A Kuzmin theorem for a class of number theoretic endonorphisms

by

Michael S. Waterman (Pocatello, Idahö)

Recently several papers ([3], [4], [5], [6], [7]) have been concerned with generalizations of a 1928 theorem of Kuzmin. His result gives a rate of $e^{-2 \sqrt{n}}$ for the convergence of the iteration of an arbitrary function to the invariant measure for the continued fraction. The present paper gives a generalized Kuzmin theorem for a class of multi-dimensional F-expansions which includes the n-dimensional continued fraction, An earlier paper ([6]) presented such a theorem with a rate of $\left(e^{-2 \sqrt{0}}+\sigma(\sqrt{v})\right)$. Our present thearem improves the rate to $\sigma(v)$.

Our F-expansions were first considered in [6], and we include a short summary of notation and assumptions here. Let A be a fixed convex subset of R^{n}. Suppose F is a one-to-one continuous map of A onto $(0,1)^{n}$. We assume $J_{F}(\cdot)$, the Jacobian of F, exists, the components of F have continuous first order partial derivatives, and $J_{F}(x) \neq 0$ for almost all $x \in A$. Let $D=F^{-1}, T(x)=D(x)-[D(x)]$, and $a_{0}(x)=\left[D\left(T^{+1} x\right)\right]$ (where $[8]=\left(\left[z_{1}\right],\left[z_{2}\right], \ldots,\left[z_{n}\right]\right)$. We call $a_{r}(x)$ the v-th coordinate of the F-saxpansion of x. Letting
*

$$
(0,1)_{F}^{n}=\left\{a \in(0,1)^{n}, T^{(}(x) \in(0,1)^{n} \text { for an } v \geqslant 1\right\}
$$

we impose the assumption $m(0,1)_{F}^{n}=1$, where menotes n-dimensional Lebengue measure. We will write FcF to indicate the satistection of these assumptions.

We define the cylinder of order v generated by a realizeble set of coondinates $k_{1}, k_{2}, \ldots, k_{2}$, as

$$
B_{1}=B_{,}\left(k_{1}, k_{2}, \ldots, k_{p}\right)-\left\{x \in(0,1)^{p}, a_{i}(x)-k_{1}, i-1,, v_{0},\right.
$$

Of course $T\left(B_{v}\left(k_{1}, k_{2}, \ldots, k_{\nu}\right)\right) \subseteq B_{v-1}\left(k_{2}, \ldots, k_{\nu}\right)$ so that T is the shift on the coordinates of the expansion. If B_{v} is generated by $k_{1}, k_{2}, \ldots, k_{v}$ and we let $f_{a_{i}}(t)=F\left(a_{i}+t\right)$, then we define

$$
f_{\nu}(t)=f_{k_{1}} \circ f_{k_{2}} \circ \ldots \circ f_{k_{\nu}}(t)=\prod_{i=1}^{\nu} \circ f_{k_{i}}(t), \quad t \in T^{\nu} B_{v} .
$$

Below are three additional assumptions on F. The first generalizes condition (C) of Renyi [2].

$$
\begin{equation*}
\frac{\sup _{t \in T^{v} B_{v}}\left|J_{f_{v}}(t)\right|}{\inf _{t \in T^{v} B_{v}}\left|J_{J_{v}}(t)\right|} \leqslant C<+\infty \tag{C}
\end{equation*}
$$

uniformly where f_{p} runs over all $\nu \geqslant 1$ and all realizable cylinders $B_{v}\left(k_{1}, k_{2}, \ldots, k_{v}\right)$.

If $m\left(T^{w} B_{\nu}\right)=1$ we say that B_{ν} is proper; otherwise B_{v} is said to be improper. Difficulties with improper cylinders necessitate the next two conditions.

$$
\begin{equation*}
0<L \leqslant m\left(T^{v} B_{v}(x)\right) \quad \text { for all } x \in(0,1)_{F}^{n}, \quad \nu \geqslant 1 . \tag{L}
\end{equation*}
$$

For each $B_{v}(x)$, there exists \hat{B}_{v+1}, a collection of proper cylinders of order $v+1$ contained in $B_{v}(x)$, such that

$$
\begin{equation*}
0<q \leqslant \frac{m\left(\hat{B}_{v+1}\right)}{m\left(B_{v}(x)\right)} \quad \text { for all } x \in(0,1)_{F}^{n}, \quad v \geqslant 1 . \tag{q}
\end{equation*}
$$

The following theorem appears in [6] and is basic to the problem considered here.

