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M. s. WATERMAN 

Decimal expansions have been generalized in several directions. First, there are 
the well-known expansions with arbitrary integer bases. For a sequence of integers 
ql,qz,  ... (qi 2 2) Cantor [l] obtained the expansion 

m 
a m  x =  I: 

m = 1  q l q 2 * * ' q n  ' (1) 

where x E [0, 1) and a, E (0, 1, . . a ,  qm - l}. See [5] for a survey on expansions with 
references to Cantor's series. There are also expansions with non-integer bases 
[4,5,8,9], negative bases [7], and similar expansions exist for complex numbers [2]. 
In n-dimensional Euclidean space, matrix expansions and their associated transfor- 
mations have been studied extensively [3,8]. The purpose of this note is to generalize 
Cantor series (1) to matrix expansions and to give a list of examples of such ex- 
pansions. 

Let n be a fixed positive integer and Ql,Q2,...  be a sequence of nonsingular 
n x n matrices. We take I I to be a norm on n-dimensional Euclidean space and 
take I( )I to be a compatible matrix norm (ix, I Qx I 5 (1 Q 11 I x 1). (See Lancaster 
[q for material on matrix norms.) Let J = X,"=, [0, 1) and assume I x 1 5 B for 
x E I. Next we make some fundamental definitions. 

T(')(x) = Qix - [Q~x] (i r 0, 
T, = T("')o T('"-')o o T"' (m 2 l), 

a,(.) = LQ1.1, 

4 x 1  = [QmK - i(x))I (m 2 2)s 

I 

, 

I 

where [(yl, y, ,  . . e ,  yJT] = ([yl], [y,], - . a ,  [y.])' and [ ] is the usual greatest integer 
function in this last expression. 

THEOREM. Assume supi 11 QF' I] < 1. Then 

Proof. x = Q;'Qlx = Q;'(a,(x) + Tl(x)) = Q;'a,(x) - Q;'T,(x). For our 
induction, assume for a positive integer m that 

rn 

I- 1 
x = X Q;~Q;' ... Q ; ' U ~ X )  + Q;IQ;' ... Q,-'T,(X). (3) 
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Then Qi-'Q;'-Q~'T,(~) = Q~lQ;l...Q,lQ~:l(~,+l(~) + Tm+&)) and (3) 
holds for all m. Therefore, since T,(x) 5 B, 

m 
lim I x  - 

4 lim 11 Q; ' 11 11 QT 11 
Q;~Q;~.-Q:&)I = lim IQ;~Q;~--Q;~T,(X)~ 

11 Q i  I[ 5 B lim (SUP 11 Qt- 11"') = 0. 

m-rm i = 1  m-r 03 

m-ca i m-r w 

Thus (2) holds and the theorem is proved. 
Clearly the theorem holds when lI(QmQm-l e,)-' 11 -+ 0 as m + 00. Under the 

assumptions of the theorem, the convergence is geometric with rate B(supi 11 Q;'II)". 
Next we give some examples, both general and numerical, of the theorem. As 

noted below, examples 1, 2, and 3 are known. In the case n > 1 and the Qi are not 
all identical, the result was not known. Example 4 gives a numerical example of this 
situation. 

11 are both the usual absolute value on the real 
4 is a 

Example 1. If n = 1 and I I, 11 
line, we can obtain the results mentioned above for any x E [0, 1). If Qi 
positive integer then 

x =  - am(x) a&) E (0, 1, .e*, 4 - 1). 
m = i  4"' ' (4) 

This is the usual q-adic expansion. If Qi 
ger, then 

B where B>1 and /3 is not an inte- 

( 5 )  

These /3-expansions have been extensively studied [3, 4, 5, 9, lo]. If we let 
Qi = Yi, Y i  ER, infi I yi I > 1, then 

I 

This last formulation allows expansions with negative bases (e.g., - 10) as well as 
mixtures of integral and non-integral positive and negative numbers. For some 
material on expansions with negative radkes, see m. 

Example 2. Let n = 2. If Q, = - :]= Q, then Qx=(~x, - q x z , q x i  + ~ X Z ) ~  

which is equivalent to (xl + ix,) ( r  + iq) = (rx,  - qx,) + (4x1 + rx2). Therefore 
if we take 

1x1 = ,/m and IlQll = J r 2 + 4 2 ,  
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we have I Qx I 6 11 Q 11 I x I by the theory of complex numbers. Of course, 11 Q-'ll 
= (r2 + q2)-lI2. n u s  

(7) 

and the expansion is valid for complex numbers x = x1 + x2i  (I x j  I < 1) with 
complex base satisfying r2 + q2 > 1. This transformation and the expansion have 
been studied by Fischer [2,3]. 

Example 3. If I x I 2  = E:3: x:, then 11 Q 112= E,,, q t  is a compatible matrix norm. 
rc. * - I  

12;3 ;3 J. As a specific numerical example with n = 2, we take xT = (1/2,3/4) and Q = 

Then Q-' = [ - i;f 3,9 and 11 Q-' 11' = 718 < 1. We compute 

= (1,V 

a4x)  = a&) = a&) = (0,Oy 

a&) = (0,1)? 

The fifth order approximation to x is Q -'a,(x) - Q -'u,(x) = (1/2, 75511024)'. 
Finally we check the rate of convergence. 

I x - Q-'al(x) - Q-'u,(x) I = I(0, 13/1024)T 1 = (13/1024) < 2(7/8)5'2 . 
The last inequality is by the guaranteed rate of convergence given in the proof of 
the theorem where B = supx E I 1 x I = 2. 

Example 4. If 1x1 = max{lxrl: 1 s i s n}, then IIQII = n rnax{lq,,(: 1 s i, 
j S n) is a compatible matrix norm. For the matrices given in Table 1 below, we have 

T ~ L R  I. Expansion of (IP, 1/2f 

m 1 1 1 2 1  3 1 4  
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