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In this paper a general K d n  theorem for a class of multidimensional 
F-expansions is given. This result gives the uniform rate at which a certain 
sequence of approximates converges to the density of the invariant measure 
associated with an F-expansion. Some metric theorems are also given. This 
work extends and corrects some earlier results. The Jacobi algorithm is included 
as an example. 

1. INTRODUCTION 

In a recent paper [6] ,  one of the authors gave a general Kuzmin theorem 
for a class of multidimensional F-expansions. The theorem applies to the 
Jacobi algorithm only when n = 2. This is due to the fact that TB,,, = B, , 
v 2 1, is not satisfied for n 2 3. This difficulty can easily be shown by an 
example based on the restriction of digits [2,3]. In the proof of the theorem 
the assumption that B, n Ai # o implies B, C Ai, v 2 1, is implicitly 
used. Also, in the proof of Theorem 2 of [6] an inequality is obtained 
incorrectly. The notation of [6] is retained and we utilize much of the 
work done there. 
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2. KUZMIN’S THEOREM 

For F E 9, we partition (0, 1); by the sets TUB&), v 2 1, x E (0, I);. 
This partition is assumed countable and is denoted by {A i } ta l .  Next we 
define 

E,,u = { ( k )  = (k(l) ,  k(2) ,..., IC(”)) I T”B(k) 3 Ad}. 

We remark that, if B,((k)) is a proper cylinder of order v, then (k) E E,,, .  
Our first lemma generalizes Lemma 1 of [6]. 

LEMMA 1. Suppose F E 9. Let Yo be given and define Y, , v 2 1, by 

Y”(4 = c y”-l(fk(x)) I J&)L x E Ai * (1) 

Y,(x) = c w,y;(x)) I Ju(x)l, X E A ~ ,  (2) 

k%,1 

Then 

k%, 

wheref,(x) = 1-11-1 o&I(x)  and J, = J,, . 

Assume that (2) holds for v. Then, by definition, 
Proof. Our proof is by induction. Formula (2) is clearly true for Y = 1. 

Y,+,(x) = youcfk (x ) ) )  I J”cfk(x)) l  I J&I, 
k e 4 . 1  E&” 

x E Ai , where j in the second summation satisfies f”(x) E A, . 
..., k(”)) such that 

TUB, 3 Ai , we have that (k(l) ,  Pa), ..., IC(”), k) runs over all sequences 
ending in k such thathclI  O f k ( a l  0 e - .  o f k l v  o f k ( x )  is dehed. Therefore, we 
have x E T”+lB(k(l), ..., k(”), k) which implies T“+lB(k(l),..., k(”), k) 3 At . 
Conversely, if TU+lB(k(l), ..., k(Y+l)) 3 Ai we have 

Since fk(x) E A, and Ej,,  is the set of all (k(l) ,  

TB(k(‘+l)) 3 T”+lB(k(l),..., k(”+l)) 3 Ai . 
Therefore k(,+l) E 

all sequences of length v + 1 in Ei,u+l . 
. We have thus shown that (IC(*), ..., k(”), k) runs over 

LEMMA 2. Suppose F E 9 and define {Yu}y>o as in Lemma 1. Then, i f  
{A,} is countable, 

Y&) dx = I Y0(x) dx, v 2 1. 
( 0 , l P  

Proof. The proof proceeds as in Corollary 6.1 of [5].  
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We next state our main theorem. The proof uses the technique of the 
proof of Theorem 2 in [6] but the difficulties mentioned in the introduction 
are corrected here. In addition, we make clear the uniformity of conver- 
gence to p. 

THEOREM 1. Let F E ~  satisfr conditions (c), (q), and (L), and 
U(V)  = sup, diam B,(x)-+O as v +  a. In addition, assume the partition 
{Ai} countable and that there is an N 2 1 such that B, n TUBu # 0 
implies B, Z TUB,, for all p >, 1 and v > N. We suppose there exist 
constants A and D such that 

I(afy)lc/a% I < A (x E 4 
uniformly in v, k, and j ;  and 

II J”(4I - I J”(Y)ll < Dm(BJ I I  x - Y II (x ,  Y E B”), 

uniformly in v. Let {Yv}v,l be the sequence of functions recursively defined 
in Lemma 1 with Yo safisfying 

O < m < Y 0 < M  and IYo(x)-Yo(y)l  < N ( l x - y l i .  

Then 
I Y ” ( X )  - ap(x)l < b4v) (3) 

where p is the density of the invariant measure for F, a = s 
constants. 

Proof. As in the proof of Theorem 2 of [6] we have 

dm and b are 

I Y ” ( X )  - Y”(Y) l  < Cl II x - Y I1 

go\yY(4 < Y”+Ub) < G0F”W 

(4) 

for x, y E A i ,  and 
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We let 9’” = (J B, where the union is over all proper cylinders of order v. 
There exists y,‘ E B, C (0, 1): such that 

Hence 

Then for v >, N 

Here the sums are taken over all proper cylinders of order v and the second 
inequality is by (4) applied to bo = Yu - gobo . For the second inequality 
we use the fact that fy(x) and y,’ are contained in the same element Ai of 
the partition. This follows from the assumption that B, n TUB, # 0 
implies B, C TUBp for p 3 1 and v 3 N .  This was tacitly used in [5] 
and 161. That is, 

yu+,(x) - gou,(x) 3 C-1 f (vu - goyo) dm - cZu(v). 
9” 

In the same manner we obtain 

GoY,(x) - Yu+,(x) 3 C-l (GOYo - Y,,) dm + C3u(v). 
J9” 

The expressions for li and lil in [6] are functions of go which makes vo 
a function of go. Therefore, when we iterate, it is possible that 
vo( 8,) > vo( go) and so on. From this observation it is clear that we cannot 
let r + co without v +  coy and we see that inequality (9) of [6] was 
obtained incorrectly. We now give another derivation of a similar 
inequality. 

