F-Expansions of rationals

M. S. Waterman

The ergodic theorem has been used to deduce results about the F-expansions of almost all x in $(0,1)^{n}$. A simple lemma from measure theory yields some corresponding statements about the expansions of the rationals, a set of measure zero.

§1. Introduction

There have been several papers dealing with the ergodic properties of F-expansiosn of n-dimensional reals $([3,8,10,11])$. For $x \in(0,1)^{n}$, we have

$$
x=\lim _{k \rightarrow \infty} F\left(a_{1}(x)+F\left(a_{2}(x)+\cdots+F\left(a_{k}(x)\right) \ldots\right)\right)
$$

Under certain conditions (see [11]) we have the shift T ergodic and there exists a measure $\mu \sim \lambda, n$-dimensional Lebesgue measure, such that T is ergodic and measure preserving with respect to μ. The individual ergodic theorem yields, for $f \in L_{1}(\mu)$,

$$
\frac{1}{m} \sum_{i=0}^{m-1} f\left(T^{i}(x)\right) \rightarrow \int f d \mu \text { for a.a. } x
$$

In particular, if $f=I_{B(a)}$, where $B(a)=\left\{x:\left[F^{-1}(x)\right]=a\right\}$, then

$$
\frac{1}{m} \sum_{i=0}^{m-1} I_{B(a)}\left(T^{i}(x)\right) \rightarrow \mu(B(a)) \text { for a.a. } x
$$

Thus ergodic theory yields a statement concerning the distribution of digits in the expansion of almost all x. Much information of a similar character can be derived.

This paper is an attempt to utilize these ergodic theory results to deduce related results concerning the rationals, a set of Lebesgue measure zero. Our results are known for one-dimensional continued fractions [5, p. 328] but do not appear to have been deduced for the general case. In this connection, see [2] for a computational treatment of one- and two-dimensional continued fractions.

AMS (1970) Subject Classifications: Primary 10K10, 10F20, 10A30. Secondary 10F25, 28 A70. This research was partially supported by National Science Foundation Grant GP-28313\#1.

§2. One-dimensional F-expansions

Our proof is based on a measure theoretic lemma and follows Knuth [5]. We define $v(E)$ to be the cardinality of the set E. The lemma is proved for n-dimensions for use in $\S 3$.

LEMMA 1. Let $A_{m}=\{0 / m, 1 / m, \ldots,(m-1) / m\}^{n}$. Let \mathbf{R} and \mathbf{S} be countable unions of disjoint rectangles in $[0,1]^{n}, \mathbf{R} \cap \mathbf{S}=\phi$, and $\lambda(\mathbf{R} \cup \mathbf{S})=1$. Then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{v\left(A_{m} \cap \mathbf{R}\right)}{m^{n}}=\lambda(\mathbf{R}) . \tag{1}
\end{equation*}
$$

Proof. Now $\mathbf{R}=\bigcup_{i=1}^{\infty} R_{i}$ and $\mathbf{S}=\bigcup_{i=1}^{\infty} S_{i}$ where each R_{i} and S_{i} is of the form $E=X_{l=1}^{n} I_{l}, I_{l}$ an interval. Now

$$
\begin{equation*}
\prod_{l=1}^{n}\left(m \lambda\left(I_{l}\right)-1\right) \leqslant v\left(E \cap A_{m}\right) \leqslant \prod_{l=1}^{n}\left(m \lambda\left(I_{l}\right)+1\right) . \tag{2}
\end{equation*}
$$

