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- Recently several papers ([3]; [4]; (5], [6], [7]) have been concerned
wn;h generalizations of & 1928 theorem of Kuzmin. His result gives a rate
" of 6™ for the convergence of the iteration of an arbltrary funetlon to. \
the ifivariant measure for the continued fraction. The present paper gives -
& generalized Kuzmin theorem for a class of multi- dxmenslonal\li'-expan- ‘
sions which mcludes ‘the n-mmensmnal continued. fraction, An earlier -

.- paper ([61) presented such a thieorem with a.rate of (0_,“/- + a(l/-)) Our )
‘presetit theqrem improves.. t:he rate to o(¥). *. s
= Our P- expansuons were first congidered in [6], and we mclude,a short "
summary of notation and assumptions here. Let 4 be a fixed convex
~aubset of R®. Suppose ¥ is.a one-to-one continuous map of A onto (0, 1)"
We assume: Jp(-), the Jacobian of F, exists, the components of ' F have .
contimuous first order partial derivatives, and Jp(x) # 0 for almost all ~ .~
:MA Let D = F~', T(2) = D(z)— [D(w)], and g, (2) = [D(T""'2)] (where . <
1= (a1, (2], -y [z,‘])) We cal'l a,(w) the v-tk ooordmate of the F~Waw o
.mnofw.Lettmg PRIt

Nl

B US) -{weco, 1)“ T'(m)e(o\,l)‘ for “11 721}' |

: we inapose the assumptmn m(o 1),, = 1 w:here *m &enobos n-dlmen
. sional Lebquue Mensure. We mll w;-lte F«f to md:ias“w the satmﬁaotmn’
" of these. mnmphm\ R

o ?f. We deﬁne the cyhndar oi order y
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Of course T(B,(k,, ks, ..., k,)) € B, 1(ky, ..., k,) 50 that T is the shift
on the coordinates of the expansion. If B, is generated by ki, ks, ..., k,
and we let f, (t) = F(a;+1), then we define
£ = fo,0fiy0 - 0 fe, () = [ [ o fi,®, teT"B,
i=1
Below are three additional a.ssumptlons on F. The first generahzes
condition (C) of Renyi [2].

Jup Iy, ()]

(C) , : m <0< + oo
teT*B,

uniformly where f, runs over all »>1 and. all rea.hza,ble eylinders
B, (kyy kgy ooy Ky).

If m(T"B,) = 1 we say that B, is proper; otherwise B, is said to be
improper. Difficulties with improper eylmders necesswate the next two
conditions. :

(L) 0 <L m(T"B,(x)) for all xe(0, 1), v>1.

For each B,(x), there exists B,+1, a collection of proper cylinders
of order »+1 contained in B (), such that ' ,

m(BH»l) .
0<g<——= for all we(0, 1)} y>=1.
(@ S B0 ) iy

The followmg theorem appears in [6] and is basic to the problem
consudered here. : :

THROREM 1. Suppose Fe F satwfws condition (C), condition (L), and
condition (q). Them’ there exists a unique probability measure y on (0,1)"
such that u < m and T is a measure preserving transformation for u. If we

du ' ’ ' ‘
let Q(w) =W(w), we have -
‘ —g—~< Q(m) <T'

Of course we could conclude u ~ m but- we will only need ,u< m in
our proof. Also, adding the assumption m {@: diam B, () >0} =1 allows

- us to conclude T ergodic. 'This assumption is included in- Theorem 2 below.