We define 
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From the equations 

and 

we obtain the recursion relations 

and 

We have the following inequalities 

a(v) < 1 - m1q(MlC)-l < 1, 

6(v) b rnlq(MlC)-l > 0 

for v 
have used the inequality m(gV) 2 q. It now follows that 

v, . We have assumed, without loss of generality, that C > 1 and 

g(v> = l&g, = 1-4 + O(a(v)> 

G(v) = lim G, = Q(v, p) + O(a(v)) 
and 

w o o  

where 
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and the proof is completed as in Theorem 2 of [6]. 
such that. 

B, n TUBu # IZ/ implies B, C TUB, for all p 2 1 and v 2 N is implied by 
the following condition: There is an N 2 1 such that TBv+, = B, for 
v 2 N. To see this, take B, = U B,+,. Then TUBu = (J TUB,+, = (J B, , 
Since distinct cylinders are disjoint we are done. This observation will be 
used in Section 4 in dealing with the Jacobi algorithm. 

The assumption of Theorem 1 that there is an N 2 1 I '  

I 

3. APPLICATIONS 

As a first application of Theorem 1 we generalize Theorem 6 of [4] and 
Theorem 6.2 of [5]. The rate of convergence is the same as given in [4]. 

THEOREM 2 (Gauss). Let F satisfy the assumptions of Theorem 1. If p 
denotes the invariant measure, then 

for all Bore1 sets E. 

Proof. Define Y0(x) = 1. By Theorem 1, we obtain 

I 'v,(x) - P(x)l < bo(v), 

since a = Yo = 1. We multiply (6) by ZE and integrate to obtain 

Calculation similar to that in the proof of Theorem 6.2 in [4] shows 

Z E Y ,  dm = m T v E  

and (5 )  follows. 
The next application is a generalization of Theorem 7 of [4] and 
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Theorem 6.3 of [5]. We again obtain a rate of convergence identical with 
that in [4]. This result gives us a rate on the mixing. 

THEOREM 3. Let F satisfr the assumptions of Theorem 1. Then for all 
Bore1 sets F and cylinders E 

The sequence {Y,}v~vo satisfies the hypotheses of Theorem 1. Our proof 
is completed as in Theorem 6.3 of [5], and we obtain 

I tc(Ron T-’-”OQ) - P.C(BYO) PWI < (cb) P(BY0) PQ u(v). (8) 

A similar inequality holds for improper cylinders. The proof of inequality 
(7) from inequality (8) follows as in Folgerung 1 in [4]. 

4. THE JACOBI ALGORITHM 

The main purpose of this paper is to prove a Kuzmin theorem which 
applies to the Jacobi algorithm. In earlier statements of Theorem 1 
[5], [6], it has been assumed that lim,+m diam Bv(x) = 0 a.e. However, it is 
necessary to replace that assumption by u(v) + 0 as v + a. In a paper of 
Paley and Ursell [I]  it is shown, for n = 2, that u(v) = 0(8-”), where 6 
is the unique root of XS - x2 - 1 = 0 with 1 < 8. Unfortunately no 
proof is present for their results on the Jacobi algorithm with n > 2. It is 
possible, however, to give a proof that u(v) + 0 as v + co which is valid 
for all n 2 1. This proof, which will not be included here, is somewhat 
lengthly and depends on additional facts concerning the Jacobi algorithm. 

An earlier paper [6] handled all other assumptions of Theorem 1 with 
the exception of proving {Ai}  countable and showing TB,,, = B, for all 
v 2 n - 1. Thus we must consider the partition generated by all sets TvB, . 

b 
b’ 
t We consider the transformation 
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which is defined on the unit cube after the deletion of an appropriate set 
of measure zero. This transformation corresponds to an F-expansion with 

1 X l  F(x1 ,..., xn) = (-, - ,..., 
X n  X n  X n  

We denote 

k‘l’(x) = (kp) ,..., k:’) = ([x2/x1] ,..., [ I / x ~ ] )  

and 
k(”(x) = k‘l’(Td-l(X)), s 2 1. 

In this fashion we obtain a sequence of n-dimensional digits 

k(l) ,  k(2),..s 

which is in one to one correspondence with the point x. The restrictions 
(see [ l ,  21) on this sequence are as follows: 

k t ) > l ,  k t ) > k ~ ” > O ,  i = l , 2  ,..., n - 1 ,  (10) 

if kj8) = k?), then ki(gl) < kt2:). ( 1  1 )  

and 

If we then obtain kL:’) = k@+l) n- l ,  we have kL$,,) < k:?:), and so on. 
We formally set kit) = 1 and ktt) = 0 for r < 0. 

The dependence of the digits is of length n - 1. That is, the occurrence 
of a digit satisfying (10) depends only on the n - 1 preceeding digits. Thus, 
we have TB,,, = B, for v > n - 1. The structure of T-l, namely 

kn-l+ Yn-1 ,..., xn = , x2=- kl + Y1 1 x -- 
- k ,  + Y n  kn + Y n  kn + Y n  ’ 

shows that the restrictions (11) correspond to ones of the type y5 < Y ~ + ~ .  
Therefore, the sets TvB, partition the unit cube into n ! simplices Ai defined 
by the intersections of the sets {(xl ,..., xn) I x j  < x ~ + ~ }  and their com- 
plements. This completes our proof that Theorem 1 (and, hence, 
Theorems 2 and 3) applies to the Jacobi algorithm. 
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