Choose N such that $\lambda(\mathbf{R})<\lambda\left(\mathbf{R}_{N}\right)+\varepsilon$ and $\lambda(\mathbf{S})<\lambda\left(S_{N}\right)+\varepsilon$, where $\mathbf{R}_{N}=\bigcup_{i=1}^{N} R_{i}$ and $\mathbf{S}_{N}=\bigcup_{i=1}^{N} S_{i}$. Let $\mathbf{U}_{N}=(\mathbf{R} \cup \mathbf{S})^{\prime} \cup \bigcup_{i>N}\left(R_{i} \cup S_{i}\right)$, where the prime ' denotes complement. Define $r_{m}=v\left(\mathbf{R}_{N} \cap A_{m}\right), s_{m}=v\left(\mathbf{S}_{N} \cap A_{m}\right), u_{m}=v\left(\mathbf{U}_{N} \cap A_{m}\right)$. Note that $r_{m}+s_{m}+u_{m}$ $=m^{n}$. We easily have

$$
\begin{equation*}
\frac{r_{m}}{m^{n}} \leqslant \frac{r_{m}+u_{m}}{m^{n}}=1-\frac{s_{m}}{m^{n}} . \tag{3}
\end{equation*}
$$

From (2) we can show

$$
\lambda\left(\mathbf{R}_{N}\right)-\frac{N 2^{n}}{m} \leqslant \frac{r_{m}}{m^{n}}
$$

and obtain

$$
\lambda(\mathbf{R})-\varepsilon-\frac{N 2^{n}}{m} \leqslant \frac{r_{m}}{m} \leqslant \lambda(\mathbf{R})+\frac{N 2^{n}}{m} .
$$

Thus, from (3) we obtain $\lim _{m \rightarrow \infty} r_{m} / m^{n}=\lim _{m \rightarrow \infty}\left(r_{m}+u_{m}\right) / m^{n}=\lambda(\mathbf{R})$ and (1) therefore holds.

For our discussion of F-expansions we refer to [10] and [11]. In this section we deal one-dimensional F-expansions. In n-dimensions some measure theoretic difficulties arise. Let F be a function defining such an F-expansion. Then we define $T(x)=F^{-1}(x)-\left[F^{-1}(x)\right]$ and $a_{v}(x)=\left[F^{-1}\left(T^{v-1}(x)\right)\right]$ where $x \in(0,1)$. Define

$$
B_{v}=B\left(k_{1}, k_{2}, \ldots, k_{v}\right)=\left\{x \in(0,1): a_{i}(x)=k_{i}, i=1, \ldots, v\right\} .
$$

Condition (A) or (B) of Rényi [7] assumes F either decreasing or increasing and in these cases each B_{v} is an interval. The addition of another condition allows Rényi to show there exists a measure μ such that μ is invariant with respect to T and $C^{-1} \lambda(E) \leqslant \mu(E) \leqslant C \lambda(E)$ for all measurable sets E and some constant C depending on F only. This, of course, implies λ and μ are equivalent. Finally let $\mathbf{C}_{k}\left(a_{1}, \ldots, a_{i}\right)=$ $=\bigcup_{b_{1}, \ldots, b_{k}} B\left(b_{1}, \ldots, b_{k}, a_{1}, \ldots, a_{l}\right)$ which is the set of all points $x \in(0,1)$ such that $a_{k+1}(x)=a_{1}, \ldots, a_{k+l}(x)=a_{l}$.

THEOREM 1. Suppose F satisfies condition (A) or (B). Then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{v\left(\mathbf{C}_{k}\left(a_{1}, \ldots, a_{l}\right) \cap A_{m}\right)}{m}=\lambda\left(\mathbf{C}_{k}\left(a_{1}, \ldots, a_{l}\right)\right)=\lambda\left(T^{-k} B\left(a_{1}, \ldots, a_{l}\right)\right) . \tag{4}
\end{equation*}
$$

Proof. Let $\mathbf{R}=\mathbf{C}_{k}\left(a_{1}, \ldots, a_{\imath}\right)$ and \mathbf{S} equal the union of all $B_{k+\iota}$ not included in \mathbf{R}. Both \mathbf{R} and \mathbf{S} are unions of disjoint intervals, $\mathbf{R} \cap \mathbf{S}=\phi$. Also $U=\left\{x: a_{i}(x)\right.$ is undefined for some $1 \leqslant i \leqslant k+l\}$ is countable and therefore $\lambda(\mathbf{U})=0$. The requirements of Lemma 1 are satisfied and (4) follows.

