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JACOBI'S SOLUTION OF LINEAR D I 0 P H A " E  EQUATIONS 

M. S. WATERMAN, Idaho State University, Pocatello 

1. Introduction. C. G. J. Jacobi's 1869 paper tfber die Auflosung der Gleich- 
ung, alxl + azxz + + ccpn = fu [l] is a careful treatment of linear Diophantine 
equations. Although Jacobi's first solution is exactly that used by modern authors 
such as Niven and Zuckerman [2, p. 94-98), he introduces the beautiful concept 
of equivalent systems of variables and uses this concept to establish the validity 
of his solution. 
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The purpose of this paper is to present the theory of equivalent systems of variables 
and apply them to linear Diophantine equations. The material on equivalent systems 
is, we feel, of interest in its own right and, while we try to follow Jacobi as much as 
possible, some of the work is not to be found in his paper. For example, Proposition 1 
and Theorems 2, 3, and 4 do not appear in Jacobi's paper. 

This material could compose the basis of an independent study project or take 
home exam in undergraduate number theory. 

2. Equivalent systems of variables. We begin with the basic definition. 

DEFINITION 1. Let X = (xl, x2, ..., x,,) and Y = ( y l y  y z ,  ..., yn) be 1 x n vectors 
of variables. X and Y a r e  said to be equivalent systems of variables if (1) each 
vector is dejined in terms of the other by a set of linear equations without constant 
term and (2) the vector X has integer values if and only i f  Y does. If X and Y a r e  
related in this fashion we will write X -  Y .  If X and Y a r e  not equivalent systems 
of variables, we will write X * Y .  

It is easy to show that (2) implies these matrices must have integer elements. 
Of course (1) means that X = Y A  and Y = X B  where A and B are n x n matrices. 

Jacobi also has another definition regarding linear systems. 

DEFINITION 2. Suppose X and Y a r e  1 x n vectors of variables and X = YAY 
Y = X B .  Then these two systems of linear equations are called reciprocal systems 
if A = B - I .  

Now we relate the two definitions. 
PROPOSITION 1. Suppose X - Y with X = Y A  and Y = X B .  Then these equa- 

tions represent reciprocal systems. 

Proof. We have X = YA = X ( B A )  so that X ( I - B A )  = 0. Since X is a vector 
of variables, we fix the index j and let x j  = 1 and x i  = 0 for all i # j. This implies 
the jth row of I - BA is the zero vector, and, since j is arbitrary, I - BA = 0. 
Similarly I - AB = 0 so that A = B-' . 

The next theorem shows that the set of possible matrices in equivalent systems 
of variables forms the unimodular group (with integer elements). 

THEOREM 1. Let X = Y A  where all xi's and y,'s are distinct variables and the 
elements of A are integers. Then X N Y i f  and onZy is det(A) = f 1. 

Proof. First assume X - Y. Then X = YA, Y = XB, and, by Proposition 1, 
A-' = B. Therefore, A-' must have integer elements. It follows that both detA 
and detA-' must be integers with (detA)(detA-') = 1. Therefore, detA = f 1. 

Next assume detA = & 1. Then Y = XA-' where A-' = (detA)-'(adj A) = 
f (adj A) has integer elements. 

To see why x, and y ,  must be distinct variables consider 
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Now det(i i) = 1 but the equations cannot hold unless y = 0. Therefore, 

As one would expect - is an equivalence relation. The proof is left as an exercise. 

THEOREM 2. N is an equivalence relation. 

We now need to define two operations. Let X = (x1,x2,.--,x,,) and 2 = (z1,z2, 
..., 2,). Define X v 2 = (x,, x,, ...) x,,, z,, z,, -.-, z,,). Also, let X g  Z be the vector 
of all x variables which are not also 2 variables. The next results study - under 
these operations. 

(x, t )  - ( Y ,  $1 - 

THEOREM 3. If X 1  - Y, and X 2  N Y,,  then X i  v X, - Y, v Y, .  

Proof. If X ,  = AIY,  and X ,  = A,Y2, then 

X , V X , = ( Y , V Y , ) ( ~  A2 ". 

The other equality follows in the same manner. 

THEOREM 4. Let X ,  - Y, and X 2  - Y, where t is an X, and a Y, variable. 

