CANTOR'S SERIES FOR VECTORS

by M. S. WATERMAN

Reprinted from the AMERICAN MATHEMATICAL MONTHLY Vol. 82, No. 6 June–July, 1975 pp. 622–625

1

CANTOR'S SERIES FOR VECTORS

M. S. WATERMAN

Decimal expansions have been generalized in several directions. First, there are the well-known expansions with arbitrary integer bases. For a sequence of integers $q_1, q_2, \dots, (q_i \ge 2)$ Cantor [1] obtained the expansion

(1)
$$x = \sum_{m=1}^{\infty} \frac{a_m}{q_1 q_2 \cdots q_m},$$

where $x \in [0, 1)$ and $a_m \in \{0, 1, \dots, q_m - 1\}$. See [5] for a survey on expansions with references to Cantor's series. There are also expansions with non-integer bases [4, 5, 8, 9], negative bases [7], and similar expansions exist for complex numbers [2]. In *n*-dimensional Euclidean space, matrix expansions and their associated transformations have been studied extensively [3, 8]. The purpose of this note is to generalize Cantor series (1) to matrix expansions and to give a list of examples of such expansions.

Let *n* be a fixed positive integer and Q_1, Q_2, \cdots be a sequence of nonsingular $n \times n$ matrices. We take | | to be a norm on *n*-dimensional Euclidean space and take | | | to be a compatible matrix norm (i.e., $|Qx| \leq ||Q|| \cdot |x|$). (See Lancaster [6] for material on matrix norms.) Let $I = \times_{i=1}^{n} [0, 1)$ and assume $|x| \leq B$ for $x \in I$. Next we make some fundamental definitions.

$$T^{(i)}(x) = Q_{i}x - [Q_{i}x] \qquad (i \ge 1),$$

$$T_{m} = T^{(m)} \circ T^{(m-1)} \circ \cdots \circ T^{(1)} \qquad (m \ge 1),$$

$$a_{1}(x) = [Q_{1}x],$$

$$a_{m}(x) = [Q_{m}(T_{m-1}(x))] \qquad (m \ge 2),$$

where $[(y_1, y_2, \dots, y_n)^T] = ([y_1], [y_2], \dots, [y_n])^T$ and [] is the usual greatest integer function in this last expression.

THEOREM. Assume $\sup_i \|Q_i^{-1}\| < 1$. Then

(2)
$$x = \sum_{i=1}^{\infty} (Q_i Q_{i-1} \cdots Q_1)^{-1} a_i(x).$$

Proof. $x = Q_1^{-1}Q_1x = Q_1^{-1}(a_1(x) + T_1(x)) = Q_1^{-1}a_1(x) - Q_1^{-1}T_1(x)$. For our induction, assume for a positive integer *m* that

(3)
$$x = \sum_{i=1}^{m} Q_1^{-1} Q_2^{-1} \cdots Q_i^{-1} a_i(x) + Q_1^{-1} Q_2^{-1} \cdots Q_m^{-1} T_m(x).$$

MATHEMATICAL NOTES

Then $Q_1^{-1}Q_2^{-1}\cdots Q_m^{-1}T_m(x) = Q_1^{-1}Q_2^{-1}\cdots Q_m^{-1}Q_{m+1}^{-1}(a_{m+1}(x) + T_{m+1}(x))$ and (3) holds for all *m*. Therefore, since $T_m(x) \leq B$,

$$\lim_{m \to \infty} \left| x - \sum_{i=1}^{m} Q_{1}^{-1} Q_{2}^{-1} \cdots Q_{i}^{1} a_{i}(x) \right| = \lim_{m \to \infty} \left| Q_{1}^{-1} Q_{2}^{-1} \cdots Q_{m}^{-1} T_{m}(x) \right|$$

$$\leq \lim_{m \to \infty} B \left\| Q_{1}^{-1} \right\| \left\| Q_{2}^{-1} \right\| \cdots \left\| Q_{m}^{-1} \right\| \leq B \lim_{m \to \infty} (\sup_{i} \left\| Q_{i}^{-1} \right\|^{m}) = 0.$$

Thus (2) holds and the theorem is proved.

