# A Restricted Least Squares Problem* 

M. S. Waterman<br>Idaho State University<br>Pocatello, Idaho


#### Abstract

In this note least squares problems with certain convex restraints are solved without the use of linear programming. The solution involves solving the normal equations for a number of unrestricted problems.


## Key Words

Least Squares
Regression Analysis

Let $X=\left(x_{i j}\right)$ be a fixed $m \times n$ matrix of reals and $Y=\left(y_{i}\right)$ be a fixed $n$-dimensional column vector. The usual least squares problem is to minimize

$$
\begin{equation*}
L(\lambda)=\left(Y-X^{T} \lambda\right)^{T}\left(Y-X^{T} \lambda\right), \tag{1}
\end{equation*}
$$

where $\lambda$ is a $m$-dimensional column vector and $A^{T}$ denotes the transpose of the matrix $A$. In this note we consider minimizing $L(\lambda)$ where $\lambda$ is subject to the restriction $\lambda_{i} \geq 0$ for $i=1,2, \cdots, m$. In the literature various types of inequality restrictions have been considered in least squares and regression problems [3], and the usual solution seems to involve linear programming. Below we solve our stated problem by considering $2^{m}$ unrestricted problems.

The real valued function $L(\lambda)$ can be considered defined on $([0, \infty))^{m}$. Now

$$
\begin{equation*}
L(\lambda)=\sum_{i=1}^{n}\left(y_{i}-\sum_{i=1}^{m} x_{i} \lambda_{i}\right)^{2}, \tag{2}
\end{equation*}
$$

so that, with $\lambda_{i}$ fixed for all $j \neq k$, we have either $\lim _{\lambda_{\lambda \rightarrow \infty}} L(\lambda)=+\infty$ or $L(\lambda)$ constant. The latter situation occurs only when $x_{i k}=0$ for all $i=$ $1,2, \cdots, m$. Therefore, for the purpose of minimizing $L(\lambda)$, we could restrict $\lambda$ to a closed and bounded subset of $R^{m}$ and thus there is a $\lambda e([0, \infty))^{m}$ which minimizes $L(\lambda)$.

If we solve the system

$$
\begin{equation*}
\frac{\partial L(\lambda)}{\partial \lambda_{i}}=0, \quad i=1,2, \cdots, m, \tag{3}
\end{equation*}
$$

we find the solution to the unrestricted problem (by solving $X X^{T_{\lambda}}=X Y$, the usual normal equation). If this $\lambda$ satisfies $\lambda_{i} \geq 0, i=1,2, \cdots, m$, then no further work need be done. Otherwise, as

[^0](3) is a necessary condition for a minimum to occur in the interior of a set, the solution of the restricted problem must be a boundary point of $([0, \infty))^{m}$ (see [1, p. 149]). Therefore, at least one $\lambda_{i}=0$. Let the index set $I$ range over all $2^{m}$ subsets of $\{1,2$, $\cdots, m\}$. For each such set $I$, we consider
\[

$$
\begin{equation*}
L_{I}\left(\lambda_{I}\right)=\sum_{i=1}^{n}\left(y_{i}-\sum_{i=I} x_{i i} \lambda_{i}\right)^{2} \tag{4}
\end{equation*}
$$

\]

and obtain the (unrestricted) solution. If all $\lambda_{k}(k \varepsilon I)$ satisfy $\lambda_{k}>0$, we compute $L_{I}\left(\lambda_{I}\right)$. Finding a minimum $L_{I}\left(\lambda_{I}\right)$ solves the problem for we then set $\lambda_{l}=0, l \notin I$.

What we have in fact done is perform unrestricted least squares calculations for the matrix obtained from $X$ by deleting all $l$ th rows where $l \notin I$. There are $\binom{m}{k}$ least squares calculations in which $X$ has $k$ rows deleted. This procedure is easy to program using existing regression programs. Some excellent treatments of the computation of all possible regressions can be found in [2] and [4].

For a simple example, we let $X=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 3 & 0\end{array}\right)$ and
$Y=\left[\begin{array}{r}2 \\ -3 \\ 6\end{array}\right]$. The table below exhibits those $\lambda$ with all $\lambda_{i} \geq 0$ and the corresponding $L(\lambda)$.

| $\lambda^{T}$ | $L(\lambda)$ |
| :--- | :--- |
| $(11 / 3,1 / 3,0)$ | $50 / 3$ |
| $(4,0,0)$ | 17 |
| $(0,9 / 5,0)$ | $164 / 5$ |
| $(0,0,0)$ | 49 |

Therefore, the minimum value of $L(\lambda)$ is $50 / 3$ and is assumed for $\lambda^{T}=(11 / 3,1 / 3,0)$.
The above procedure can be modified to yield
solutions to problems where for each $i$ we pick (exactly) one of the conditions (a) $\lambda_{i} \varepsilon R$, (b) $\lambda_{i} \geq a_{i}$, or (c) $\lambda_{i} \leq a_{i}$. The solution follows in the same manner.

## Acknowledgement

The author is indebted to J. R. McCown, Jr. of Idaho State University for detecting an arithmetic error in an earlier version of the paper and for helpful discussions.

## References

[1] Apostol, Tom M. (1957). Mathematical Analysis. Reading, Mass. and London: Addison-Wesley Publishing Company, Inc.
[2] Furnival, G. M. (1971). All possible regressions with less computation. Technometrics 13, 304-408.
[3] Judge, G. G. and T. Takayama (1966). Inequality restrictions in regression analysis. J. Amer. Statist. Assoc. 61, 166-181.
[4] Schatzoff, M., R. Tsao and S. Feinberg (1968). Efficient calculation of all possible regressions. Technometrics 10 , 769-779.


[^0]:    * This work was supported in part by NSF grant GP28312A1.

    Received Sept. 1972; revised May 1973.