Theorem 1. Śuppose $F \in \mathscr{F}$ satisfies condition (C), condition (L), and condition (q). Then there exists a unique probability measure μ on $(0,1)^{n}$ such that $\mu \ll m$ and T is a measure preserving transformation for μ. If we let $\varrho(x)=\frac{d \mu}{d m}(x)$, we have

$$
\frac{q}{O} \leqslant \varrho(x) \leqslant \frac{C}{L} .
$$

Of course we could conclude $\mu \sim m$ but we will only need $\mu \ll m$ in our proof. Also, adding the assumption $m\left\{x: \operatorname{diam} B_{i}(x) \rightarrow 0\right\}=1$ allows us to conclude T ergodic. This assumption is included in Theorem 2 below.

To formulate a Kazmin theorem for \mathscr{F} we need to partition (0,1$)_{F}^{n}$. For each cylinder of order $1, B(k)$, we have $T B(k) \subset(0,1)_{F}^{n}$. We use the collection $T B(k)$ to partition $(0,1)_{F}^{n}$ and assume the partition is essen-
tially countáble. Denote this partition by $\left\{A_{i}\right\}_{i \geqslant 1}$. With each A_{i} we associate

$$
\mathscr{E}_{i}=\left\{k: T B(k) \supset A_{i}\right\}
$$

This allows us to calculate

$$
\begin{equation*}
\varrho(x)=\sum_{k \in \delta_{i}} \varrho\left(f_{k}(x)\right)\left|\hat{J}_{t_{k}}(x)\right|, \quad x \in A_{i} . \tag{1}
\end{equation*}
$$

The two lemmas below are taken from [6] and depend only on the properties of f_{k}. Both are related to the form of equation (1).

Lemma 1. Suppose $F \in \mathscr{F}$ and assume $T B_{v+1}=B_{v}, v \geqslant 1$. Let Ψ_{0} be given and Ψ_{v} be defined by

$$
\Psi_{v}(x)=\sum_{k=f_{i}} \Psi_{v-1}\left(f_{k}(x)\right)\left|J_{f_{k}}(x)\right|, \quad x \in A_{i}(i=1,2, \ldots)
$$

Then

$$
\Psi_{v}(x)=\sum^{(i)} \Psi_{0}\left(f_{v}(x)\right)\left|J_{f_{v}}(x)\right|, \quad x \in A_{i}(i=1,2, \ldots)
$$

where the last summation is over all realizable cylinders $\left(k_{1}, \ldots, k_{v}\right)$ where $k_{v} \in \mathscr{E}_{i}$.

Lemma 2. Let $F,\left\{\Psi_{v}\right\}_{v \geqslant 0}$ be as in Lemma 1. Then

$$
\int_{(0,1)^{n}} \Psi_{p}(x) d x=\int_{(0,1)^{n}} \Psi_{0}(x) d x \quad \text { for } \quad v \geqslant 1 .
$$

The theorem below was motivated by a paper of Schweiger ([5]) in which he proves a Kuzmin thearem for a class of F-expansions which has the restriction that all cylinders be proper. Since the n-dimensional Jacobi algorithm has improper cylinders, it was not included. Difficulties are encountered in our proof which do not exist if all cylinders are proper. The assumption $\lim \operatorname{diam} B_{v}(x)=0$ almost everywhere is to insure our F-expansions converge and $\sigma(\nu) \rightarrow 0$ as $y \rightarrow \infty$. To circumvent notational difficulty, we will, tacitly assume $x \in(0,1)_{F}^{n}$ implies $\lim _{v \rightarrow \infty} \operatorname{diam} B_{\nu}(x)=0$, which involves the deletion of a set of measure zero from the conclusion of our theorem.

