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Abstract. Ergodic computational aspects of the Jacobi algorithm, a generalization 
to two dimensions of the continued fraction algorithm, are considered. By means of 
such computations the entropy of the algorithm is estimated to be 3.5. An approxima- 
tion to the, invariant measure of the transformation associated with the algorithm is 
obtained. The computations are tested by application to the continued fraction 
algorithm for which both entropy and the invariant measure are known. 

1. Introduction 

Recently some work has been reported on the metric theory of n-dimensional 
continued fractions [7-10, 141. Much of the value of these efforts depends on 
finding the density of the invariant measure for the associated shift. The only 
such density known is for the case n = 1. The purpose of this paper, then, is to 
approximate the density of the invariant measure for the case n =2. In addition 
computations for the case n = I  are given to illustrate and check the method. 

The basis of this work is the individual ergodic theorem. Let (Q, B, p) be a 
probability space and let T be a measurable transformation of Q into itself. 
Such a T is said to be a measure preserving transformation (mpt) if p (T-l  A )  =p ( A )  
for all A EO. T is said to be ergodic if T-'A = A  implies p ( A )  equals 0 or I. 

Theorem 1 (Ergodic Theorem). Let (Q, a, p) be a probability space with T an 
ergodic mpt. If g is an integrable function, then 

For a general discussion of these concepts, see Billingsley [I]. 

* Work partly performed under the auspices of the U.S. Atomic Energy Commission 
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Western Universities at  Los Alamos Scientific Laboratory. The work was also sup- 
ported in part by NSF grant GP-28313 to M. S.W. 
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Fig. 1 .  Graph of the transformation T ( x )  = l / x  - [ I / x ]  

The first transformation considered is associated with the one-dimensional 
continued fraction. For x E ( 0 ,  I )  and [ ] denoting greatest integer, define 

1 T ( x )  = - X - [SI, 

u ~ ( x )  =%(Tk-'(x)),  K22. 
A graph of T(x)  is shown in Fig. I .  % ( x ) ,  u , (x) ,  ... are the partial quotients in 
the continued fraction expansion of x. If T"(x)  =o, the expansion truncates. 
Note that T maps (0, I )  into (0,1). Let 9Y be the Bore1 sets of (0, I ) .  It is not hard 
to show that T is not a mpt for Lebesgue measure 1. But with 

it can be shown that T is a mpt for p and that T is ergodic for p. Thus Theorem 1 
applies. For a more complete discussion of this application see Billingsley ( [ I ] ,  

is known as the dP p. 40). The measure p or its density 
Gauss's measure. (Knuth [ I  51 has pointed out the connection between continued 
fractions and Euclid's algorithm and the need for a better understanding of 
Euclid's algorithm, the oldest algorithm.) 

The second transformation considered was introduced by Jacobi [2] and will 
be referred to in this paper as Jacobi's algorithm or the two-dimensional continued 
fraction. For ( x ,  y)  E(0, I ) * ,  define 

1 
( x )  = (log 2) (, + x )  
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The sequence of pairs of integers a('), a(*), ... are the coefficients in the two 
dimensional continued fraction expansion of ( x ,  y). This expansion is obtained 
from the relations 

Ah"+B) =Ah")+ap)Ah"+l)+aF)Ah"+*), k = O ,  1,2; a z o ,  
where Ai" = djk ( j ,  k =o, I ,  2 )  and djk is the Kronecker delta. The convergence 
result is : 

A t )  and y =  lim - x =  lim - AI") 
n - t w  A t )  n - t w  A t )  * 

Schweiger [8, 91 has shown that there exists a unique absolutely continuous 
measure p on (0, such that T is a mpt and ergodic for p. As remarked above, 
the form of p is unknown. 

The main difficulty with the sort of computation undertaken in this paper 
is measure-theoretic. Although almost all w € Q  satisfy ( I ) ,  there is no known 
algorithm for choosing an w satisfying (1) for a given g. For the Gauss algorithm 
Euler's constant y is used, and for the Jacobi algorithm a random number gen- 
erator is employed. As explained below, all transformations were done with 
rational arithmetic. This large integer arithmetic was carried out on the Maniac 11. 