COROLLARY 1. If F satisfies condition (A) or (B) and the assumptions of Kuzmin's Theorem [10], then

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \lim _{m \rightarrow \infty} \frac{v\left(\mathbf{C}_{k}\left(a_{1}, \ldots, a_{l}\right) \cap A_{m}\right)}{m}=\mu\left(B\left(a_{1}, \ldots, a_{l}\right)\right) . \tag{5}
\end{equation*}
$$

where μ is the invariant measure associated with the transformation $T(x)=F^{-1}(x)$ $-\left[F^{-1}(x)\right]$.

Proof. Theorem 2 of [10] states $\lambda\left(T^{-k} B\left(a_{1}, \ldots, a_{l}\right)\right) \rightarrow \mu\left(B\left(a_{1}, \ldots, a_{l}\right)\right)$.
The previous results relate the number of $x \in A_{m}$ with digits $a_{i+k}(x)=a_{i}, i=1, \ldots, l$, to the measure of $B\left(a_{1}, \ldots, a_{1}\right)$. The next Theorem considers the average value of a function of the digits. It is possible to prove a more general theorem here.

THEOREM 2. Let F be as in Corollary 1. Suppose g is real valued and $\sum_{a}|g(a)|$ $\times|\lambda(B(a))|<\infty$ where the summation is over all values a such that $a=a_{i}(x)$ for some $x \in(0,1)$: Then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{1}{m} \sum_{x \in A_{m}} g\left(a_{k+1}(x)\right)=\sum_{a} g(a) \lambda\left(T^{-k} B(a)\right), \tag{6}
\end{equation*}
$$

where the first summation in (6) is over $x \in A_{m}$ such that $a_{k+1}(x)$ is defined.
Proof. Let μ be the invariant measure associated with T. From $C^{-1} \lambda(E) \leqslant \mu(E)$ $\leqslant C \lambda(E)$ and $\mu\left(T^{-k} E\right)=\mu(E)$, we have the following equivalent inequalities:
$\sum_{a} \lg (a)\left|\mu(B(a))<\infty, \sum_{a} \lg (a)\right| \lambda(B(a))<\infty$, and $\sum_{a}|g(a)| \lambda\left(T^{-k}(B(a))<\infty\right.$. Since

$$
\frac{1}{m} \sum_{x \in A_{m}} g\left(a_{k+1}(x)\right)=\sum_{a} g(a) \frac{v\left(\mathbf{C}_{k}(a) \cap A_{m}\right)}{m},
$$

the result follows from Theorem 1.
COROLLARY 2. If F satisfies the assumptions of Corollary 1 and Theorem 2, then

$$
\lim _{k \rightarrow \infty} \lim _{m \rightarrow \infty} \frac{1}{m} \sum_{x \in A_{m}} g\left(a_{k+1}(x)\right)=\sum_{a} g(a) \mu(B(a)) .
$$

Proof. Since $\lambda\left(T^{-k}(B(a))\right) \leqslant C \lambda(B(a))$ by an argument of Rényi [7] and $\sum g(a) C \lambda(B(a))<\infty$, the Bounded Convergence Theorem gives us

$$
\lim _{k \rightarrow \infty} \sum_{a} g(a) \lambda\left(T^{-k}(B(a))\right)=\sum_{a} g(a) \lim _{k \rightarrow \infty} \lambda\left(T^{-k}(B(a))\right)=\sum_{a} g(a) \mu(B(a)) .
$$

The last equality is by Theorem 2 of [10].
As an application take F such that all $a_{i} \geqslant 1$ and $g(m)=\log (m)$ satisfies the hypothesis of Theorem 2. Then

$$
\left(\prod_{i=0}^{m-1} a_{k+1}\left(\frac{i}{m}\right)\right)^{1 / m} \rightarrow \exp \left\{\sum_{l=1}^{\infty} \log (l) \lambda\left(T^{-k} B(l)\right)\right\}
$$

and

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \lim _{m \rightarrow \infty}\left(\prod_{i=0}^{m-1} a_{k+1}\left(\frac{i}{m}\right)\right)^{1 / m}=\lim _{k \rightarrow \infty} \exp \left\{\int \log \left(a_{k+1}(x)\right) d \mu(x)\right\} \\
&=\exp \left\{\int \log a_{1}(x) d \mu(x)\right\}
\end{aligned}
$$