Theorem 2. Let $F \in \mathscr{F}$ satisfy conditions (C), (q), (L) and $m\left\{x: \lim \operatorname{diam} B_{v}(x)=0\right\}=1$. In addition, suppose $\quad T B_{v+1}(x)=B_{v}(x)$, $\left.\nu \geqslant 1, x_{x \in(0,1}^{n}\right)_{F^{*}}^{n}$. Assume there is a constant A such that

$$
\left|\frac{\partial\left(f_{v}\right)_{k}}{\partial x_{j}}\right| \leqslant A \quad \text { uniformly in } \nu, k, \text { and } j .
$$

Also suppose there exists a constant D such that

$$
\left\|J_{v}(x)|-| J_{v}(y)\right\| \leqslant \operatorname{Dm}\left(B_{v}\right)\|x-y\| \quad\left(x, y \in T^{v} B_{v}\right)
$$

uniformly in ν. Let $\left\{\Psi_{v}\right\}_{v \geq 0}$ be a sequence of functions recursively defined by

$$
\Psi_{\nu}(x)=\sum_{k \in \delta_{i}} \Psi_{\nu-1}\left(f_{k}(x)\right)\left|J_{f_{k}}(x)\right|, \quad x \in A_{i}, i \geqslant 1
$$

where Ψ_{0} is an arbitrary measurable function satisfying

$$
0<m \leqslant \Psi_{0}(x) \leqslant M
$$

$a n d$

$$
\left|\Psi_{0}(x)-\Psi_{0}(y)\right| \leqslant N\|x-y\| .
$$

Then

$$
\left|\Psi_{v}(x)-a \varrho(x)\right|<b \sigma(v)
$$

where ϱ is the density of the invariant measure for F,

$$
a=\int_{(0,1)^{n}} \Psi_{0}(x) d x \text { and } b \text { are constants, }
$$

and

$$
\sigma(v)=\sup \left\{\operatorname{diam} B_{v}(y): y \in(0,1)_{F}^{n}\right\}
$$

Proof. By Lemma 1, we have

$$
\Psi_{v}(x)=\sum^{(i)} \Psi_{0}\left(f_{v}(x)\right)\left|J_{v}(x)\right|, \quad x \in A_{i}
$$

Using this formula and the bounds assumed above, we can show, for $x, y \in A_{i}$,

$$
\left|\Psi_{\nu}(x)-\Psi_{\nu}(y)\right| \leqslant N \sum^{(i)}\left\|f_{v}(x)-f_{v}(y)\right\| \cdot\left|J_{v}(x)\right|+M D\|x-y\| \sum^{(i)} m\left(B_{v}\right)
$$

Now, applying the mean value theorem to the components of f_{v}, we obtain

$$
\left\|f_{v}(x)-f_{v}(y)\right\| \leqslant n A\|x-y\|,
$$

and use of condition (C) and condition (L) yields

$$
\sum^{(i)}\left|J_{y}(x)\right| \leqslant \frac{\sigma}{L}
$$

Therefore

$$
\left|\Psi_{\eta}(x)-\Psi_{\nu}(y)\right| \leqslant\left(N n A C L^{-1}+M D\right)\|x-y\|=C_{1}\|x-y\| \quad \text { for } x, y \in A_{i}
$$

Application of Lemma 1, equation (1), and condition (O) yields
(2) $0<m_{1}=m L q C^{-2}<\Psi_{v}(x)<M_{1}=C^{2}(M L q)^{-1}$, uniformly in ν, x.

This allows us to obtain $0<g_{0}<G_{0}$ such that

$$
\begin{equation*}
g_{0} \Psi_{\nu}(x)<\Psi_{\mu+\nu}(x)<G_{0} \Psi_{\nu}(x) \quad \text { uniformly in } x, \mu, \text { and } v \tag{3}
\end{equation*}
$$

For $\mu \geqslant 0$, we define

$$
\begin{equation*}
\Phi_{v}(x)=\Psi_{\mu+\nu}(x)-g_{0} \Psi_{v}(x) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\zeta_{\nu}(x)=G_{0} \Psi_{\nu}(x)-\Psi_{\mu+\nu}(x) . \tag{5}
\end{equation*}
$$

By application of Lemma 1, we have

$$
\Phi_{v}(x)=\sum^{(i)} \Phi_{0}\left(f_{v}(x)\right)\left|J_{v}(x)\right|
$$

and

$$
\zeta_{\nu}(x)=\sum^{(i)} \zeta_{0}\left(f_{\nu}(x)\right)\left|J_{\nu}(x)\right|, \quad x \in A_{i}
$$