- To formulate a Kuzmin theorem for # we need to partition (0, 1)3.
For each cylinder of order 1, B(k), we have TB(k) < (0, 1)%. We use the

. collection T'B(k) to partition (0, 1); and assume the partition is essen-




" Then
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tially countable. Denote this partition by {4,};.,. With each A, we asso-
ciate

& = {k: TB(k)> 4,).
This allows us to calculate

(1) ol@) = D o(fi(@) [y, (@), @ed,.
k“i .
The two lemmas below are taken from [6] and depend only on the
properties of f,. Both are related to the form of equation (1).
LEMMA 1. Suppose Fe F and assume TB,,, = B,, v>1. Let ¥, be
given and ¥, be defined by

V(@) = D' ¥, (fi@) 1y (@), @ed; (i =1,2,...).

ked;

(i)
¥, (@0) = D B (f, @)y, @), wed; (i=1,2,...),

where the last summation is over all realizable cylinders (k,, ..., k,) where
k,‘e g‘i' . . g
LEMMA 2. Let F, {¥,},-, be a8 in Lemma 1. Then

f#f,(w)dw: [ #y@yda  for v>1.

(0,1 (0,1)"

The theorem below was motivated by a paper of Schweiger ([5])
in which he proves a Kuzmin theorem for a class of F-expansions which
has the restriction that all cylinders be proper. Since the n-dimensional
Jacobi algorithm hag improper cylinders, it was not included. Difficulties
are encountered in our proof which do not exist if all eylinders are proper.
The assumption limdiamB,(xz) = 0 almost everywhere is to insure our

00

F-expansions converge and o(») -0 as » — co. To circumvent notational
difficalty, we will tacitly assume xe(0,1)7 implies limdiamB,(x) = 0,

y—00

which involves the deletion of a set of measure zero from the conclusion
of our theorem. :

THEOREM 2. Let Fe F satisfy conditions (C), (q), (L) ond
m{z: limdiam B, (2)=0} =1. In addition, suppose TB,,,(x) = B,(),

v21, e (0, 1)%. Assume there is a consta/ntr A such that

! 6(fv)k

ox;

<4 uniformly in v, k, and j.

Acta Arithmetica XIX.1 T g 3




34 M.S8. Waterman

Also suppose there evists a constant D such that
17, @) — 1, ()| < Dm(B,)le—yll  (2,y¢T"B,)

uniformly in v. Let {¥,},5, be a sequence of functions recursively defined by .

W, (0) = D (@) |y (@), @edy ix1,

ke&;

where ¥, is an arbitrary measurable function satisfymg

0<m< ¥Plo) <
and
1P (2)—¥o(y)| < Nle—yll.
Then 4
|, (#)— ag (@) < ba(v)

where g i8 the density t}f the invariant measure for P,

a = f | ¥, (x)dx and b are constants,
(0,1 .
and ‘
~ . o(») = sup{diam B, (y): ye (0, 1)5}.
Pjrobf. By Lemma 1, we have
@) '
W, (@) = D T(f, (@)1, (@)l, @A
Using this formula and the bounds assumed above, we can show, for
wyye A
(@) ' @)
I%,@)— @) < ¥ Y If.@)—£ @) - J,(@)]+MDlo—y| Y m(B,).

Now, applying the mean value theorem to the components of f,, we obtain
I, (2)—1,@)l < ndlla—yl,
and ﬁse of condition (C) and condition (L) yields 4
5:‘ <.
ST
Therefore o |
¥, (@)— ¥, ()| < (NnAOL~'+ MD)|w—yl| = Cille—y| for o, @/6411
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Application of Lemma 1, equation (1), and condition (0) yields
(2)  O0<m =mLgC?< 7, (») < M, = Cz(MLq)f?, uniformly iﬁ v, 2.
This allows us to ob.tain 0 <A éo < Go such fhat
(3) 0P, (@) < ¥, (2) <GY,(z) uniformly in #, 4, and ».

For u >0, we define

4) , o D) = V(@) —9, P, (@)
and
(8) ' - G (@)= G‘F(ﬂ”) Foir(@). .

