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Error Analysis of a Computation of Euler's Constant* 
By W. A. Beyer and M. S. Waterman 

Abstract. A complete error analysis of a computation of 7, Euler's constant, is given. The 
results have been used to compute y to 71 14 places and this value has been deposited in the 
UMT file. 

1. Introduction. In a paper on ergodic computations with continued fractions 
[I], we used 3561 decimal places of y, Euler's constant, as given by Sweeney [7] to 
compute 3420 partial quotients of the continued fraction expansion of y. The partial 
quotients were sent to the Unpublished Manuscript Tables file and were there com- 
pared by Dr. Wrench with those given by Choong et al. [3]. Some disagreements 
were found and it was eventually decided to recompute Sweeney's value. This involved 
a careful reading of Sweeney's method and, as his error analysis is not detailed, a 
distinct error analysis resulted. This analysis is presented here. 

' 2. Error Analysis. We begin with the exponential integral -Ei(-x) [2, p. 
3341, and we consider only x > 1: 

(1) 

where 

OD e-' 
s t  

-Ei(-x) = 1 - df = -7 - In x 4- S(x), 

X2 +---+ X8 x4 ... . 
S(x)  = x - - 

2 * 2 !  3 . 3 !  4.4! 

The analysis of [6, p. 261 can be adapted to show 

where IR,,(x)l S (n + I)!/X"+'. However, we only require n = 0 and it is easy to see 
that 

Since, for x > 0, 
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we infer that 

(3) 
e-= e-" -2 e 

S(x) - - - l n x  4 y 4 S(x) + 2 -; - lnx .  
X 

Our problem is to use Eq. (3) to compute y to a desired number of decimal places. 
After x is taken to be a power of 2, we must approximate e-"/x, In 2, and S(x). The 
computation was done, on the Maniac I1 computer which does multiple-precision 
integer arithmetic without special programming. Therefore eacb function above 
will be multiplied by an appropriate power of 10, say 10". Of the u places in our 
answer, we will require that each answer be correct to d - 1 places. Equation (3) 
becomes 

e-" lO"S(x) - 10" - - 10" lnn I; l0"y S 1O"S(x) 
X 

e-" -z 
(4) 

+ 10" e- - 10" y - 10" In x. 
Xa 

We first consider the error in the exponential terms of (4). 

' 
If the exponential terms are neglected in (3) and we desire d - 1 correct places, we 
must have u - x/ln 10 < u - d or d In 10 < x. Thus, we determine d from 

(5) d = [x/ln 101. 

The following procedure is used to approximate S(x). Let 

n - 1  
A,-l = 10" - - n2 x, 

k 
A b  = 10" - (k + 1)2xAk+1, 1 S k < n - 1 .  

Then define T(x) by 

IO"T(x) = xAl = ~(10'  - 5 A2) 

= ~ ( 1 0 "  - 3 (10" - 9 A,)) 

... 
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The quantity in parentheses is the remainder term in the Taylor expansion of e. 
and is therefore equal to xn+'e'=/(n + l)!, 8 E (0, 1). Next, we assume n > 2x and 
use a technique of Courant [4, p. 3261 to obtain x"+'/(n + l)! < (2~)~' / (2x)!2-"- ' .  
Thus 

Using the fact that Stirling's formula underestimates (2x)! [5, p. 541, we obtain 

Since we require d - 1 correct places, we take 

a + (3x - (n + 1) In 2)/h 10 < a - d 

which yields 

n > d In lO/h 2 3x/h 2 - 1 .  

But we have x > d In 10, so it is sufficient to take 

(6) n = [4x/ln 21. 

We note that n = [4x/ln 21 > 2x as required above. 

is ma& in the kth iteration: 
There is also round-off error in computing lO"T(x). Assume that an error of tk 

Then 

1O"f'(x) = x A I  
... 
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' 1 11'1 !", FVATERMAN 

I 1 1  8 1  11iii1 places, one can use (3) to compute 
I 1  I I I, I imputation of the decimals of In 2 is 

I 1 1  I IC !some positive integer to be deter- 
I  I I t 1 c:btained from Taylor's series): 

1 .--+7+ . . . .  I I ioa ioR 
1!1 .36  7 . 3  ) 

. . . . . .  

whi 

(8) 

Thi 

(9) 

Thi ~ 

mii 

(11 1 

Hi 

(1:  I1 

I l I  I : ~  I ( 3  by the condition that 

11 1 lI):32k+1. 

I  I IIO i,.l oiminated by 

I  1 1 1 ]  i i,e dominated by k - 1. Hence 

11 ' l'I(k - 1) + 9/4, 

I  I I.idies (8). An upper bound to k as given 

i 

I 
I ,  

/:I! In IO/h 3 + a.  
1:11ic sees from (12) that the error in In 2 

I II:II places. We actually have only reported 
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TABLE 1 

Theoretical Frequency 
of n: 

1 (n + -ln Sample Frequency 
n of n In 2 n(n + 2) 

L 

1 0.4225 0.4150 
2 0.1646 0.1699 
3 0.08% 0.0931 
4 0.0527 0.0589 
5 0.0438 0.0406 
6 0.0308 0.0297 
7 0.0228 0.0227 
8 0.0216 0.0179 
9 0.0121 0.0144 

10 0.0124 0.01 19 

Guaranteed Number 
of Actual Number 

X d -  1 Correct Digits 
Correct Digits of 

8 
16 
32 
64 

128 
256 
512 

1024 
2048 
4096 
8192 

16384 

2 
5 

12 
26 
54 

110 
221 
443 
888 

1777 
3556 
7114 

4 
7 

14 
29 
57 

113 
224 
446 
889 

1795 
3561 

4. Computation of y. For our calculation, we used x = 2". From this x, 
we obtained d = [x/ln 101 = 7115, a = 2d + 1 = 14231, n = [4x/ln 21 = 94548, 
and k = [a In 10/(2 In 311 + 1 = 14914. The above analysis shows that our com- 
putation of y is accurate to 71 14 places. The errors from e-=/x and S(x) might each 
affect the 7115th place. 

From this computation, we obtained 7114 correct decimal places of y. These 
values were used to calculate 6920 partial quotients in the continued fraction expan- 
sion of y. The 7121 places of In 2 yielded 6890 partial quotients of In 2. Note that 
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the number of partial quotients of y is more than that of In 2. These have been sent 
to the Unpublished Manuscript Tables (UMT) file of this journal. 

In Choong et al. [3], Table 1 gives sample frequency of n and theoretical frequency 
of n for 3470 partial quotients of y. Our Table 1 corrects their Table 1. Our Table 2 
gives our results for x = 2’ ( t  = 3, 4, * . , 14) and is thus a check of our analysis. 
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