-l. Then [3, p. 691 

and, noting 

This argument can be iterated, as in Khintchine, to obtain 

3(N + 1) 

A(&,) = 1 - x I N v  A(&,) and (9), we obtain (8). 

s ( 1 -  

Using 

v - 1 < N, the binomial expansion gives 
Clearly the upper bound of (8) is a decreasing function of N. If 
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Vu(%) -  AN(^) < 2 v/N. 

To make this approximation error equal ba(v) of Theorem 1, we need 

or 
V 

2v 
2 N ’  a e x p  [ - log ( 
3 +  trs 

~ = $ v e x p [ l o g  ( )v] 

Then the number of points summed over in ~ N ( x )  is 

COROLLARY 1. l fN  isfixed, limv+ 

PROOF. By the proof of Theorem 1, 

= 0. 

In order to find another approximation, we note that 

Therefore the “best” a = (al, 
which have the smallest product. Accordingly we let 

*, u,,) E Q” to s u m  over are those a 

THEOREM 3. lfYV(x) and B,N(x) are defined as aboue, then 

PROOF. 
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The required bound for the last quantity is found in Khintchine [3, 
p. 751 . 

The next corollary makes further use of Khintchine’s results. 

COROLLARY 2. Let N = eAv where A > 1 satisfies A - log A - log 2 
- 1 > 0. Then 

(12) q v ( x )  - 4 N ( x )  < (<%)-I <v e-4A-h&4-loB2-U. 

PROOF. See Khintchine [ 3, p. 771 . 
3. The Jacobi-Perron Algorithm. Next we consider the n-dimen- 

sional continued fraction (the Jacobi-Perron algorithm) where n B 2. 
Most of the work of this section is analogous with that of section 2, 
although somewhat harder to accomplish. Identical symbols will be 
used in these sections and similar calculations and reasonings will 
be utilized. We now define the Jacobi-Perron algorithm. Let 
x E (0,l)” and [ 3 denote the greatest integer function. Define 

T ( x ) =  (“- 1 
x1 

a(v’(x) =a‘”(P-1(x)), v B 2. 

The expansion of a.a. x E (0,l)” is accomplished by 

x = lim F ( a ( l ) ( x )  + F ( a @ ) ( x )  + * + F(a@)(x ) )  * * *)), 
v-9 - 

where F ( x )  = (l/xn, xl/xn, * e ,  ~ , , - ~ / x , , ) .  
The invariant measure for T, which is absolutely continuous with 

respect to Lebesgue measure A, is known to exist but has not been 
found yet. Therefore a Kuzmin theorem giving a uniform rate of ap- 
proximation to p(x),  the density of this measure, is of some importance. 
This theorem is stated next [6], The symbol J, denotes the Jacobian 
of the function g. 

THEOREM 4. The set (0,l)” is partitioned in n! simplices A, defined 
by the intersection of the sets { y  E (0,l)” : y j  < yj+,,}. Let €+ = 
{ k  = (kc’), a ,  kc.)) : TyB(k) 3 4). DefineVI, remrsiuely by 

(14) W”(X) = E *”(fk(X))lk (x)L x E A i 9  

k E f z , l  
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where f k ( x )  = F ( x  + k )  and 0 < m S Vo(x) S M, /Po(x) - Yo(y)l 
S Nllx - yll. Then 

(15) 
where p is the density of the invariant measure for T ,  a = Jilro dA and 
b are constants, and a(.) = ess sup,diam 4,(t) .  

R. Fischer [2] has shown that a(.) S <n(l - l/(n + l)n)dn. 
For the motivation of Theorem 4 we consider n = 2. Then p(x) is the 
density of the invariant measure if and only if it satisfies 

I V h )  - ap(x)l < b4.L 
. *  

” 

1 
m l l  O S t  Sm 

ifx E A, = {x : 0 < x1 < 1, x1 < x2 < l} ,  
and 

1 

ifx E 4 = {x:O < xl < 1,0  < x2 S xl}. 

A useful form of (14) is contained in the next lemma from [ 61 . 
LEMMA 2. ZfYJx) is defined as in Theorem 4, then 

Y”+l(X) = 2 ~oCfy(x))lJr, (x)L x E 4, 
kEPt ,v  

(16) 

wheref,(x) = F ( k ( 1 )  + F ( W  + * * * + F ( k ( v )  + x) 
e ) ) .  