By application of Lemma 1, we have

(4)
0,(z) — Zab(f (@)1, @)
and
(%)
| L(@) = D G @)1, (@), wed,.
We obtain ‘

(1)
8,(0)> C- Zabo(f(w))m(B)

from condltlon (C). We Iet

?;'— U Bv(kI’ ey kv)'
kyedy

By the mean value ‘theorem fo_i' integi'als

@) ,
[@(y)dy = D) &,(4,)m(B,).
A \

Therefore

' @)
3,(2)— 07" [ B, (y)dy > 07 3 {®,(f, (2))— ¢o(y:>}m(B.)
R o - |
o L
> —071C, (1+g,) 6 (») Zm(B,) > —C,o5).
That is, 7 v _» .
¥, u(2)— g%, (@) > O [ (¥, (2)— 0, %, (@) do— O, 0 (v).

K3
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In the same manner we obtain (veA;)
' @)
=07 Y 6(f, @)m(B, ),

(%)
[ to(@)ydw = Zcow,)m(B,),

“
and .
(@) — ¥, (@) > 07 [ (G (@) — P, (a)) do— Oy 0 (v).
«;
Letting
L = c [(%, (w) 9%, (@) dw,
«’
and
I =0 [ (6% (@) —P,(®)) do,
4 B ¥
we can show
(6) ¥,,,(2) > ¥, (@) (g., , )-‘Ozam) = ¥2)
and »
@ Fa@<nole 716,00) = 6:,(0)

There exists », such that for v > v,

9o < 91 <G < G,.
Now
, ) (%)
L+G=C" [ (@—g) ¥ (@)do > O (G—g)my D) m(B,)

w
%

> 07 (@, —go)my Y, m(B,) = C7'mg(Go— o),

where Y’ denotes summation over proper cylinders of order » and the

last inequality is by condition (q). The importance of this bound is its

independence of both x and ». -
From these results we obtain

P TR -
(8) th—g = Go— 90— A (B +1) 4 (my) 7 (Co+ C5) o (»)
Lo 1 : : ~

|

< (Gy—g0) (1—m g (OM,)Y) 4 Cy 0 (v).
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~We note that
| 0<i=1—mg(OM)" <1,

since without loss of generality ¢ > 1.
Now we summarize the result just obtained. From

OWv(w) < Tv+u(w) < GOW, (w)

we have proved (for v = )

ng (#) < ¥, (@) <GP, ()
where
$o<g: <G <G

and
G— 0, < (Gy—g0)A+C,0(v).

The argument for g, and G, can be repeated to obtain

9.7, (@) < ¥,,,.(») <GP, (v
where
' G<h<..<g<@G<..<6G;<q,

and
1 Gr"‘gr < (Gr—l—gr—l)z"f'aia(v)

< H(Gy—go)+Cy0(3) L+ At ... +47)
| c
’ S M (Gy—g,)+ "1—_{_;.‘ a(v).

It should be emphagized that G, and g, are functionally dependent
Qn 7,4, v, u, and ¥,
Now ‘
lim (Gr'—gr) =0
», 100

implies

lim @, =lim g, = Q ().

¥, r—00 », r—>00

,Thus we can_write

. | o ¢, .\
000 QI @) < (6, 0)¥.(0) < M,0(F G+ 5 70)
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which implies (letting r - o)
(9) : |Z,10(®)— @ (1) ¥, (2)] < bo ().

At this point we employ (9) to- conclude Q(u) =1. Take v > Yo we
have the following inequalities -

1,114 (8) = Q (1), 1 -1y ()| <-bo(v+ (1—1)p),
1P, -1y (@) — Q1) ¥, —2)u (®)] < bo(v+ (l‘—. 2)u),
1,4 (@) — Q (W)W, ()] < ba(v).