Since $T(x)=1 / x-[1 / x]$ on $(0,1)$ is the shift for the digits of continued fractions, our results hold for continued fraction expansions of rationals. Theorem 1 and Corollary 1 are known in the case of continued fractions [5, p. 328]. Another example is q-adic expansions where q is an integer greater than 1 and $T(x)=q x-[q x]$.

§3. The Jacobi-Perron algorithm

The Jacobi-Perron algorithm can be used to expand almost all $x \in(0,1)^{n}$. The F is defined by

$$
F(x)=F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\frac{1}{x_{n}}, \frac{x_{1}}{x_{n}}, \ldots, \frac{x_{n-1}}{x_{n}}\right) .
$$

Associated with this F we have

$$
\begin{aligned}
& T(x)=T\left(x_{1}, \ldots, x_{n}\right)=\left(\frac{x_{2}}{x_{1}}-\left[\frac{x_{2}}{x_{1}}\right], \frac{x_{3}}{x_{1}}-\left[\frac{x_{3}}{x_{1}}\right], \ldots, \frac{1}{x_{1}}-\left[\frac{1}{x_{1}}\right]\right) . \\
& a_{1}(x)=\left(\left[\frac{x_{2}}{x_{1}}\right],\left[\frac{x_{3}}{x_{1}}\right], \ldots,\left[\frac{1}{x_{1}}\right]\right)
\end{aligned}
$$

and

$$
a_{v}(x)=a_{1}\left(T^{v-1}(x)\right)
$$

The convergence result is

$$
x=\lim _{v \rightarrow \infty} F\left(a_{1}(x)+F\left(\cdots+F\left(a_{v}(x)\right) \ldots\right)\right)
$$

F. Schweiger has examined measure theoretic properties of the Jacobi-Perron algorithm. Among other results, he has shown there exists $\mu \sim \lambda$ such that $\mu\left(T^{-1} E\right)=$ $=\mu(E)$ for all measurable $E \subset(0,1)^{n}$. In $[8,10,11]$ there are references and a discussion of these and related topics.

The problem here is to establish results for the Jacobi-Perron algorithm corresponding to those of $\S 2$. Certain measure theoretic difficulties exist in the proof of those results for general F-expansions in n-dimensions but they can be overcome in certain cases. The notation of the next theorem is the n-dimensional analogue of that in §2.

THEOREM 3. Let F and T be the transformations associated with the JacobiPerron algorithm. Then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{v\left(\mathrm{C}_{k}\left(a_{1}, \ldots, a_{l}\right) \cap A_{m}\right)}{m^{n}}=\lambda\left(T^{-k} B\left(a_{1}, \ldots, a_{l}\right)\right) \tag{7}
\end{equation*}
$$

Proof. $\mathrm{C}_{k}\left(a_{1}, \ldots, a_{l}\right)=\bigcup_{b_{1}, \ldots, b_{k}} B\left(b_{1}, b_{2}, \ldots, b_{k}, a_{1}, \ldots, a_{l}\right)$ where the B_{k+l} are convex polytopes in $(0,1)^{n}$. It is this property of the Jacobi-Perron algorithm which allows us to write \mathbf{R} and \mathbf{S} defined below as countable unions of rectangles and apply Lemma 1. We delete $\mathfrak{U}=\left\{x: a_{i}(x)\right.$ is undefined for some $\left.i=1, \ldots, k+l\right\} . \mathfrak{U}$ is a countable set of hyperplanes and hence $\lambda(\mathfrak{U})=0$. Thus $\mathbf{R}=\mathbf{C}_{k}\left(a_{1}, \ldots, a_{l}\right)$ can be obtained as a countable union of rectangles as can S equal the union of all B_{k+l} not included in \mathbf{R}. Equation (2) follows from Lemma 1.