2. Gauss's Measure 

This section discusses the computation of an approximation to the quantity 
in ( 1 )  with Q = (0, I ) ,  w =y  (Euler's constant), p equal to Gauss's measure, and 
T(o) = I/w - [ I / w ] .  The 3 561 places of y as given by Sweeney [ I 3 1  were used. 

A problem which arises is to estimate the difference between 

where y is an approximation to x.  Define the cylinder of order N generated by x as 

BN(x)  =(y :  ak(y)  =u,(x),  K = i ,  ..., N } ;  

this cylinder is actually an interval. 

mates to x.  
Theorem 2 shows that if g is Lipshitz of order 1 one can indeed use approxi- 

Theorem 2. Let y € B N ( x )  andgsatisfy lg(t) -g(s) lsClt -sl ,  where Cis some 
fixed constant. Then 

Proof. One has 1 (Bm(x))52-"+'  (see [ I ] ,  p. 43). Since yEBN(x) ,  for OSR 
I N - I ,  Tk(y)~BN-k(Tk~), and thus 

I T* (y) -Tk ( x )  1 5 1 ( I 3 N - k  ( TR ( x ) )  5 2-N+k+1. 
14. 



198 

- 

W. A. Beyer and M. S. Waterman: 

Therefore 

An information theory result of Rohlin [6; p. 32 of translation] gives some 
information about size of BN(x). Rohlin proves that the entropy of T is given by 

(where ' denotes differentiation) and that 

=k(T), a.e. b]. 1 1 lim -log 
n+oo n A(Bn(w)) 

That is, 
iz ( ~ ~ ( 0 ) )  a.e. &I. (6) 

It was proved by Khinchine that 

where K is known as Khinchine's constant. This result can be deduced from 
Theorem 1 (see Billingsley [ I  ; p. 451). The computation of K in (7) has been 
discussed by Shanks and Wrench [ I I ] .  

As a result of Theorem 2, one need only be concerned with deciding when the 
equation ai (7) =a, ( x )  first fails, where x is the 3 561 decimal digit approximation 
that Sweeney gives. Define x,, %al so that x, < y < x,  by subtracting and adding 
1 to the last place of x.  Now I / x a <  I / x <  I / x l  and if q(xl) =q(x2) =q, we have 
a, =a, (7). By induction one can show ai (xl) =ai (x,) =ai implies a, =ai (y). 
ai(xl) and ud(x2) are calculated until they differ. 

The integers ai (xl) and ai (%a) are computed by rational arithmetic. Let x = k / H .  
It is easy to find [I/x] = [n/k] =q. Then 

, 

All a,(x) can be calculated using only [ - 3 and integer multiply and subtract. 
It is emphasized that the expression for T k ( x )  as a quotient of integers is exact. 
When the sequence Tk ( x )  is required, one can do a limited precision divide of the 
multiprecision integers. These techniques are due to Lehmer [4] and were later 
recommended by Shanks and Wrench [II]. Using these techniques, the first 
9420 partial quotients of the continued fraction expansion of y were found. 
These have been sent to the Unpublished Manuscript Tables (UMT) of the Ameri- 
can Mathematical Society. 
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Two approximations connected with continued fractions were computed. 
First, the approximation to K gives 

( f i a i ( y ) Y  = 2.661277 . . . (n =3 4201, 
%=1 

compared to the exact K = 2.68. For the second approximation, in accordance 
with Theorems 1 and 2 and ( 5 ) ,  one sets g ( o )  =log [ (1 /o) ' \=-2  logo. This 
yielded 

compared to the exact na/6 (log 2) = 2.37 . . . . 
It is seen from Theorem1 and the expression for Gauss's measure that if 

g (0) = (log 2) (1 + 4 5 

In our calculation 
WHH) 

3000 k - 1  

I - - c g ( T k x )  =I.O00382. 

Finally the approximation of the Gauss's measure is considered. Set 

1 
(log 2) (1 + 4 h ( o )  = 

For a.e. o one has 

where & b ]  is the characteristic function of the interval [a, b]. For b -a  small 
the above integral is approximately equal to (b -a)  h (G). This observation 
is used to approximate h ( ) : 

The results of the computation are summarized in Table 1 and Fig. 2. The grid 
selected has b - a = 0.1. 