Clearly the theorem holds when $||(Q_m Q_{m-1} \cdots Q_1)^{-1}|| \to 0$ as $m \to \infty$. Under the assumptions of the theorem, the convergence is geometric with rate $B(\sup_i || Q_i^{-1} ||)^m$.

Next we give some examples, both general and numerical, of the theorem. As noted below, examples 1, 2, and 3 are known. In the case n > 1 and the Q_i are not all identical, the result was not known. Example 4 gives a numerical example of this situation.

Example 1. If n = 1 and | |, || are both the usual absolute value on the real line, we can obtain the results mentioned above for any $x \in [0, 1)$. If $Q_i \equiv q$ is a positive integer then

(4)
$$x = \sum_{m=1}^{\infty} \frac{a_m(x)}{q^m}, \quad a_m(x) \in \{0, 1, \dots, q-1\}.$$

This is the usual q-adic expansion. If $Q_i \equiv \beta$ where $\beta > 1$ and β is not an integer, then

(5)
$$x = \sum_{m=1}^{\infty} \frac{a_m(x)}{\beta^m}, \quad a_m(x) \in \{0, 1, \dots, [\beta]\}.$$

These β -expansions have been extensively studied [3, 4, 5, 9, 10]. If we let $Q_i = \gamma_i, \gamma_i \in \mathbb{R}$, $\inf_i |\gamma_i| > 1$, then

(6)
$$x = \sum_{m=1}^{\infty} \frac{a_m(x)}{\gamma_1 \gamma_2 \cdots \gamma_m}.$$

This last formulation allows expansions with negative bases (e.g., -10) as well as mixtures of integral and non-integral positive and negative numbers. For some material on expansions with negative radices, see [7].

Example 2. Let
$$n = 2$$
. If $Q_i \equiv \begin{bmatrix} r & -q \\ q & r \end{bmatrix} = Q$, then $Qx = (rx_1 - qx_2, qx_1 + rx_2)^T$

which is equivalent to $(x_1 + ix_2) (r + iq) = (rx_1 - qx_2) + i(qx_1 + rx_2)$. Therefore if we take

$$|x| = \sqrt{x_1^2 + x_2^2}$$
 and $||Q|| = \sqrt{r^2 + q^2}$,

1975]

we have $|Qx| \leq ||Q|| |x|$ by the theory of complex numbers. Of course, $||Q^{-1}|| = (r^2 + q^2)^{-1/2}$. Thus

(7)
$$x = \sum_{m=1}^{\infty} Q^{-m} a_m(x),$$

and the expansion is valid for complex numbers $x = x_1 + x_2 i (|x_1| < 1)$ with complex base satisfying $r^2 + q^2 > 1$. This transformation and the expansion have been studied by Fischer [2, 3].

Example 3. If $|x|^2 = \sum_{i=1}^{n} x_i^2$, then $||Q||^2 = \sum_{i,j} q_{ij}^2$ is a compatible matrix norm. As a specific numerical example with n = 2, we take $x^{T} = (1/2, 3/4)$ and $Q = \begin{bmatrix} 2 & 0 \\ 2/3 & 4/3 \end{bmatrix}$. Then $Q^{-1} = \begin{bmatrix} 1/2 & 0 \\ -1/4 & 3/4 \end{bmatrix}$ and $\|Q^{-1}\|^2 = 7/8 < 1$. We compute $a_1(x) = (1,1)^T$

$$a_2(x) = a_3(x) = a_4(x) = (0,0)^T$$

 $a_5(x) = (0,1)^T$.

The fifth order approximation to x is $Q^{-1}a_1(x) - Q^{-5}a_5(x) = (1/2, 755/1024)^T$. Finally we check the rate of convergence.