By multiplying row 1 by Q%u), row 2 by @), ...,row I by QF(),
noting o(-) is a decreasing function, and applying the triangle inequality,

- we have (Q(u) #1)

(10) Zecle) =G0 < (3224,

Suppose Q(x) < 1. Then from (10) | a
)

1— Q( )

Since ¥, () is bounded a.bove, Q’(,u) 50 as 1> oo, ‘and’ a(v) >0 as v > oo,

we have »,, !, such that

¥, 1 (2) < @ (u) ¥, (2)+

P, 1 (@) < ng‘o-z.
This contradicts (2) so that Qu) > 1.
Next suppose Q(u) > 1. Then from (10) °

botv) b v
| _—Q( ) +¢Q (,u)( »,(ﬂ?)_ Q(#)—lra_(v“)_) f?‘ffwr-z,f'(?)-
Applymg (2) we have _ \ N

Q‘(g)(quG-z d(f)) < ¥, in(@).

b
Q()“‘

By choosing » > », we have the expression in parentheses poswwe 80 that
there exmts l such that

G (MIq)™ < ¥, 110

wh,lch is & contradmtwn of (2). There_fore Q(p) <1
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Finally, since @ (x) == 1, we have by (9)
(11) ' |‘F,,+#(m)—?l’ ()| < bo(r), »=9,.

Therefore {¥,(x)},~, is a Cauchy sequence. Letting ¥(x) = hmY’ (@),
a = [¥(2) = [P,(x), and ¢(2) = a '¥(x), we have P00

|¥, (®)—ag (@) < be(v).

Since p(x) satisfies (1), f o(z)dx =1, ¢ is the unique mva.nant measure
< m. This completes the proof.

The following corollary corresponds to F. Schweiger’s result ([5]) o
ge Lip'(0, 1)

COROLLARY 1. The density functwn, o(*), of Theorem 2 satisfies a Lip-
schitz condition of order 1 on each of the seis A;. That is,

le@—eW < Kle—yl, =,yeAd,.

Proof. The result follows directly from ¥,(-)e Lip'(4,), and the
conclusion of Theorem 2. Note that K has the same value for each of
the A,.

COROLLARY 2. Let Fe F and ¥, be as in Theorem 2. Then for all u >
and i > 1,

[, (z)d
lim % 1
m--—— =
oo | Pyla)de
v

Proof. We remark that if €; = (0, 1)} (for fixed ¢), then the result
is obvious from Lemma 2. In general, however, it seems necessary to
return to an expllclt determlna.tlon of g,. -

—_ ml -
| | ’go ‘— oM’ ) 7
g = g1 (1= (OM)7) [ Py(@)do+(OM) [ ¥, (a)da—Cso(r) -
€ €;

=ag,_,+b = a'go—}—b(i-l—a-l— cee Fa™ ).

By chooéing v 2> vg and making M, sufficiently large, we have 0 < a, b <1,
Therefore, ‘

(CM)™ [V, (vydw— C5o(v)
. b ’
(12) ],f'ig T1=a (CM)T [¥,(@w)dw

€ - ‘ .
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and
[V, (x)dw

N V

1=0(u = hfg(lljgyr) = w—]m

gl’

A formula. very similar to (12) exists for lim@,, so that an alternate

r—>00
method of provmg our theorem would be to conclude Corollary 2 without
benefit of @(u) = 1. However, this is essentially asking for an explicit

calculation of the nature of lim¥; which does not seem to be easy. If,

Y—>00

for example, m(lim¥;) = 1, the result would follow.

—00

To apply our theorem to the J: a.cébl algorithm we refer to [6] There
we showed that ,
' 1 = Xy
F(m) =_(_7_17 '--’n—l)
w” wn $n

belongs to- # and the assumptions are satisfied with

— (1_|_2,n)n+1’
1
‘and BT
1

L A ey At ony

Also, following Schweiger [3], we can verify the assumptions on f, and J,.
Thus our Kuzmin theorem holds for the Jacobi algorithm.

The author would like to express his appreciation to F. Schweiger
for making available a manuscript contaiﬁing a corrected version of his
Kuzmin theorem ([5]). The work referred to in [6] will appear elsewheré.
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