The remaining Corollaries and Theorem of $\S 2$ hold for the Jacobi-Perron algorithm. [10] contains the results necessary in these proofs. For example, we have

$$
\lambda\left(T^{-1} B(a)\right)=\mu(B(a))+0\left(\varrho^{k}\right)
$$

where $\varrho=\left(1-1 /(n+1)^{n}\right)^{1 / n}$. See [4].). Thus Corollary 1 follows.

§4. Remarks

These methods can easily be extended to include β-expansions [7] and Cantor's series [9]. Most ergodic properties of expansions of reals will yield a corresponding statement about the expansion of $k / m, 0 \leqslant k<m$.

The invariant measure μ for the Jacobi-Perron algorithm is unknown if $n>1$. Corollary 1 would provide a foundation for a numerical approximation of this invariant measure. See [2] for a related treatment.

Consider any sequence $b_{m} \rightarrow+\infty$. Then if we define $A_{m}=\left\{0 / b_{m}, 1 / b_{m}, \ldots,\left[b_{m}\right] / b_{m}\right\}^{n}$, Lemma 1 holds. Therefore, Theorems 1 and 3 are valid for expansions of numbers like $k / \sqrt[3]{m}$, and, in this sense, algebraic numbers have expansions such that the digit a occurs with frequency $\mu(B(a))$. Thus, Corollary 1 holds for any such sequence. We are indebted to Professor T. S. Pitcher for this observation. See [1, p. 9] for some remarks of Professor Leon Bernstein regarding these matters.

Questions related to our work have been treated in a thesis by David B. Preston [6]. He notes that Theorem 2 holds in the case of 1-dimensional continued fractions with $g\left(a_{1}(x), \ldots, a_{k}(x)\right)=Q_{k-1}(x) / Q_{k}(x)$. Finally we wish to gratefully acknowledge several useful comments and suggestions by the referees.

REFERENCES

[1] Bernstein, L., The Jacobi-Perron Algorithm. Its Theory and Application. Lecture Notes in Mathematics 207, 1971. Springer-Verlag, Berlin-Heidelberg-New York.
[2] Beyer, W. A. and Waterman, M. S., Ergodic Computations with Continued Fractions and Jacobi's Algorithm, Numer. Math. 19, 195-105 (1972).
[3] Fischer, R., Ergodische Theorie von Ziffernentwicklungen in Wahrscheinlichkeitsraumen, Math. Z. 128, 217-230 (1972).
[4] FISCHER, R., Konvergenzgeschwindigkeit beim Jacobi algorithmus. To appear.
[5] Knuth, D. E., The Art of Computer Programming, Vol. 2, Seminumerical Algorithms (AddisonWesley, Reading Mass. 1969).
[6] Preston, D. B., The Distribution of the Number of Steps Required by the Euclidean Algorithm. Ph.D. Thesis, Stevens Institute of Technology 1971.
[7] Rényi, A., Representations for Real Numbers and Their Ergodic Properties, Acta Math. Acad. Sci. Hungar. 8, 477-493 (1957).
[8] Schweiger, F., Metrische Theorie einer Klasse Zahlentheoretischer Transformationen, Acta. Arith. 15, 1-18 (1968).
[9] Schweiger, F., Über den Satz von Borel-Renyi in der Theorie der Cantorschen Reihen, Monatsh. Math. 74, 150-153 (1970).
[10] Schweiger, F. and Waterman, M., Some Remarks on Kuzmin's Theorem for F-expansions, J. Number Theory 5, 123-131 (1973).
[11] Waterman, M., Some Ergodic Properties of Multi-dimensional F-expensions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 16, 77-103 (1970).

Idaho State University
Department of Mathematics
Pocatello, Idaho 83201
U.S.A.