Proof. Using the proof of Theorem 3, 

Then ( X ,  v X 2 )  3 (0 - (Y1 v Y2) e(0. 

x, v x, = (Y, v Y , ) ( 2  O ). 
A,  

Take the equation for t and substitute for t into each other occurrence for t in this 
system of equations. Thus, we obtain ( X ,  v X, )  8 (1) as linear integer combination 
of ( Yi v Y,) 8 ( t )  . To complete the proof, reverse the roles of X ,  v X ,  and Y, v Y2.  

In Jacobi's paper he solves the equation 

alxl + a2xz + + a,,x,, = fu 

where f is the greatest common divisor of a,, a2, e . . )  a,, . (That is, f = (a,, az, e.., a,,).) 
He sets 

and introduces certain variables y , , y 3 , ~ . . , y ,  so that X - Y. Then the problem is 
solved since X = Y A  and, with y ,  fixed, we can let y 2 , y 3 ,  ..-, y,, vary over all possible 
integer values and obtain all possible values of X = (x,, x2,  .-., x,) .  

3. Two variable linear diophantine equations. In this section we give the usual 
Euclidean algorithm solution of 

(1) alxl +azx, = f u 

where al,a2 are fixed integers and f = (a1,a2). Of course ( a l / f , a 2 / f )  = 1 and 
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Euclid’s algorithm provides us with integers y and /3 such that 

Then, if z is an arbitrary integer, 

Our solution to (1) is then 

a2 a1 x i  = yu--z, x2 = -/3u+-z, 
(2) f f 

where z is an arbitrary integer. 
To see that (2) has all (xl,x2) such that (1) holds, write (2) as 

Note that det A = 1 . Thus (xi, x2)  - (u, z) and our solution is complete. 

we wish to solve 

(3) aixl + a2x2 + + anxn = f u 

where f = (aI ,az ,  -*.,an) and al,az, .-,a,, are integer constants. The main task is 
to find Y = (yl,y2, . . - ,yn)  such that X - Y. To do this some new equations must 
be introduced. 

4. General linear diophmthe equations. As we remarked in the first section, 

Let f2 = (a l ,a2) .  Then consider 

& X i +  a2x2 = f 2 Y 2  

By section 3, there exists zl such that (xl,x2) - (zl,y2). Then let f3 = (f2,a3) 
and consider 

f2Y2 + a3x3 = f 3 Y 3  

Again there exists z2 such that (yz, x 3 )  - (z2, y 3 ) .  
Letting f ,  = (fr-l ,aJ, i = 3, .-,n, we obtain the following equations: 

(4) 

& X i  + azx2 = f2Yz 9 

f 2 Y 2  + Q 3 X 3  = f3Y3 9 

f 3 Y 3  + Q4X4 = f i Y 4 9  

f n -  1Yn-  1 + cr ,xn  = f n Y n  * 

. . . . . . . . . . . . .  
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Of course y ,  = u and f, = f. 
Repeated applications of section 3 yield 

(Yn-1,xJ - ( z ~ - I , Y ~ *  
Theorem 4 applied to the first two lines of ( 5 )  yields ( x l r x 2 , x 3 )  - (zl, z 2 , y 3 )  

This relation and the third line (5) yields (xl, x2, x3,x4)  - (zl, z2, 23, y4). Pro- 
ceeding in the same manner, we obtain 

(X1,XZY * * . Y  x3 - (21,229 ..*Y Zts-1, Y3 

(x1, x2, .* .Y x.1 - (ZlrZ2,  *.*, %-I, 4. 
O t  

(6) 
Of course our solution is obtained in the obvious way from (5).  From the first 

two sets of equations, we eliminate y 2 .  Then successively, eliminate y 3 ,  y4 ,  ...y y n - l .  
This process was indicated in our passage from (5 )  to (6). Jacobi actually finds the 
matrices associated with (6) and therefore solves the linear diophantine equation. 
He shows the determinant of the two associated matrices is 1 but we do not include 
his further results here. 

This work was partly performed under the auspices of the U. S. Atomic Energy Commission 
while the author was a faculty participant of the Associated Western Universities at Los Alamos 
Scientific Laboratory. 
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