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Abstract

A sufficient condition for the existence of an invariant measure is given
that is useful in number theory. A connection with a problem of Blum is
pointed out. Kuzmin’s theorem is considered from an operator point of
view, and the Chacon-Ornstein theorem is applied to give almost everywhere

Cesaro convergence to the density of the invariant measure.

1. Introduction

Much of the modern work in the metric theory of number theoretic

formation associated with these expansions. One of the first prob-
lems is the existence of an invariant measure. For a few cases, such
as the one-dimensional continued fraction, ¢g-adic expansions, and
p-expansions, the invariant measure is known [6, 8]. However, in
the more general situation such as f-expansions and F-expansions,
it is not easy to exhibit the invariant measure and an existence
theorem is required [2, 6, 11]. Section 2 of this paper gives a proof

" expansions depends on an invariant measure for the shift trans-
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section are somewhat more general than indicated here.

Scientific Laboratory.

of the existence of an invariant measure that is distinct from the
methods used in the papers cited above. The considerations of that

Even after an invariant measure u is shown to exist we must
search for an effective way to compute it. That is, we would like
to evaluate u(4) for all Borel sets 4. Kuzmin’s theorem and its
generalizations [3, 4, 9, 10] have been very useful in this regard.
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The proofs of these theorems are quite difficult, however, and it is
not clear how to generalize them to general ergodic theory. Section 3
presents an application of the Chacon-Ornstein theorem to the
Kuzmin “operator” and we obtain almost everywhere Cesaro
convergence to the density of the invariant measure.

2. Existence of an Invariant Measure

The results of this section follow from the theory of Banach
limits. Let S be the set of all bounded sequences of reals 8 = {84}n 1
with

ll8]l =sup |8a].
The set S* of convergent sequences is a subspace of §. Define
p(s8)=limsup(ss) and f(s)=liminf(ss). These functions coincide
n "

with the continuous linear functional I(s8) =1lim(s,), se8*. By the
n

Hahn—Banach theorem [13, p. 102—104], there exists a linear
functional L defined on § which satisfies

fE) < L(s)<p (), L(s)=1(s),se8*, Le)=L(t), (1)

where t;, =8a+1, n 1. This functional L will be called a Banach
limit.

Theorem 1 resulted from an examination of theorem 6.2 of
“The Metrical Theory of Jacobi—Perron Algorithm” by F. ScawWEI-
GER [10].

Theorem 1. Let A,v,(n > 1) be probability measures on the measur-
able space (2,) and assume there exists a constant C >0 such that
va(A4) <CA(A) for all Aesl. Then p(A)= L({ra(4)}) i3 a probability
measure on (2,) and satisfies u(A) <CA(4).

Proof. By the above remarks u(4) is defined, and

p(@)=L((a @)=L} =0,

(@) =L(fra (@) =LY = 1.

Suppose AN B = @. Then v, (AUB)=v4(A)+vn(B)and u(AU B) =
= L({vs(4)} + {#a(B)}) =pu(4) + u(B). Thus 4 is a finitely additive
measure. Since vs(4) <CA(4), u(4)=L({ra(4)}) <CAi(4).

and
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The only thing left to show is that x is countably additive. But
An {9 implies 2(A4,){ 0 so that u(4d,){ 0. By Harmos [5, p. 39], we
have u countably additive and theorem 1 is proved.

Theorem 1 is true if we assume 1, (n > 1) are uniformly absolutely
continuous with respect to 4.

We next apply theorem 1 to the problem of an invariant
measure.

Corollary 1. Let T be a measurable transformation defined on
(2, o,2) and suppose A(T-2A)<CA(4) for n>0 and all Aecs.
Then there exists a probability measure u < A such that T is a measure
preserving transformation for u.

Proof. Let v,(4)=A(T-nA). Now », is a measure and theorem
1 applies so that u exists and u(4) <CAi(4). Therefore u< 4. Also
by the property L(s)=L(t) in (1), we have u(4)=u(T-14) for
all Ae 4.

We now present some applications of corollary 1 to number
theory. In this paragraph 1 will denote Lebesgue measure. For
f-expansions, RENYI [8] shows that

Ty (z)=f1(x)—[f~1 (@)]

satisfies (771 A4) <CA(A). These expansions include 1-dimensional
continued fractions and g-adic expansions where gel and g¢>2.
Renyi also shows that for 8 >1, g¢1,

Ts(x) =px—[Bx]

satisfies A(T;'4)< (B/(B—1))A(4). For n-dimensional F-expan-
sions, WATERMAN][ 11] shows that

Ty () =F-1(x)— [F1 ()]

satisfies 1(T;14)<CL-11(4).
The final result of this section is connected with a problem of
BrowM [12, p. 302].