We obtain

$$
\Phi_{v}(x) \geqslant C^{-1} \sum^{(i)} \Phi_{0}\left(f_{v}(x)\right) m\left(B_{v}\right)
$$

from condition (C). We let

$$
\mathscr{C}_{i}^{v}=\bigcup_{k_{v} \in \mathscr{C}_{i}} B_{v}\left(k_{1}, \ldots, k_{v}\right)
$$

By the mean value theorem for integrals

$$
\int_{\boldsymbol{\varkappa}_{i}^{\prime \prime}} \Phi_{0}(y) d y=\sum^{(i)} \Phi_{0}\left(y_{v}^{\prime}\right) m\left(B_{v}\right) .
$$

Therefore

$$
\begin{aligned}
\Phi_{\nu}(x)-C^{-1} \int_{\varepsilon_{i}^{\prime}} \Phi_{0}(y) d y & \geqslant C^{-1} \sum^{(i)}\left\{\Phi_{0}\left(f_{v}(x)\right)-\Phi_{0}\left(y_{v}^{\prime}\right)\right\} m\left(B_{v}\right) \\
& \geqslant-C^{-1} C_{1}\left(1+g_{0}\right) \sigma(v) \sum^{(i)} m\left(B_{v}\right) \geqslant-C_{2} \sigma(v)
\end{aligned}
$$

That is,

$$
\Psi_{\nu+\mu}(x)-g_{0} \Psi_{\nu}(x) \geqslant C^{-1} \int_{\Psi_{i}^{\prime}}\left(\Psi_{\mu}(x)-g_{0} \Psi_{0}(x)\right) d x-C_{2} \sigma(\nu)
$$

In the same manner we obtain ($x \in A_{i}$)

$$
\begin{gathered}
\zeta_{\nu} \geqslant C^{-1} \sum^{(i)} \zeta_{0}\left(f_{v}(x)\right) m\left(B_{v}\right) \\
\int_{\boldsymbol{\varepsilon}_{i}^{v}} \zeta_{0}(x) d x=\sum^{(i)} \zeta_{0}\left(y_{v}^{\prime}\right) m\left(B_{v}\right)
\end{gathered}
$$

and

$$
G_{0} \Psi_{\nu}(x)-\Psi_{\mu+\nu}(x) \geqslant C^{-1} \int_{\mathscr{\varkappa}_{i}^{v}}\left(G_{0} \Psi_{0}(x)-\Psi_{\mu}(x)\right) d x-C_{3} \sigma(v)
$$

Letting

$$
l_{i}=C^{-1} \int_{\Psi_{i}^{*}}\left(\Psi_{\mu}(x)-g_{0} \Psi_{0}(x)\right) d x
$$

and

$$
l_{i}^{\prime}=\boldsymbol{C}^{-1} \int_{\boldsymbol{\Psi}_{i}^{\prime}}\left(G_{0} \Psi_{0}(x)-\Psi_{\mu}(x)\right) d x
$$

we can show

$$
\begin{equation*}
\Psi_{\nu+\mu}(x) \geqslant \Psi_{\nu}(x)\left(g_{0}+\frac{l_{i}}{M_{1}}-\left(m_{1}\right)^{-1} O_{2} \sigma(v)\right)=g_{1} \Psi_{\nu}(x) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\Psi_{\nu+\mu}(x) \leqslant \Psi_{\nu}(x)\left(G_{0}-\frac{l_{i}^{\prime}}{M_{1}}+\left(m_{1}\right)^{-1} G_{3} \sigma(\nu)\right)=G_{1} \Psi_{\nu}(x) \tag{7}
\end{equation*}
$$

There exists ν_{0} such that for $\nu \geqslant \nu_{0}$,

$$
g_{0}<g_{1}<G_{1}<G_{0}
$$

Now

$$
\begin{aligned}
l_{i}+l_{i}^{\prime} & =C^{-1} \int_{\boldsymbol{\gamma}_{i}^{\prime}}\left(G_{0}-g_{0}\right) \Psi_{0}(x) d x \geqslant C^{-1}\left(G_{0}-g_{0}\right) m_{1} \sum^{(i)} m\left(B_{v}\right) \\
& \geqslant C^{-1}\left(G_{0}-g_{0}\right) m_{1} \sum^{\prime} m\left(B_{v}\right)=C^{-1} m q\left(G_{0}-g_{0}\right)
\end{aligned}
$$

where Σ^{\prime} denotes summation over proper cylinders of order ν and the last inequality is by condition (q). The importance of this bound is its independence of both μ and ν.

