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F-Expansions of rationals 

M. S. Waterman 

The ergodic theorem has been used to deduce results about the F-expansions of 
almost all x in (0, 1)". A simple lemma from measure theory yields some corresponding 
statements about the expansions of the rationals, a set of measure zero. 

Q 1. Introduction 

There have been several papers dealing with the ergodic properties of F-expansiosn 
of n-dimensional reals ([3, 8, 10, 11)). For ~ ( 0 ,  l)", we have 

x = lim F (al (x) + F  (aZ (x) + + F  (ak  (x)) . . .)) . 
k+m 

Under certain conditions (see [I 13) we have the shift T ergodic and there exists a 
measure p - A, n-dimensional Lebesgue measure, such that T is ergodic and measure 
preserving with respect to p. The individual ergodic theorem yields, for  EL, (p), 

I m - 1  r 

In particular, iff=ZB(#), where B(a)= {x: [F-'(x)]=a}, then 
1 m - 1  

- ~Bc , , (~ ' (x ) )+p(~(a ) )  for a.a. x .  
m i = o  

Thus ergodic theory yields a statement concerning the distribution of digits in 
the expansion of almost all x. Much information of a similar character can be 
derived. 

This paper is an attempt to utilize these ergodic theory results to deduce related re- 
sults concerning the rationals, a set of Lebesgue measure zero. Our results are known 
for one-dimensional continued fractions [S, p. 3281 but do not appear to have been 
deduced for the general case. In this connection, see [2] for a computational treatment 
of one- and two-dimensional continued fractions. 
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0 2. One-dimensional F-expansions 

Our proof is based on a measure theoretic lemma and follows Knuth [5]. We define 
v ( E )  to be the cardinality of the set E. The lemma is proved for n-dimensions for use 
in $3. 

LEMMA 1. Let Am= {Olm, llm, ..., (m- l)/m}". Let R and S be countable unions 
ofdisjoint rectangles in [0, l]", R n S = + ,  and I ( R u S ) =  1 .  Then 

= I ( R )  v ( A m n R )  lim 
m + m  m" 

Proof. Now R = U Z l  Ri  and S =  UZl Si where each Ri and Si is of the form 
E=X= ZI, ZI an interval. Now 

n n n (ml(ZI)-l)<v(EnA,)< (ml(ZI)+l). ( 2 )  
I = 1  I =  1 

Choose N such that I (R)<I (R, )+& and 1 ( S ) < I ( S , ) + & ,  where R,=U:=, Ri  and 
S,= Uy= Si. Let UN= (R u S)' u Ui,N (R i  u Si), where the prime ' denotes comple- 
ment. Define rm = v (RN n Am), s, = v (S, n Am), urn= v (U, n Am). Note that rm +sm +urn 
=m". We easily have 

r m  r m + u m -  Sm -<--I---. 
m" m" m" (3) 

From ( 2 )  we can show 
N2" r, 
m mn 

1 (R,) - ~ < - 

and obtain 
N2" rm N2" 
m m  m 

A(R)-&--<-<L(R)+-. 

Thus, from (3) we obtain lim m + m  r,/m"=lim m-tm ( r ,  +um)/rnn=l(R) and (1) 
therefore holds. 

For our discussion of F-expansions we refer to [lo] and [ll]. In this section we 
deal one-dimensional F-expansions. In n-dimensions some measure theoretic diffi- 
culties arise. Let F be a function defining such an F-expansion. Then we define 
T ( x ) = F - ' ( x ) -  [ F - ' ( x ) ]  and a,(x)= [ F - l ( T v - l ( x ) ) ]  where x ~ ( 0 ,  1) .  Define 

B,=B(kl ,  k2 ,..., k,)= { x E ( O ,  1): a i ( x ) = k i ,  i = l ,  ..., v]. 
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Condition (A) or (B) of RCnyi [7]  assumes F either decreasing or increasing and in 
these cases each B, is an interval. The addition of another condition allows RCnyi 
to show there exists a measure p such that p is invariant with respect to T and 
C -'I ( E )  < p ( E )  < C1 ( E )  for all measurable sets E and some constant C depending 
on F only. This, of course, implies I and p are equivalent. Finally let ck (al ,  . . ., a,) = 
= Ub,, ..., bk B(bl ,  ..., bk, a,  ,..., a I )  which is the Set Of all points xE(0, 1) such that 

a k + l  (X)=al , . . . ,  a k + l ( X ) = a l .  