Theorem 2. Let A,vn(n>1) be probability measures on the
measurable space (2,57) satisfying va uniformly absolutely continuous
with respect to A for all Ae 4. Then, if for all Ac o, lim (vo(TA)—

—vn(A4)) =0 for an invertible measurable transformation T on (2,),
we have T a measure preserving transformation for u defined by

p(4)=L({ra(4))).
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Proof. u exists by the extension of theorem 1 mentioned above.
Also
L({ra(TA)—ra(4)}) = L({ra (TA)})— L ({ra (4)})
=p(TA)—p(4).

Then, since vy (T 4)—vy(4)->0 as n—>o0, u(TA)=pu(4).

3. The Kuzmin Operator

Let (2,9,4) be a probability space and 7' be a measurable
transformation of Q2 into 2. We assume 7 is ergodic and that there
exists a measure u ~ 4 such that 7' is a measure preserving trans-
formation for u. The following additional assumptions are made:

(i) If Ae &, then TAe /.

(i) The numbers A(4), A(T4) and A(T-1A4) are all positive or
all zero. '

(iii) There exists a measurable partition A4;,A4s,4s,... of 2 such
that 7' is one-to-one on each A;.

If (2,4,4) is a Lebesgue space and T is essentially countable
to one, then, according to PARrY [7, p. 106—108], (i), (iii), and
A(A4)=0 implies A(TA4)=0 all hold for a transformation isometric
to T.

Since 7T is one-to-one on A;, we have an inverse mapping
Vi: TA¢—>As. We can define the Jacobian [7, p. 108] of this

mapping by
dirv
Ji(x) = ——‘“-—‘ (x), zeTA;.
For fe Ly =L, (Q,o7,4) we define ||f]l= J'lf(t)[dl(t). Finally we
Q2
define the Kuzmin operator, ¥, generated by T for fely:
Pf)= Y f(Vi@)Ji(x).
zeTA

Lemma 1. If feL, and f >0, then ||f|| = || ¥f]|.
Proof. f Yf(x)dA(x) = f “;A F(Vi@)Ji(z)dA(x) =

= [T Ira,@F (Ve (@) Je (2)d2 () =
=X ff(V¢(“’))J4(x)dl(x)=Z)’f(t)d}.(t)=J‘fd;“
t T4 s 4d¢
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The interchange of summation and integration is by the monotone
convergence theorem, and the next to the last step is by the trans-
formation theorem [5, p. 163].

A modification of the proof of this lemma shows ||Zf| <||f]| so
that ¥: L - L; and

111
1P =sup™—22 =1
rery Il
Also f>0 implies ¥f>0 so that ¥ >0.

Theorem 3. Let 9 =du(dA. Then ¥o=op.

Proof. Now ¢ = du/dieL;. By calculations similar to those in
lemma 1 we show

Je(x)dl(x) =Ef( 2 e(Vi(@)Ji(x))dA(x)

zeT A¢

and the result follows from this equation. See F1scHER’s Satz 2 [2]
for some related work.

Theorem 4. Let geL; and g >0. Then

n—1
lim (1/) 3, ¥ (2) = ¢ @)llgl a-e.

Proof. We have shown that ¥ is a linear operator on L, with
[¥]|=1 and ¥>0. Then, by the CHACON—ORNSTEIN ergodic
theorem [1],

n—1
> Vg ()
lim 229
TR X Pre(a)
k=0
exists almost everywhere for g >0, geL;. Denote the limit function
by g*(x). Theorem 3 yields

n—1

e (x)g* (x) = limn‘lkzo Prg ().

fn—+co

n—1 n—1
Since ¥(lim n-1 ) P¥g(z))= lim n-1 ). ¥¥g(z), we have
n—>co k=0 n— k=0

¥(g*(x) o (x)) =g*(x) ¢ (x) or, since the invariant measure is unique,

g* (x) ¢ (x)
Q(x)“—:W-
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Therefore g* is constant a.e. It is easy to show that g*=||g].
We note that theorem 4 can be modified in case u< 2. Also
theorem 4 clearly implies L; convergence.

Corollary 2. For all Ae s/, we have

n—1
limn-1 Y A(T-*(x))=pn(4).
n— o k=0

Proof. Let g=1 in theorem 4 and multiply both sides of that
equation by I 4. Considerations similar to lemma 1 of [9] and our
lemma 1 yield

[La(@) ¥ (1) (z)dA () = A (T 4),

so that integration yields the result.

The meaning of this result is that for many to one transfor-
mations the invariant measure can be obtained from the usual
Cesaro limit of the sequence A(T-*¥4).

Some previous uses of Kuzmin’s operator ¥ in number theory
has resulted in uniform pointwise convergence of Y=g [3, 9, 11].
In fact GorpIN [4] has geometric convergence for a subclass of
the expansions he considers. He obtains a L, version of our theorem
4 with g=1 for a somewhat larger class of transformations than he
has geometric convergence for. Unfortunately, he does not include
any proofs of his results. We have been unable to obtain results
on the geometric convergence of ¥*g in the general situation con-
sidered above.
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