From thesé results we obtain

$$
\begin{align*}
G_{1}-g_{1} & =G_{0}-g_{0}-\frac{1}{M_{1}}\left(l_{i}^{\prime}+l_{i}\right)+\left(m_{1}\right)^{-1}\left(C_{2}+C_{3}\right) \sigma(v) \tag{8}\\
& \leqslant\left(G_{0}-g_{0}\right)\left(1-m_{1} q\left(O M_{1}\right)^{-1}\right)+C_{4} \sigma(v)
\end{align*}
$$

We note that

$$
0<\lambda=1-m_{1} q\left(C M_{1}\right)^{-1}<1
$$

since without loss of generality $C>1$.
Now we summarize the result just obtained. From

$$
g_{0} \Psi_{v}(x)<\Psi_{v+\mu}(x)<G_{0} \Psi_{v}(x)
$$

we have proved (for $v \geqslant v_{0}$)

$$
g_{1} \Psi_{\eta}(x)<\Psi_{v+\mu}(x)<G_{1} \Psi_{v}(x)
$$

where

$$
g_{0}<g_{1}<G_{1}<G_{0}
$$

and

$$
G_{1}-g_{1} \leqslant\left(\theta_{0}-g_{0}\right) \lambda+C_{4} \sigma(v) .
$$

The argument for g_{1} and G_{1} can be repeated to obtain

$$
g_{r} \Psi_{v}(x)<\Psi_{v+\mu}(x)<G_{r} \Psi_{v}(x)
$$

where

$$
g_{0}<g_{1}<\ldots<g_{r}<G_{r}<\ldots<G_{1}<G_{0}
$$

and

$$
\begin{aligned}
G_{r}-g_{r} & \leqslant\left(G_{r-1}-g_{r-1}\right) \lambda+C_{4} \sigma(v) \\
& \leqslant \lambda^{r}\left(G_{0}-g_{0}\right)+C_{4} \sigma(\nu)\left(1+\lambda+\ldots+\lambda^{r}\right) \\
& \leqslant \lambda^{r}\left(G_{0}-g_{0}\right)+\frac{C_{4}}{1-\lambda} \sigma(v)
\end{aligned}
$$

It should be emphasized that G_{r} and g_{r} are functionally dependent pn r, i, ν, μ, and Ψ_{0}.

Now

$$
\lim _{r, r \rightarrow \infty}\left(G_{r}-g_{r}\right)=0
$$

implies

$$
\lim _{p, r \rightarrow \infty} G_{r}=\lim _{p, r \rightarrow \infty} g_{r}=Q(\mu)
$$

Thus we can write

$$
\left|\Psi_{v+\mu}(x)-Q(\mu) \Psi_{v}(x)\right|<\left(G_{r}-g_{r}\right) \Psi_{v}(x) \leqslant M_{1} O\left(\lambda^{r}\left(G_{0}-g_{0}\right)+\frac{C_{4}}{1-\lambda} \sigma(v)\right)
$$

which implies (letting $r \rightarrow \infty$)

$$
\begin{equation*}
\left|\Psi_{v+\mu}(x)-Q(\mu) \Psi_{v}(x)\right|<b \sigma(v) . \tag{9}
\end{equation*}
$$

At this point we employ (9) to conclude $Q(\mu) \equiv 1$. Take $v \geqslant \nu_{0}$, we have the following inequalities

$$
\begin{aligned}
\left|\Psi_{v+l \mu}(x)-Q(\mu) \Psi_{v+(l-1) \mu}(x)\right| & <b \sigma(v+(l-1) \mu) \\
\left|\Psi_{v+(l-1) \mu}(x)-Q(\mu) \Psi_{v+(l-2) \mu}(x)\right| & <b \sigma(v+(l-2) \mu),
\end{aligned}
$$

$$
\left|\Psi_{\nu+\mu}(x)-Q(\mu) \Psi_{v}(x)\right|<b \sigma(\nu)
$$

By multiplying row 1 by $Q^{0}(\mu)$, row 2 by $Q^{1}(\mu), \ldots$, row l by $Q^{(l-1)}(\mu)$, noting $\sigma(\cdot)$ is a decreasing function, and applying the triangle inequality, we have ($Q(\mu) \neq 1)$

$$
\begin{equation*}
\left|\Psi_{v+l \mu}(x)-Q^{l}(\mu) \Psi_{\nu}(x)\right|<\bar{b} \sigma(v)\left(\frac{1-Q^{l}(\mu)}{1-Q(\mu)}\right) \tag{10}
\end{equation*}
$$

