CANTOR'S SERIES FOR VECTORS

BY

M. S. WATERMAN

Reprinted from the American Mathematical Monthly Vol. 82, No. 6 June-July, 1975 pp. 622-625

CANTOR'S SERIES FOR VECTORS

M. S. Waterman

Decimal expansions have been generalized in several directions. First, there are the well-known expansions with arbitrary integer bases. For a sequence of integers $q_{1}, q_{2}, \cdots\left(q_{i} \geqq 2\right)$ Cantor [1] obtained the expansion

$$
\begin{equation*}
x=\sum_{m=1}^{\infty} \frac{a_{m}}{q_{1} q_{2} \cdots q_{m}}, \tag{1}
\end{equation*}
$$

where $x \in[0,1)$ and $a_{m} \in\left\{0,1, \cdots, q_{m}-1\right\}$. See [5] for a survey on expansions with references to Cantor's series. There are also expansions with non-integer bases [4,5,8,9], negative bases [7], and similar expansions exist for complex numbers [2]. In n-dimensional Euclidean space, matrix expansions and their associated transformations have been studied extensively $[3,8]$. The purpose of this note is to generalize Cantor series (1) to matrix expansions and to give a list of examples of such expansions.

Let n be a fixed positive integer and Q_{1}, Q_{2}, \cdots be a sequence of nonsingular $n \times n$ matrices. We take \mid to be a norm on n-dimensional Euclidean space and take \| \| to be a compatible matrix norm (i.e., $|Q x| \leqq\|Q\| \cdot|x|$). (See Lancaster [6] for material on matrix norms.) Let $I=X_{i=1}^{n}[0,1)$ and assume $|x| \leqq B$ for $x \in I$. Next we make some fundamental definitions.

$$
\begin{aligned}
T^{(i)}(x) & =Q_{i} x-\left[Q_{i} x\right] & & (i \geqq 1), \\
T_{m} & =T^{(m)} \circ T^{(m-1)} \circ \cdots \circ T^{(1)} & & (m \geqq 1), \\
a_{1}(x) & =\left[Q_{1} x\right], & & \\
a_{m}(x) & =\left[Q_{m}\left(T_{m-1}(x)\right)\right] & & (m \geqq 2),
\end{aligned}
$$

where $\left[\left(y_{1}, y_{2}, \cdots, y_{n}\right)^{T}\right]=\left(\left[y_{1}\right],\left[y_{2}\right], \cdots,\left[y_{n}\right]\right)^{T}$ and $[\quad]$ is the usual greatest integer function in this last expression.

Theorem. Assume $\sup _{i}\left\|Q_{i}^{-1}\right\|<1$. Then

$$
\begin{equation*}
x=\sum_{i=1}^{\infty}\left(Q_{i} Q_{i-1} \cdots Q_{1}\right)^{-1} a_{i}(x) \tag{2}
\end{equation*}
$$

Proof. $x=Q_{1}^{-1} Q_{1} x=Q_{1}^{-1}\left(a_{1}(x)+T_{1}(x)\right)=Q_{1}^{-1} a_{1}(x)-Q_{1}^{-1} T_{1}(x)$. For our induction, assume for a positive integer m that

$$
\begin{equation*}
x=\sum_{i=1}^{m} Q_{1}^{-1} Q_{2}^{-1} \cdots Q_{i}^{-1} a_{i}(x)+Q_{1}^{-1} Q_{2}^{-1} \cdots Q_{m}^{-1} T_{m}(x) \tag{3}
\end{equation*}
$$

Then $Q_{1}^{-1} Q_{2}^{-1} \cdots Q_{m}^{-1} T_{m}(x)=Q_{1}^{-1} Q_{2}^{-1} \cdots Q_{m}^{-1} Q_{m+1}^{-1}\left(a_{m+1}(x)+T_{m+1}(x)\right)$ and (3) holds for all m. Therefore, since $T_{m}(x) \leqq B$,

$$
\begin{aligned}
& \lim _{m \rightarrow \infty}\left|x-\sum_{i=1}^{m} Q_{1}^{-1} Q_{2}^{-1} \cdots Q_{i}^{1} a_{i}(x)\right|=\lim _{m \rightarrow \infty}\left|Q_{1}^{-1} Q_{2}^{-1} \cdots Q_{m}^{-1} T_{m}(x)\right| \\
& \leqq \lim _{m \rightarrow \infty} B\left\|Q_{1}^{-1}\right\|\left\|Q_{2}^{-1}\right\| \cdots\left\|Q_{m}^{-1}\right\| \leqq B \lim _{m \rightarrow \infty}\left(\sup _{i}\left\|Q_{i}^{-1}\right\|^{m}\right)=0 .
\end{aligned}
$$

Thus (2) holds and the theorem is proved.
Clearly the theorem holds when $\left\|\left(Q_{m} Q_{m-1} \cdots Q_{1}\right)^{-1}\right\| \rightarrow 0$ as $m \rightarrow \infty$. Under the assumptions of the theorem, the convergence is geometric with rate $B\left(\sup _{i}\left\|Q_{i}^{-1}\right\|\right)^{m}$.

