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F-Expansions of rationals

M. S. Waterman

The ergodic theorem has been used to deduce results about the F-expansions of
almost all x in (0, 1)". A simple lemma from measure theory yields some corresponding
statements about the expansions of the rationals, a set of measure zero.

§1. Introduction

There have been several papers dealing with the ergodic properties of F-expansiosn
of n-dimensional reals ([3, 8, 10, 11]). For xe(0, 1)", we have

x=lim F (a, (x)+F (a5 (x)+--- +F (a,(x))...)).
k- o
Under certain conditions (see [11]) we have the shift 7" ergodic and there exists a
measure u~ A, n-dimensional Lebesgue measure, such that 7' is ergodic and measure
preserving with respect to u. The individual ergodic theorem yields, for feL, (u),
1 m-1

— Y f(T'(x))~| fdu for aa.x.
mi=o

In particular, if f=1Ig,,, where B(a)={x:[F~!(x)]=a}, then

% ':g Ipy (T’ (x))>p(B(a)) for aa. x.

Thus ergodic theory yields a statement concerning the distribution of digits in
the expansion of almost all x. Much information of a similar character can be
derived.

This paper is an attempt to utilize these ergodic theory results to deduce related re-
sults concerning the rationals, a set of Lebesgue measure zero. Qur results are known
for one-dimensional continued fractions [5, p. 328] but do not appear to have been
deduced for the general case. In this connection, see [2] for a computational treatment
of one- and two-dimensional continued fractions.
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§2. One-dimensional F-expansions

Our proof is based on a measure theoretic lemma and follows Knuth [5]. We define
v(E) to be the cardinality of the set E. The lemma is proved for n-dimensions for use
in §3.

LEMMA 1. Let A,,={0/m, 1/m, ..., (m—1)/m}". Let R and S be countable unions
of disjoint rectangles in [0, 1]", RnS=¢, and A(RUS)=1. Then

A,nR
V(4nnR)

n

li

m— o0

=i(R). 1)

Proof. Now R=|J;2, R; and S=JZ, S; where each R; and S, is of the form
E=X]_, I, I, an interval. Now

[T (mi (1)~ 1)<y (En )< T (ma(1)+1). @)

Choose N such that A(R)<A(Ry)+¢ and 1(S)<A(Sy)+e, where Ry={J}-, R; and
Sv=UN; S;. Let Uy=(RUS) U ;> n(R;US;), where the prime ' denotes comple-
ment. Define r,,=v(Ry N 4,,), $,=v(Sy N 4,,); ty=v(Uy N 4,,). Note that r,,+s,, +u,
=m", We easily have

=12, (3)

From (2) we can show

and obtain

N2" r. N2
AR)—e——<—-<A(R)+—.
m m m

Thus, from (3) we obtain lim,., r,/m"=lim ., (r,+u,)/m"=A(R) and (1)
therefore holds.

For our discussion of F-expansions we refer to [10] and {11]. In this section we
deal one-dimensional F-expansions. In n-dimensions some measure theoretic diffi-
culties arise. Let F be a function defining such an F-expansion. Then we define
T(x)=F ' (x)—[F~'(x)] and a,(x)=[F ~*(T"~*(x))] where xe(0, 1). Define

BV=B(k1, kz,..., kv)={xE(0, 1): ai(x)-:ki, i=1,..., v}.




Vol. 13, 1975 F-expansions of rationals 265

Condition (A) or (B) of Rényi [7] assumes F either decreasing or increasing and in
these cases each B, is an interval. The addition of another condition allows Rényi
to show there exists a measure pu such that g is invariant with respect to 7 and
C'A(E)<u(E)< CA(E) for all measurable sets E and some constant C depending
on F only. This, of course, implies A and u are equivalent. Finally let C;(ay, ..., @)=
=Us,. ...0x B(by, ..., by, ay,..., @) which is the set of all points xe(0, 1) such that
@iy (X)=4y,..., @y (x)=a,

THEOREM 1. Suppose F satisfies condition (A) or (B). Then

11m y (Ck (al’ ooy al) N Am)

m-r a0 m

=1(Cy(ay, ..., 3))=A(T *B(ay, .., a)). (4

Proof. Let R=C,(a,,..., a;) and S equal the union of all B, ., not included in R.
Both R and S are unions of disjoint intervals, RN S =¢. Also U= {x:a;(x) is undefined
for some 1 <i<k +1} is countable and therefore A (U)=0. The requirements of Lemma
1 are satisfied and (4) follows.

COROLLARY 1. If F satisfies condition (A) or (B) and the assumptions of
Kuzmin’s Theorem [10], then

lim lim ACACTES a,)nA,,,)=”(B (ag,..., a)). (5)

k=0 m—o m

where p is the invariant measure associated with the transformation T(x)=F ' (x)
-[F (=]

Proof. Theorem 2 of [10] states (T~ *B(ay, ..., a))) = pu(B(ay, ..., a;)).

The previous results relate the number of xe 4,, with digits a;,,(x)=a;, i=1,..., ],
to the measure of B(ay,..., a;). The next Theorem considers the average value of a
function of the digits. It is possible to prove a more general theorem here.