Table 1. The exact function h (w) and its computed approximation given by 

W 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 

h (4 1.37 1.25 1.15 1.07 0.99 0.93 0.87 0.82 0.78 0.74 

X [ @ , b ] ( T h ( x ) ) / 3 O O  1.37 1.30 1.08 1.03 1.11 0.W 0.92 0.82 0.75 0.73 
aooo 

k-0 
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c 

Fig. 2. Graph of the exact function h(w)  (solid) and its computed approximation 
(dashed) 

3. Jacobi's Algorithm 

In this Section the Jacobi algorithm is considered. Theorem 1 will be applied 
with 8 = (0, 1 ) 8  minus an appropriate set of measure zero. are the Bore1 subsets 
of 9, and T ( x ,  y)  = (y/x - Ly/x],  1 / x  - [I/%]). As was said above, the invariant 
measure ,u is unknown and the main object is to approximate e ( x ,  y )  =d,u/dA (x ,  y) 
where A is 2-dimensional Lebesgue measure. 

Although Perron [SI in 1907 extended Jacobi's work, it was not until 1964 [7] 
that a study of the metric properties of Jacobi's algorithm was begun by Schweiger. 
He established that T is ergodic [8], and that there exists a unique A-equivalent 
invariant measure [9]. Rohlin's formula for the entropy of T [IO] is 

where B,, (x ,  y )  = {(zc, v )  : a(') (u, v )  = dk) (x ,  y),  -K = 1, 2, . . . , n}. 
shows that 

Schweiger also 

(9) 3 
*-,- n 

h ( ~ ) =  lim - log~&")(w)  for a.e.w. 

Recently it has been proved that e ( - ) satisfies a Lipshitz condition of order 1 
on the set { ( x ,  y)  : 0 5 x < y> and its reflection about the line y = x [14]. 

is not known 
one cannot establish a theorem corresponding to Theorem2. What is required 
is that for fixed n 

Since the function a(.) =sup{diam B,,(x, y) : ( x ,  y )  E(0, 

n-1 

Having no estimates of ~(s), one cannot show (10). 
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x and y were selected by a pseudo-random number generator and the numbers 
are : 

m k 
X = -  y=-  n 

where 
200 

j=1 

200 

j=1 

k =  z(5 [2(200-i)+il18 - [5[2(2W-i )+1118/247)  2481' 

26(200-j) - [520(200-j) 48 m = C ( 5  12 ] ) P i  

and 
8600 % = 2  . 

2589 decimal digits are required to represent k ,  m, and %. 

the sequence Tk (x ,  y) .  For 
The method of rational arithmetic is again used to obtain the exact values of 

if one puts a, = [m/k] ,  a, = [%/k] ,  one has 

This technique can obviously be iterated to obtain Tk(x,  y ) ,  k 2 2.  
If x and y are rational approximations to a and B, one needs something 

corresponding to that used to obtain the correct partial quotients for y. The 
transformation y (w, z) = (z/w, 1/0) takes the straight line aw --bz +c =O in 
the (w, z) plane into the straight line bw +cz +a = O  in the same plane. Thus if 
one considers a triangle containing (a, p) ,  the image of the triangle under y will 
be a triangle containing p (a, B). If each comer point has the same a(') = (ai'), ai')) 
value, then a(') (a, /?) =a('). This procedure is iterated to obtain a(') (a, p), 
a(')(,, p), . . . . By this method 3 153 correct pairs of integers were found for the 
Jacobi expansion of the above ( x ,  y).  

An approximation to the entropy of T was found in two ways. First, by (9) 
the quantity: 

3 h(T)  M ;log Ag)( , ,  p) =?.SO2 . . . (% =? 156), 

was obtained. Secondly, by analogy with Theorem 2, set g (a, B) = - 3 log a. 
The quantity 

was obtained in this case. 
It has been remarked above that e ( ) is Lipshitz order 1 except, perhaps, on 

the line x =y. To obtain an approximation of e(  ), take R = [u, b] X [c, d ]  to 
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Table 2. The approximation to d p / d l  where p is the invariant measure associated with the 
two-dimensional Jacobi algorithm and 1 is Lebesgue measure 

Y 
1 .o 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 x 

be a small rectangle. Since for a.e. (co, z) E(0, one has 

thus 

The results of the computation are summarized in Table 2 and Fig. 3 below. 
Thegridhas b - a = c - d = 0 . 1 .  