THEOREM 1 .  Suppose F satisfies condition (A) or (B) .  Then 

Proof. Let R = C, ( a l , .  . ., a,) and S equal the union of all Bk+ not included in R. 
Both R and S are unions of disjoint intervals, R n S = 4. Also U =  { x :  ai ( x )  is undefined 
for some 1 < i< k + I }  is countable and therefore 1 (U) = 0. The requirements of Lemma 
1 are satisfied and (4.) follows. 

COROLLARY 1. Zf F satisfies condition (A) or (B) and the assumptions of 
Kuzmin 's Theorem [lo], then 

where p is the invariant measure associated with the transformation T ( x ) =  F-' ( x )  
- [ F - ' ( x ) ] .  

Proof. Theorem 2 of  [lo] states I ( T - k B ( a l , . . . ,  a l ) ) + p ( B ( a l ,  ..., a,)). 
The previous results relate the number of X E A ,  with digits ai+k (x )=a i ,  i= 1, .. ., I ,  

to the measure of B(a, ,  ..., a I ) .  The next Theorem considers the average value of a 
function of the digits. It is possible to prove a more general theorem here. 

THEOREM 2. Let F be as in Corollary 1. Suppose g is real valued and xnlg(a)l 
x II (B(a))l< co where the summation is over all values a such that a =ai  ( x )  for some 
~ ( 0 ,  1): Then 

where thefirst summation in ( 6 )  is over X E A ,  such that a k + l  ( x )  is defined. 
Proof. Let p be the invariant measure associated with T. From C -'I ( E )  < p ( E )  

< CA ( E )  and p ( T - k E )  = p (E) ,  we have the following equivalent inequalities: 
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the result follows from Theorem 1 .  

COROLLARY 2. If F satisfies the assumptions of Corollary 1 and Theorem 2, 
then 

1 
lim lim - g ( a k + l ( X > ) = C g ( a ) l u ( B ( a ) ) .  
k+m m+m m X E A ,  a 

The last equality is by Theorem 2 of [lo]. 

hypothesis of Theorem 2. Then 
As an application take F such that all a i > l  and g(m)=log(m) satisfies the 

and 

lim lim c !  k +  lim m exp { 1 1 0 g ( a ~ + ~  (x)) d p ( x ) }  
k+m m+m 

f f  

Since T ( x ) =  l/x- [l/x] on (0, 1 )  is the shift for the digits of continued fractions, 
our results hold for continued fraction expansions of rationals. Theorem 1 and 
Corollary 1 are known in the case of continued fractions [S, p. 3281. Another example 
is q-adic expansions where q is an integer greater than 1 and T ( x )  = qx- [qx]. 

83. The Jacobi-Perron algorithm 

The Jacobi-Perron algorithm can be used to expand almost all x ~ ( 0 ,  1)". The F 
is defined by 

F(x)=F(x,,  x2, ..., xn) -  - 9  - 9  ' " Y  - * -(:" :: y) 



Vol. 13,1975 F-expansions of rationals 267 

Associated with this F we have 

T ( x ) = T ( x , ,  ...) x " )= (;; -- [;;Iy - ?-E], ...) 3 1 ) .  
a,  (.)=(E], E], . e . ,  [3 

and 

The convergence result is 
a,(x) = a , (T" - l (x ) ) .  

x = l i m F ( a , ( x ) + F ( . . - + F ( a , ( x ) )  ...)). 
V ' W  

F. Schweiger has examined measure theoretic properties of the Jacobi-Perron 
algorithm. Among other results, he has shown there exists p N 1 such that p ( T I E )  = 

= p ( ( E )  for all measurable E c ( 0 ,  1)". In [8, 10, 111 there are references and a dis- 
cussion of these and related topics. 

The problem here is to establish results for the Jacobi-Perron algorithm corre- 
sponding to those of $2. Certain measure theoretic difficulties exist in the proof of 
those results for general F-expansions in n-dimensions but they can be overcome in 
certain cases. The notation of the next theorem is the n-dimensional analogue of that 
in $2. 