Next we give some examples, both general and numerical, of the theorem. As noted below, examples 1,2 , and 3 are known. In the case $n>1$ and the Q_{i} are not all identical, the result was not known. Example 4 gives a numerical example of this situation.

Example 1. If $n=1$ and $|\mid,\| \|$ are both the usual absolute value on the real line, we can obtain the results mentioned above for any $x \in[0,1)$. If $Q_{i} \equiv q$ is a positive integer then

$$
\begin{equation*}
x=\sum_{m=1}^{\infty} \frac{a_{m}(x)}{q^{m}}, \quad a_{m}(x) \in\{0,1, \cdots, q-1\} \tag{4}
\end{equation*}
$$

This is the usual q-adic expansion. If $Q_{i} \equiv \beta$ where $\beta>1$ and β is not an integer, then

$$
\begin{equation*}
x=\sum_{m=1}^{\infty} \frac{a_{m}(x)}{\beta^{m}}, \quad a_{m}(x) \in\{0,1, \cdots,[\beta]\} . \tag{5}
\end{equation*}
$$

These β-expansions have been extensively studied $[3,4,5,9,10]$. If we let $Q_{i}=\gamma_{i}, \gamma_{i} \in R$, inf $_{i}\left|\gamma_{i}\right|>1$, then

$$
\begin{equation*}
x=\sum_{m=1}^{\infty} \frac{a_{m}(x)}{\gamma_{1} \gamma_{2} \cdots \gamma_{m}} . \tag{6}
\end{equation*}
$$

This last formulation allows expansions with negative bases (e.g., -10) as well as mixtures of integral and non-integral positive and negative numbers. For some material on expansions with negative radices, see [7].

Example 2. Let $n=2$. If $Q_{1} \equiv\left[\begin{array}{rr}r & -q \\ q & r\end{array}\right]=Q$, then $Q x=\left(r x_{1}-q x_{2}, q x_{1}+r x_{2}\right)^{T}$ which is equivalent to $\left(x_{1}+i x_{2}\right)(r+i q)=\left(r x_{1}-q x_{2}\right)+i\left(q x_{1}+r x_{2}\right)$. Therefore if we take

$$
|x|=\sqrt{x_{1}^{2}+x_{2}^{2}} \text { and }\|Q\|=\sqrt{r^{2}+q^{2}}
$$

we have $|Q x| \leq\|Q\||x|$ by the theory of complex numbers. Of course, $\left\|Q^{-1}\right\|$ $=\left(r^{2}+q^{2}\right)^{-1 / 2}$. Thus

$$
\begin{equation*}
x=\sum_{m=1}^{\infty} Q^{-m} a_{m}(x) \tag{7}
\end{equation*}
$$

and the expansion is valid for complex numbers $x=x_{1}+x_{2} i\left(\left|x_{j}\right|<1\right)$ with complex base satisfying $r^{2}+q^{2}>1$. This transformation and the expansion have been studied by Fischer [2,3].

Example 3. If $|x|^{2}=\Sigma_{i=1}^{n} x_{i}^{2}$, then $\|Q\|^{2}=\Sigma_{i, j} q_{i j}^{2}$ is a compatible matrix norm. As a specific numerical example with $n=2$, we take $x^{T}=(1 / 2,3 / 4)$ and $Q=\left[\begin{array}{cc}2 & 0 \\ 2 / 3 & 4 / 3\end{array}\right]$. Then $Q^{-1}=\left[\begin{array}{rr}1 / 2 & 0 \\ -1 / 4 & 3 / 4\end{array}\right]$ and $\left\|Q^{-1}\right\|^{2}=7 / 8<1$. We compute

$$
\begin{aligned}
& a_{1}(x)=(1,1)^{T} \\
& a_{2}(x)=a_{3}(x)=a_{4}(x)=(0,0)^{T} \\
& a_{5}(x)=(0,1)^{T} .
\end{aligned}
$$

The fifth order approximation to x is $Q^{-1} a_{1}(x)-Q^{-5} a_{5}(x)=(1 / 2,755 / 1024)^{T}$. Finally we check the rate of convergence.

$$
\left|x-Q^{-1} a_{1}(x)-Q^{-5} a_{5}(x)\right|=\left|(0,13 / 1024)^{T}\right|=(13 / 1024)<2(7 / 8)^{5 / 2} .
$$

The last inequality is by the guaranteed rate of convergence given in the proof of the theorem where $B=\sup _{x \in I}|x|=2$.