Again we takeVo = 1 so that (16) becomes 

V”(4  = IJf” (X)l> x E 4. 
E,”  

The set Pi,” is infinite for each i so that we define 

A v N ( X )  = 

: k, 

l J f v  (x) 17 x E 4 7  

S N for j = 1,2, * * e ,  v}. 
4% 

where f i ,N = {k E 
THEOREM 5. ZfYv(x) and AN(x) are dejhed as above, we have .. 

I c-l( 1 - ( 1  -*)“-l ) < * A x )  - A N ( x )  

< C L - ’ ( l -  ( 1  N +  
(17) 2 ”- l  

1 -+b- N )  
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Remark. The values of the constants in (17) are C = (1 + 2n)”+’, 
L = (n!)- l ,  y1 = (n!(n - 1)l (2n + l )”+’(n + l)”+’)-’, and y2 = 
nl(2n + l)n+l2”-’. 

PROOF. By an analysis similar to that in Theorem 2 (see [ 73 ), 
C-lA(&) IJu(x)l 5 CL-’A(&). 

Let 8(k,,(”)) be the collection of order Y cylinders (with n-th corrdinate 
of a@) equal to k@))  which are contained in a certain cylinder &-’. 
Schweiger [ 5, p. 781 has shown that 

yl/(kn(y))2 C A 6(h(’))/h(&-l) < Y2/(kn(u))2. 

Summing over k,,(~) h N + 1,  we obtain as in Theorem 2, 

Noting that A ( x  : un{l)(x) 5 N }  = 1 - 1/(N + l ) ,  we can arrive at (17). 

COROLLARY 3. ZfN isfixed, l w ,  =AN(x) = 0. 

PROOF. See the proofs of Corollary 1 and Theorem 5. 

Our second approximation is 

The results make use of some work of Schweiger. 

THEOREM 6. ZfYv(x) and 4 N ( x )  are dr?fined as above, then 

PROOF. See theorem 3 and [5, p. 841. 

COROLLARY 4. Let N = eAV where A > 1 suti$es A - log A - n 
I 

log2 - 1 > 0. Then 

(19) u(A -1ogA-n l O g 2 -  1). yv - RN(r) < ( 6 ) - 1  f i e -  
PROOF. See corollary 2 and [ 5, p. 8-51. 

4. Conclusion. In section 2 and 3 it can be seen that our bounds on 
the rates of convergence are slightly larger for n > 1. In neither case 
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do we have cause for optimism. Corollaries 2 and 4 give the smallest 
sets to s u m  over for good approximation. 

If N = eAy and n = 1, we sum over the set {a E Q :n:=, ai S N 
- 1). The number of points in this s e t  is of the same order as 
sls”*j SN n dxi which is of the same order as N log N = AueAv. Thus 
we have shown that Kuzmin’s theorem is not too useful for the numeri- 
cal approximation of invariant measures. - 

BIBLIOGRAPHY 
1. W. A. Beyer and M. S. Waterman, Ergodic computations with continued 

fractions andlacobi’s algortthm. Numer. Math. 19 (1972), 195-205. 
2. R. Fischer, Konuergenzgeschwindigkeit beim lacobiulgorithmus. (To 

appear.) 
3. A. Va. Khintchine, Continued Fractions, P. Noordhoff Ltd. Groningen; 

The Netherlands, 1963. 
4. A. Renyi, Representations for real numbers and their ergodic properties. 

Acta. Math. Acad. Sci. Hungar. 8 (1957), 477-493. 
5. F. Schweiger, Ceoytr ische und elementar metrische Satze uber den 

lacobkchen Algorithmus. Osterr. &ad. Wiss. Wein. math.-naturw. KI., S.-Ber. 

8. F. Schweiger and M. Waterman, Some remarks on Kuzmin’s Theorem for 

7. M. S .  Waterman, Some erogodic properties of milti-dimensional F- 

IDAHO STATE UNIVERSITY, POCATELLO, IDAHO 83201 

Abt. 11, 173 (1984), 59-92. 

F-expansions. J. Number Theory 5 (1973), 123-131. 

expansions. Z. Wahrscheinlichkeitstheorie verw. Geb. 18 (1970), 77-103. 