Fig. 3 is obtained by fitting a 50 x 50 grid of splines over the surface given 
by Table 2. Fig. 2 shows that in the one dimensional case the exact density is 
smoother than the computed density. From this one could conclude that a better 
approximation to the density in the Jacobian case could be obtained by fitting 
a quadratic or rational quadratic surface to the data by a least squares procedure. 

4. Remarks and Conclusions 

Consider the question of the number 12 of decimal digits of a number x which 
are required to yield m correct partial quotients of x .  The procedure for generating 
partial quotients of x from a decimal representation of x correct to n decimal 
digits after the decimal point must stop when ;Z(B,) I; 2 10-". Since, from 
(6),  A(B,) one obtains the estimate 2 10-n2e-b(T)m or 

log10 6log(1o)log(2) 
h ( T )  m k n - - - = n  n' =%(0.9703 ...). 
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Fig. 3. Graph of the approximation to d p l d A  where p is the invariant measure 
associated with the two-dimensional Jacobi algorithm and 1 is Lebesgue measure 

For n = 3 561, this gives an estimate of 3455 partial quotients. For y,  3 561 decimal 
digits actually gave 3420 partial quotients. Knuth [3] estimated that 1271 
decimal digits would give over 1 OOO partial quotients. 

An example of computation with Khinchine’s constant has been pointed 
out [11]. However, the only mathematical example of computation for more 
than one dimension with the ergodic theorem the authors have found is Stein 
and Ulam [12]. (There are, no doubt, such computations reported in chemical 
or physics literature.) The transformations of Stein and Ulam were such that 
an estimation of the “noise” in the computation was difficult. However, calcula- 
tions on both Gauss’s measure and the Jacobi algorithm indicate that noise 
makes very little difference. why this is so is an open and possibly very difficult 
problem. It would appear that a transformation which is the truncated sum of T 
and some uniform random variable has “approximately” the same ergodic 
properties. 

Unfortunately our approximation of e ( ) was too rough to make a conjecture 
about whether or not e(  . ) is continuous on the entire square. 

No statistical tests were carried out with y or (x ,y ) .  In the latter case one 
could compute the frequency of the digits (0, I ) ,  (1, I ) ,  etc. 

It is interesting to compare the transformation S ( x ,  y )  = (1/x - [ I / % ] ,  
I /y  - [ I /y] )  with T ( x ,  y )  = (y /x - Ly/x], 1/x - [ I / % ] ) .  The entropy of S is double 
the entropy of the continued fraction transformation, so that It (S) = nS/(3 log 2) 
~ 4 . 7 5  ... . In Section 3, k(T) was approximated by 3.5. Thus it is seen that 
rate of convergence for S is significantly faster than the rate of convergence for T. 
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5. Note (Added in Proof) 
Since the above work was completed, F. Schweiger (personal communication) 

has shown that a(.) (see (IO) above) is 0(8-“) where 8 is the unique root >1 of 
x3- xa- 1 =O. This 8 is the fourth Pisot-Vijayaraghavan number (see C. L. Siegel, 
“Algebraic integers whose conjugates lie in the unit circle”, Duke Math. J. 11, 
597-602 (1944)). His proof makes use of a paper of Paley and Ursell (“Continued 
fractions in several dimensions ”, Proc. Cambridge Philos. SOC. 26, 127-144 
(1930)). The proof of the following theorem now follows that of Theorem 2. 

Theorem 3. Let (yl ,  ya) EBN (xl, xa) and g satisfy 

lg (tlJ 42) - g (s1, Sa) I 5 c II t z )  - (Sit Sa) II) 
where c is some fixed constant and II,II refers to Euclidean norm. Then 

M. I. Gordin (Dokl. Akad. Nauk SSSR “Exponentially fast mixing”, Dokl. 
Akad. Nauk SSSR Tom 196 (1971), No. 6 or Soviet Math. Dokl. 12, 331-335 
(1971)) announces that e(%, y )  in Jacobi’s algorithm is discontinuous along x = y .  
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