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1. Introduction. The exponential family is one of the more important classes of 
distributions considered in statistics (see [l] or [5]). In this note we restrict attention 
to one-dimensional exponential families. For p, a a-finite measure on R, we define 
a = inf {x :p ( [x ,  x+E) )  > 0 for all E > 0) and b = sup { X : ~ ( ( X - - E ,  x]) > 0 
for all E > O}. If a and b are finite, we define A@) by A@) = [a, b] .  If a or b are 
infinite, we use open or half-open intervals. The parameter space of p,a(p) ,  is 
defined by 

n(p) = {w : 0 < j emx dp(x) = w(o) < + a}. 
.. For each w E n(p) we define a probability measure by 

P,(A) = @(a))-' SA e"' ddt). 

The collection {Pa( - ) : w  E a@)} is known as the exponential family generated by 
p. (For a more general definition see Lehmann [5].) Also let m(w) = jxdP,(x). 
It is well known [ 5 ]  that a@) is a convex set, all moments of P, exist, and 
dm(w)/dw = az(w), the variance of P,. Suppose a@) # 4. Then the p-measure 
of any bounded measurable set is finite. It is also easy to see that b < + 00 implies 
a(p )  unbounded on the right and - 00 < a implies a@) unbounded on the left. 

It is clear that A@) contains the range of the mean m(.)  and that m(.) is strictly 
increasing whenever a # b. Guthrie and Johns [4] assume there exists a function 
w(L) such that m(o(L)) = L for each 1 E A@). Using methods distinct from ours, 
Girshick and Savage [3] show this property holds whenever A@) = [0, b] ,  
b < + 00. This note extends their result and characterizes measures such that the 
associated exponential families permit reparametrization in terms of the mean. 

2. Reparametrization. The technique employed in the proof of our theorem is 
motivated by Laplace's method ([2] page 36). The statement of our theorem 
concerns the interiors of A@) and a@) since measures with the same A(p) can have 
open, half-open, or closed parameter spaces (see example E in Section 3). We will 
use Int (A) to denote the interior of A. 

THEOREM. Let p be a a-fnite measure such that Int A@) # 4 and Int a@) = 
(wo ,  mi) # 4. Then w ( . )  = m-'( .) exists on Int A(p) and therefore 

{Pa( e )  : w E Int a@)} = e )  : 1 E Int A@)} 
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unless 

(i) w1 < + co and x emir E Ll(p), or 

(ii) - 00 < wo and x emor E Ll(p). 

PROOF. Since m( e )  is strictly increasing, we need only show that the range of the 
mean contains Int A@). It is sufficient to consider only the right-hand end points, 
b and wl. We must consider several cases. First, suppose w1 = + co. Then, for 
any A < b, 

for n = 0, 1. Thus 

and we have limcu+9 m(w) = b. 

Next assumeo, < + co. We then have b = + 00. I fx  em'' # Ll(p) ando, E O(p), 
the result is obvious. If x emlx 4 L,@) and w1 +n(p) ,  the above technique yields 
limm+m,- m(w) = + co = b. The only case left is.(i) in which limm+p,- m(o)  < 
+ c o = b .  

3. Examples. The following examples exhibit w = for some simple cases. 
The form of o( e )  in (B), (C), and (D) can be obtained as a direct application of 
Guthrie and Johns [4]. 

(A) Let p be Lebesgue measure on R+. Then w(A) = - l / A  for A E Int A(p) = 
(0, a). Thus P m ( A J + )  is the distribution of an exponential random variable with 
parameter 1/1. 

(B) Let p be counting measure on the nonnegative integers. Then w(A) = 
In (A/(l  +A)) for A E (0, co) and Pm(A)( a )  is the distribution of a geometric random 
variable with parameter A/( 1 +A). 

(C) Let p ( { k } )  = (I), k = 0, 1, n. Then w(A) = In (A/(n-A)) for L E  (0, n) 
and is the distribution of a binomial random variable with parameter A/n. 

(D) Let p ( { k } )  = l/k!, k = 0, 1, . . e .  Then w(A) = 1nA for AE(O,  00) and 
Pa(,, is the Poisson distribution with parameter A. 

(E) Finally, to illustrate (i) of the theorem, we consider p ( { k } )  = ( (k) l+demlk)- l ,  
k = 1,2, . If 6 > 0, n(p) = (- 00, all. If 6 = 0, Q(p) = (-a, ol). Thus it is 
clear that we cannot always expect to map A(p) 1 - 1 onto O(p). PmI has exactly n 
moments if n < 6 5 n+ 1 so (i) holds if 1 < 6. 
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