Example 4. If $|x|=\max \left\{\left|x_{i}\right|: 1 \leqq i \leqq n\right\}$, then $\|Q\|=n \max \left\{\left|q_{i j}\right|: 1 \leqq i\right.$, $j \leqq n\}$ is a compatible matrix norm. For the matrices given in Table 1 below, we have

Table 1. Expansion of $(1 / 2,1 / 2)^{T}$

m	1	2	3	4		
Q_{m}	$\left[\begin{array}{rr}3 / 2 & 3 / 2 \\ -3 / 2 & 3 / 2\end{array}\right]$	$\left[\begin{array}{cc}4 & 0 \\ 4 / 3 & 8 / 3\end{array}\right]$	$\left[\begin{array}{cc}8 & -4 \\ -8 & 8\end{array}\right]$	$\left[\begin{array}{cc}3 / 2 & -3 / 2 \\ 3 / 2 & 3 / 2\end{array}\right]$		
Q_{m}^{-1}	$\left[\begin{array}{rr}1 / 3 & -1 / 3 \\ 1 / 3 & 1 / 3\end{array}\right]$	$\left[\begin{array}{cc}1 / 4 & 0 \\ -1 / 8 & 3 / 8\end{array}\right]$	$\left[\begin{array}{ll}1 / 4 & 1 / 8 \\ 1 / 4 & 1 / 4\end{array}\right]$	$\left[\begin{array}{cc}1 / 3 & 1 / 3 \\ -1 / 3 & 1 / 3\end{array}\right]$		
$\left\\|Q_{m}^{-1}\right\\|$	2/3	3/4	1/2	2/3		
$a_{m}^{T}(x)$	$(0,1)$	$(2,0)$	$(-3,5)$	$(0,1)$		
$A_{m}^{T}(x)$	(1/3, 1/3)	(7/12, 5/12)	(97/192, 91/192)	(1/2, 1/2)		

$$
\begin{aligned}
(1 / 2,1 / 2)^{T}= & Q_{1}^{-1}(1,0)^{T}+\left(Q_{2} Q_{1}\right)^{-1}(2,0)^{T}+\left(Q_{3} Q_{2} Q_{1}\right)^{-1}(-3,5)^{T} \\
& +\left(Q_{4} Q_{3} Q_{2} Q_{1}\right)^{-1}(0,1)^{T} .
\end{aligned}
$$

Let $A_{m}(x)=\Sigma_{m=1}\left(Q_{i} \cdots Q_{1}\right)^{-1} a_{i}(x)$ in Table 1 .
This work was supported in part by National Science Foundation grants GP-28313 and GP-28313 \#1.

References

1. G. Cantor, Uber die einfachen Zahlensysteme, Z. Math. und Physik, 14 (1869) 121-128.
2. R. Fischer, Ergodische Eigenschaften komplexer Ziffernentwicklungen, S.-B. Osterr. Akad. Wiss. Math.-Natur. Kl. Abt. II, 180 (1972) 49-68.
3. ——_, Mischungsgeschwindigkeit für Ziffernentwickłungen nach reellen Matrizen, Acta Arith., 23 (1973) 5-12.
4. J. Galambos, A generalization of a theorem of Borel concerning the distribution of digits in dyadic expansions, this Monthly, 78 (1971) 774-779.
5. -, Probabilistic theorems concerning expansions of real numbers, Periodica Math. Hungar., 3 (1973) 101-113.
6. P. Lancaster, Theory of Matrices, Academic Press, New York, 1969.
7. A. Oppenheim, Criteria for irrationality of certain classes of numbers, this Monthly, 61 (1954) 235-241.
8. W. Philipp, Mischungseigenschaften gewisser auf dem Torus definierter Endomorphismen, Math. Zeitschr., 101 (1967) 369-374.
9. W. Parry, On the β-expansions of a real number, Acta Math. Acad. Sci. Hungar., 15 (1964) 107-113.
10. A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar., 8 (1957) 477-493.

Department of Mathematics, Idaho State Universtiy, Pocatello, ID 83209.