Suppose $Q(\mu)<1$. Then from (10)

$$
\Psi_{v+l \mu}(x)<Q^{l}(\mu) \Psi_{v}(x)+\frac{b \sigma(v)}{1-Q(\mu)}
$$

Since $\Psi_{\nu}(\cdot)$ is bounded above, $Q^{l}(\mu) \rightarrow 0$ as $l \rightarrow \infty$, and $\sigma(v) \rightarrow 0$ as $v \rightarrow \infty$, we have ν_{1}, l_{1} such that

$$
\Psi_{\nu_{1}+l_{1} \mu}(x)<m L q C^{-2}
$$

This contradicts (2) so that $Q(\mu) \geqslant 1$.
Next suppose $Q(\mu)>1$. Then from (10)

$$
\frac{b \sigma(v)}{Q(\mu)-1}+Q^{l}(\mu)\left(\Psi_{v}(x)-\frac{b}{Q(\mu)-1} \sigma(v)\right)<\Psi_{v+l_{\mu}}(x)
$$

Applying (2) we have

$$
Q^{l}(\mu)\left(m L q C^{-2}-\frac{b}{Q(\mu)-1} \sigma(v)\right)<\Psi_{v+l \mu}(x)
$$

By choosing $\nu \geqslant \nu_{2}$ we have the expression in parentheses positive so that there exists l_{2} such that

$$
G^{2}(M L q)^{-1}<\Psi_{v_{2}+l_{2} \mu}(x)
$$

which is a contradiction of (2). Therefore $Q(\mu) \leqslant 1$.

Finally, since $Q(\mu) \equiv 1$, we have by (9)

$$
\begin{equation*}
\left|\Psi_{v+\mu}(x)-\Psi_{v}(x)\right|<b \sigma(v), \quad v \geqslant v_{0} \tag{11}
\end{equation*}
$$

Therefore $\left\{\Psi_{v}(x)\right\}_{v \geqslant 1}$ is a Cauchy sequence. Letting $\Psi(x)=\lim \Psi_{\nu}(x)$, $a=\int \Psi(x)=\int \Psi_{0}(x)$, and $\varrho(x)=a^{-1} \Psi(x)$, we have

$$
\left|\Psi_{\nu}(x)-a \varrho(x)\right|<b \varrho(v)
$$

Since $\varrho(x)$ satisfies (1), $\int \varrho(x) d x=1$, ϱ is the unique invariant measure $\ll m$. This completes the proof.

The following corollary corresponds to F. Schweiger's result ([5]) of $\varrho \in \operatorname{Lip}^{1}(0,1)^{n}$.

Corollary 1. The density function, $\varrho(\cdot)$, of Theorem 2 satisfies a Lipschitz condition of order 1 on each of the sets A_{i}. That is,

$$
|\varrho(x)-\varrho(y)| \leqslant K\|x-y\|, \quad x, y \in A_{i} .
$$

Proof. The result follows directly from $\Psi_{p}(\cdot) \in \operatorname{Lip}{ }^{1}\left(A_{i}\right)$, and the conclusion of Theorem 2. Note that K has the same value for each of the A_{i}.

Corollary 2. Let $F \in \mathscr{F}$ and Ψ_{0} be as in Theorem 2. Then for all $\mu \geqslant 0$ and $i \geqslant 1$,

$$
\lim _{v \rightarrow \infty} \frac{\int_{\mathscr{C}_{i}^{\nabla}} \Psi_{\mu}(x) d x}{\int_{\boldsymbol{\mho}_{i}^{\nu}} \Psi_{0}(x) d x}=1
$$

Proof. We remark that if $\mathscr{C}_{i}^{\nu} \equiv(0,1)_{F}^{n}$ (for fixed i), then the result is obvious from Lemma 2. In general, however, it seems necessary to return to an explicit determination of g_{r}.