THEOREM 2. Let F be as in Corollary 1. Suppose g is real valued and Y ,|g(a)|
x |A(B(a))| < oo where the summation is over all values a such that a=a;(x) for some
x€(0, 1): Then

lm - % g(a ()=5 8(0) A(TB(@)), ©)

m->o M xedn,

where the first summation in (6) is over x€ A, such that a, ., (x) is defined.
Proof. Let u be the invariant measure associated with 7. From C "'1(E)<u(E)
<CA(E) and pu(T *E)=p(E), we have the following equivalent inequalities:




266 M. S. Waterman AEQ. MATH.

Y..lg(a)l n(B(a))< o, Y,lg(a)l A(B(a))<oo, and Y ,|g(a)| A(T~*(B(a))< 0. Since

LS san()=Sa(e) @O0,

xe€dm

the result follows from Theorem 1.

COROLLARY 2. If F satisfies the assumptions of Corollary 1 and Theorem 2,
then

lim lim — Z gla,(x)= Zg(a),u(B(a))

ko m—o M xe4 m

Proof. Since A(T *(B(a)))<CA(B(a)) by an argument of Rényi [7] and
Y g(a) CA(B(a))< w0, the Bounded Convergence Theorem gives us

lim 3 g(a) 4(T™*(B(0)))=L g (a) lim 4 (T™(B(a))=Y g(a) u(B(a)).

k=+w a

The last equality is by Theorem 2 of [10].
As an application take F such that all a;>1 and g(m)=log(m) satisfies the
hypothesis of Theorem 2. Then

() e {§ mtrs20}

lim lim (mff - <£>)1/m= fim exp { J log (a1 (x)) du (x)}

k=0 m—w \ i=0 k= o

and

=exp U loga, (x) dp (x)} :

Since T(x)=1/x—[1/x] on (0, 1) is the shift for the digits of continued fractions,
our results hold for continued fraction expansions of rationals. Theorem 1 and
Corollary 1 are known in the case of continued fractions [5, p. 328]. Another example
is g-adic expansions where g is an integer greater than 1 and T(x)=g¢x— [gx].

§3. The Jacobi-Perron algorithm

The Jacobi-Perron algorithm can be used to expand almost all xe(0, 1)". The F
is defined by

X, X Xn

F(x)=F (xy, Xz, oy %) = <1 *1 ...,"H).
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Associated with this F we have
1 1
R o I o [ o))
X1 [ X1 ] %1 [x X Lxy
Xa X3 1
o1

a,(x)=a, (T""(x)).

and

The convergence result is

x=1lim F(a, (x)+F(--+F (a,(x))...)).

F. Schweiger has examined measure theoretic properties of the Jacobi-Perron
algorithm. Among other results, he has shown there exists i~ A such that u(T71E)=
=u(E) for all measurable Ec (0, 1)". In [8, 10, 11] there are references and a dis-
cussion of these and related topics.

The problem here is to establish results for the Jacobi-Perron algorithm corre-
sponding to those of §2. Certain measure theoretic difficulties exist in the proof of
those results for general F-expansions in #-dimensions but they can be overcome in

certain cases. The notation of the next theorem is the #-dimensional analogue of that
in §2.

THEOREM 3. Let F and T be the transformations associated with the Jacobi-
Perron algorithm. Then

tim (G (00 “‘)nA"‘)=/1(T"‘B (@4 ay)). (7

m- o m

Proof. Ci(ay,...,a)=\Us,, .. b B(by, bs,..., by, ay,..., a;) where the B,,, are
convex polytopes in (0, 1)". It is this property of the Jacobi-Perron algorithm which
allows us to write R and S defined below as countable unions of rectangles and apply
Lemma 1. We delete U = {x:4;(x) is undefined for some i=1,..., k+/}. U is a count-
able set of hyperplanes and hence 4 (U)=0. Thus R=C;(ay, ..., a;) can be obtained as
a countable union of rectangles as can S equal the union of all B, ,; not included in R.
Equation (2) follows from Lemma 1.

The remaining Corollaries and Theorem of § 2 hold for the Jacobi-Perron algorithm.
[10] contains the results necessary in these proofs. For example, we have

A(T~'B(a))=p(B(a))+0(c"),

where ¢=(1—1/(n+1)")!/". See [4].). Thus Corollary 1 follows.
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§4. Remarks

These methods can easily be extended to include f-expansions [7] and Cantor’s
series [9]. Most ergodic properties of expansions of reals will yield a corresponding
statement about the expansion of k/m, 0<k<m.

The invariant measure u for the Jacobi-Perron algorithm is unknown if n>1.
Corollary 1 would provide a foundation for a numerical approximation of this in-
variant measure. See [2] for a related treatment.

Consider any sequence b,, — + 0. Then if we define 4,,= {0/b,,, 1/, .., [60]/bm}"
Lemma 1 holds. Therefore, Theorems 1 and 3 are valid for expansions of numbers
like k//m, and, in this sense, algebraic numbers have expansions such that the digit
a occurs with frequency u (B(a)). Thus, Corollary 1 holds for any such sequence. We
are indebted to Professor T. S. Pitcher for this observation. See [1, p. 9] for some
remarks of Professor Leon Bernstein regarding these matters.

Questions related to our work have been treated in a thesis by David B. Preston
[6]. He notes that Theorem 2 holds in the case of 1-dimensional continued fractions
with g(a, (x), ..., @ (x)) =01 (x)/Qx (x). Finally we wish to gratefully acknowledge
several useful comments and suggestions by the referees.
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