 $|x - Q^{-1}a_1(x) - Q^{-5}a_5(x)| = |(0, 13/1024)^T| = (13/1024) < 2(7/8)^{5/2}$.

The last inequality is by the guaranteed rate of convergence given in the proof of the theorem where $B = \sup_{x \in I} |x| = 2$.

Example 4. If $|x| = \max\{|x_i|: 1 \le i \le n\}$, then $||Q|| = n \max\{|q_{ii}|: 1 \le i\}$, $j \leq n$ is a compatible matrix norm. For the matrices given in Table 1 below, we have

m	1	2	3	4
Q _m	$ \left(\begin{array}{cc} 3/2 & 3/2 \\ -3/2 & 3/2 \end{array}\right) $	4 0 4/3 8/3	$\left(\begin{array}{rrr} 8 & -4 \\ -8 & 8 \end{array}\right)$	$ \left(\begin{array}{cc} 3/2 & -3/2 \\ 3/2 & 3/2 \end{array}\right) $
Q_m^{-1}	$ \begin{bmatrix} 1/3 & -1/3 \\ 1/3 & 1/3 \end{bmatrix} $	$ \begin{pmatrix} 1/4 & 0 \\ -1/8 & 3/8 \end{pmatrix} $	$ \left(\begin{array}{ccc} 1/4 & 1/8 \\ 1/4 & 1/4 \end{array}\right) $	$ \begin{pmatrix} 1/3 & 1/3 \\ -1/3 & 1/3 \end{pmatrix} $
$\left Q_{m}^{-1}\right $	2/3	3/4	1/2	2/3
$a_m^T(x)$	(0, 1)	(2,0)	(-3, 5)	(0, 1)
$A_m^T(x)$	(1/3, 1/3)	(7/12, 5/12)	(97/192, 91/192)	(1/2, 1/2)

TABLE 1. Expansion of $(1/2, 1/2)^T$

624

$$(1/2, 1/2)^{T} = Q_{1}^{-1}(1, 0)^{T} + (Q_{2}Q_{1})^{-1}(2, 0)^{T} + (Q_{3}Q_{2}Q_{1})^{-1}(-3, 5)^{T} + (Q_{4}Q_{3}Q_{2}Q_{1})^{-1}(0, 1)^{T}.$$

Let $A_m(x) = \sum_{m=1}^{\infty} (Q_i \cdots Q_1)^{-1} a_i(x)$ in Table 1.

This work was supported in part by National Science Foundation grants GP-28313 and GP-28313 #1.

References

1. G. Cantor, Über die einfachen Zahlensysteme, Z. Math. und Physik, 14 (1869) 121-128.

2. R. Fischer, Ergodische Eigenschaften komplexer Ziffernentwicklungen, S.-B. Osterr. Akad. Wiss. Math.-Natur. Kl. Abt. II, 180 (1972) 49-68.

3. — , Mischungsgeschwindigkeit für Ziffernentwicklungen nach reellen Matrizen, Acta Arith., 23 (1973) 5-12.

4. J. Galambos, A generalization of a theorem of Borel concerning the distribution of digits in dyadic expansions, this MONTHLY, 78 (1971) 774-779.

5. ——, Probabilistic theorems concerning expansions of real numbers, Periodica Math. Hungar., 3 (1973) 101–113.

6. P. Lancaster, Theory of Matrices, Academic Press, New York, 1969.

7. A. Oppenheim, Criteria for irrationality of certain classes of numbers, this MONTHLY, 61 (1954) 235-241.

8. W. Philipp, Mischungseigenschaften gewisser auf dem Torus definierter Endomorphismen, Math. Zeitschr., 101 (1967) 369-374.

9. W. Parry, On the β -expansions of a real number, Acta Math. Acad. Sci. Hungar., 15 (1964) 107-113.

10. A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar., 8 (1957) 477-493.

DEPARTMENT OF MATHEMATICS, IDAHO STATE UNIVERSITY, POCATELLO, ID 83209.

1975]