$$
\begin{aligned}
& g_{0}=\frac{m_{1}}{2 M_{1}} \\
& g_{r}=g_{r-1}\left(1-\left(O M_{1}\right)^{-1}\right) \int_{\mathscr{ष}_{i}^{\nu}} \Psi_{0}(x) d x+\left(O M_{1}\right)^{-1} \int_{\mathbb{ष}_{i}^{p}} \Psi_{\mu}(x) d x-C_{5} \sigma(v) \\
&=a g_{r-1}+b=a^{r} g_{0}+b\left(1+a+\ldots+a^{r-1}\right)
\end{aligned}
$$

By choosing $\nu \geqslant \nu_{s}$ and making M_{1} sufficiently large, we have $0<a, b<1$. Therefore,

$$
\begin{equation*}
\lim _{r \rightarrow \infty} g_{r}=\frac{-b}{1-a}=\frac{\left(C M_{1}\right)^{-1} \int_{\mathscr{C}_{i}^{v}} \Psi_{\mu}(x) d x-C_{5} \sigma(\nu)}{\left(C M_{1}\right)^{-1} \int_{\Psi_{i}^{\nu}} \Psi_{0}(x) d x} \tag{12}
\end{equation*}
$$

and

$$
1=Q(\mu)=\lim _{v \rightarrow \infty}\left(\lim _{r \rightarrow \infty} g_{r}\right)=\lim _{y \rightarrow \infty} \frac{\int_{\mathscr{母}_{i}^{V}} \Psi_{\mu}(x) d x}{\int_{\mathscr{Y}_{i}^{\gamma}}} \Psi_{0}(x) d x .
$$

A formula very similar to (12) exists for $\lim _{r \rightarrow \infty} G_{r}$, so that an alternate method of proving our theorem would be to conclude Corollary 2 without benefit of $Q(\mu) \equiv 1$. However, this is essentially asking for an explicit calculation of the nature of $\lim \mathscr{C}_{i}^{\prime}$ which does not seem to be easy. If, for example, $m\left(\lim _{v \rightarrow \infty} \mathscr{C}_{i}^{v}\right)=1$, the result would follow.

To apply our theorem to the Jacobi algorithm we refer to [6]. There we showed that

$$
F(x)=\left(\frac{1}{x_{n}}, \frac{x_{1}}{x_{n}}, \ldots, \frac{x_{n-1}}{x_{n}}\right)
$$

belongs to \mathscr{F} and the assumptions are satisfied with
and

$$
\begin{aligned}
& C=(1+2 n)^{n+1} \\
& L=\frac{1}{n!} \\
& q=\frac{1}{n!(1+n)^{n+1}(1+2 n)^{n+1}}
\end{aligned}
$$

Also, following Schweiger [3], we can verify the assumptions on f_{v} and J_{v}. Thus our Kuzmin theorem holds for the Jacobi algorithm.

The author would like to express his appreciation to F. Schweiger for making available a manuscript containing a corrected version of his Kuzmin theorem ([5]). The work referred to in [6] will appear elsewhere.

References

[1] R. O. Kuzmin, Sur un probleme de Gaus8, Atti del Congresso Internazionale del Matematici Bologna 6 (1928), pp. 83-89.
[2] A. Renyi, Representations for real numbers and their ergodio properties, Acta Math. Acad. Sci. Hungaricae 8 (1957), pp. 477-493.
[3] F. Schweiger, Ein Kuzminsoher Satz über den Jacobischon Algorithmus, J. Reine Angew. Math. 232 (1968), pp. 35-40.
[4] - Metrische Theorie einer Klasse zahlontheoretischer Transformationen, Acta Arith. 15 (1968), pp. 1-18.
[5] F.Schweiger, Metrische Theorie einer Klasse zahlentheoretisoher Transformationen (Corrigendum), Acta Arith. 16 (1969), pp. 217-219.
[6] M. Waterman, Some ergodic properties of multi-dimensional F-expansions, Z. Wahrscheinlichkeitetheorie verw. Geb. 16 (1970), pp. 77-103.
[7] T. Vinh-Hien, The central limit theorem for stationary processes generated by number theoretic endomorphisms (in Russian), Vestnik Moskov Univ. Ser. I. Mat. Meh. 5, 1 (1963), pp. 28-34.

IDAHO STATE UNIVERSITY