THEOREM 3. Let F and T be the transformations associated with the Jacobi- 
Perron algorithm. Then 

Proof. C k ( a l Y . . . ,  a , )=Ub  ,,.,., br B(b, ,  b2, ..., bk, a,, ..., a,) where the B k + ,  are 
convex polytopes in (0, 1)". It is this property of the Jacobi-Perron algorithm which 
allows us to write R and S defined below as countable unions of rectangles and apply 
Lemma 1. WedeleteU=(x:q(x)isundefinedforsomei=l, ..., k + l ) .  Uisacount- 
able set of hyperplanes and hence 1 (U) = 0. Thus R = Ck (a, , .. ., a,) can be obtained as 
a countable union of rectangles as can S equal the union of all Bk+ , not included in R. 
Equation (2) follows from Lemma 1. 

The remaining Corollaries and Theorem of $ 2 hold for the Jacobi-Perron algorithm. 
[lo] contains the results necessary in these proofs. For example, we have 

1 (T-'B(a)) = P  ( B ( 4  +o (e", 

where e = (1 - l/(n + 1)")"". See [4].). Thus Corollary 1 follows. 
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$4. Remarks 

These methods can easily be extended to include P-expansions [7] and Cantor's 
series [9]. Most ergodic properties of expansions of reals will yield a corresponding 
statement about the expansion of klm, 0 < k < m. 

The invariant measure p for the Jacobi-Perron algorithm is unknown if n> 1. 
Corollary 1 would provide a foundation for a numerical approximation of this in- 
variant measure. See [Z] for a related treatment. 

Consider any sequence b, -, + 00. Then if we define A,,, = {O/b,, l/b,,,, . . ., [b,]/b,}", 
Lemma 1 holds. Therefore, Theorems 1 and 3 are valid for expansions of numbers 
like k lyrn ,  and, in this sense, algebraic numbers have expansions such that the digit 
a occurs with frequency p (B(a)) .  Thus, Corollary 1 holds for any such sequence. We 
are indebted to Professor T. S. Pitcher for this observation. See [1, p. 91 for some 
remarks of Professor Leon Bernstein regarding these matters. 

Questions related to our work have been treated in a thesis by David B. Preston 
[6]. He notes that Theorem 2 holds in the case of 1-dimensional continued fractions 
with g (at (x ) ,  . . . , a, ( x ) )  = Qk- (x)/Q, (x ) .  Finally we wish to gratefully acknowledge 
several useful comments and suggestions by the referees. 

REFERENCES 

[l] BERNSTEIN, L., The Jacobi-Perron Algorithm. Its Theory and Application. Lecture Notes in 

[2] BEYER, W. A. and WATERMAN, M. S., Ergodic Computations with Continued Fractions and 

[3] FISCHER, R., Ergodische Theorie von Ziffernentwicklungen in Wahrscheinlichkeitsraumen, Math. 

[4] FISCHER, R., Konvergenzgeschwindigkeit beim Jacobi algorithmus. To appear. 
[5] KNUTH, D. E., The Art of Computer Programming, Vol. 2, Seminumerical Algorithms (Addison- 

[6] PRESTON, D. B., The Distribution of the Number of Steps Required by the Euclidean Algorithm. 

[7] RBNYI, A., Representations for Real Numbers and Their Ergodic Properties, Acta Math. Acad. 

[8] SCHWEIGER, F., Metrische Theorie einer Klasse Zahlentheoretischer Transformationen, Acta. 

191 SCHWEIGER, F., Uber den Satz von Borel-Renyi in der Theorie der Cantorschen Reihen, Monatsh. 

[lo] SCHWEIGER, F. and WATERMAN, M., Some Remarks on Kuzmin's Theorem for F-expansions, 

[l 11 WATERMAN, M., Some Ergodic Properties of Multi-dimensionul F-expensions, Z .  Wahrschein- 

Mathematics 207, 1971. Springer-Verlag, Berlin-Heidelberg-New York. 

Jacobi's AIgorithm, Numer. Math. 19, 195-105 (1972). 

Z. 128, 217-230 (1972). 

Wesley, Reading Mass. 1969). 

Ph.D. Thesis, Stevens Institute of Technology 1971. 

Sci. Hungar. 8, 477493 (1957). 

Arith. 15, 1-18 (1968). 

Math. 74, 150-153 (1970). 

J. Number Theory 5, 123-131 (1973). 

lichkeitstheorie und Verw. Gebiete 16, 77-103 (1970). 
Idaho State University 
Department of Mathematics 
Pocatello, Idaho 83201 
U.S.A. 


