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A Restricted Least Squares Problem* 
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In this note least squares problems with certain convex restraints are solved without 
the use of linear programming. The solution involves solving the normal equations for a 
number of unrestricted problems. 
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Let X = (zii) be a fixed m X n matrix of reals 
and Y = (yi) be a fixed n-dimensional column 
vector. The usual least squares problem is to 
minimize 

(1) L(X) = (Y - X'X)'(Y - X'X), 

where A is a m-dimensional column vector and AT 
denotes the transpose of the m a t h  A .  In this note 
we consider minimizing L(X) where X is subject to 
the restriction Xi 2 0 for i = 1, 2, , m. In the 
literature various types of inequality restrictions 
have been considered in least squares and regression 
problems [3], and the usual solution seems to involve 
linear programming. Below we solve our stated 
problem by considering 2" unrestricted problems. 

The real valued function L(X) can be considered 
defined on ([0, m))". Now 

so that, with X i  fixed for all j # k, we have either 
lirnk,-- L(X) = + m  or L(X) constant. The latter 
situation occurs only when x i k  = 0 for all i = 
1, 2, 9 . . , m. Therefore, for the purpose of minimiz- 
ing L(X), we could restrict X to a closed and bounded 
subset of R" and thus there is a X e (IO, a))" which 
minimizes L ( A). 

If we solve the system 

we find the solution to  the unrestricted problem 
(by solving XX'X = X Y ,  the usual normal equa- 
tion). If this X satisfies Xi 2 0, i = l, 2, - .  * , m, 
then no further work need be done. Otherwise, as 
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(3) is a necessary condition for a minimum to occur 
in the interior of a set, the solution of the restricted 
problem must be a boundary point of ([0, 
(see [l ,  p. 1491). Therefore, a t  least one Xi = 0. Let 
the index set I range over all 2" subsets of {l ,  2, 

. , m).  For each such set I, we consider 

(4) 
n 

L I ( X 1 )  = c 1-1 (yi - c i r l  Zi iXi) l  

and obtain the (unrestricted) solution. If all Xc (k c I) 
satisfy Xk > 0, we compute LI(X,). Finding a mini- 
mum LI(XI) solves the problem for we then set 
X I  = 0, 1 #I. 

What we have in fact done is perform unrestricted 
least squares calculations for the matrix obtained 
from X by deleting all lth rows where 1 # I. There 

are (t) least squares calculations in which X has 

k rows deleted. This procedure is easy to program 
using existing regression programs. Some excellent 
treatments of the computation of all possible 
regressions can be found in [2] and [4]. 

P O '1 
For a simple example, we let X = 0 1 2 and 

il 3 oj 
' 2' 

Y = -3 The table below exhibits those X with 

. 6, 
all Xi 2 0 and the corresponding L(X). 

50/3 

17 

164/5 

49 

Therefore, the minimum value of L(X) is 50/3 and 
i s  assumed for XT = (11/3, 1/3, 0). 

The above procedure can be modified to yield 



136 

solutions to problems where for each i we pick 
(exactly) one of the conditions (a) X; E R, (b) Xi 2 ai , 
or (c) Xi 5 ai . The solution follows in the same 
manner. 

ACKNOWLEDGEMENT 

The author is indebted to J. R. McCown, Jr. of 
Idaho State University for detecting an arithmetic 
error in an earlier version of the paper and for 
helpful discussions. 

NOTE 

REFERENCES 
111 APOSTOL, TOM M. (1957). Mathematical Analysis. Reading, 

Mass. and London: Addison-Wesley Publishing Company, 
Inc. 

[Z] FURNIVAL, G. M. (1971). All possible regressions with less 
computation. Technometrics 13, 304-408. 

[3] JUDGE, G. G. and T. TAKAYAMA (1966). Inequality 
restrictions in regression analysis. J .  Amer. Statist. Assoc. 
61, 166-181. 

[41 SCHATZOFF, M., R. TSAO and S. FEINBERG (1968). Efficient 
calculation of all possible regressions. Technometrica io,  
769-779. 

TECHNOMETRICSC3, VOL. 16, NO. 1, FEBRUARY 1974 


