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Some Ergodic Properties 
of Multi-Dimensional F-Expansions 

MICHAEL S .  WATERMAN 

I. Introduction 
This paper is concerned with probabilistic aspects of the expansion of points 

in n-dimensional Euclidean space. The expansions we consider need not converge 
although previous work has required convergence. 

The classical continued fraction was first examined from a measure theoretic 

point of view by Gauss [ll]. Defining T(x)=-- - , where x ~ ( 0 , l )  and [*I 
denotes the greatest integer function, he found the Lebesgue measure of 

{ a :  T"(a)<x} to have the limiting value . Gauss posed the problem 

of estimating the difference between the approximate and the limiting values. In 
1928 Kuzmin [ 141 solved this problem by considering 

X [:I 
log(1 +x) 

log 2 

where $,, is an arbitrary function satisfying regularity conditions. He shows 
approaches (( 1 + x) log 2)- ', Gauss' measure. 

Ryll-Nardzewski [21] put this work in modern terminology by noting that 
T( - )  was the shift on the digits of the continued fraction expansion. With his proof 
that T(.)  was ergodic with respect to Lebesgue measure, the ergodic theory was 
completed by noting that Gauss' measure is an invariant measure for T(.). 

Renyi [ 181 generalized Ryll-Nardzewski's results to the f-expansions of 
Everett [6] and Bissinger [3]. Here the shift is T(x)=f-'(x)-[f-'(x)], x ~ ( 0 , l ) .  
To show Tergodic with respect to Lebesgue measure, Renyi imposed condition (C), 
a regularity condition. Rohlin [20] obtained some information theoretic results 
which were applied to Renyi's f-expansions. Recently Vinh-Hien [3 11 has 
extended Kuzmin's theorem to f-expansions and obtained a central limit theorem. 
Reznik [19] has used Vinh-Hien's work to obtain a law of the iterated logarithm. 

In 1869 Jacobi [lo] presented an extension of the continued fraction to two 
dimensions. Perron [ 171 extended Jacobi's work to n-dimensions. In 1964 
Schweiger 1231 began an examination of the measure theoretic properties of 
Jacobi's algorithm (see [24 to 291). It was this work which motivated our paper. 
However Schweiger [30] has recently published some results which also concern 
general F-expansions for n-dimensions. The class of algorithms he considers does 
not include the Jacobi algorithm and is a natural generalization of Renyi [ls]. 
Our results generalize most of Schweiger's work and have the Jacobi algorithm 
6 Z. Wahrscheinlichkeitstheorie verw. Geb.. Eid. 16 
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as an example. We also include a central limit theorem and a law of the iterated 
logarithm. 

In obtaining a Kuzmin theorem and Rohlin's results the chain rule is of 
primary importance. The identity is (g 0 h)' = g'(h) h' in one-dimension and 
Jg. , , (*)=Jg(h('))  J h ( ' )  in n-dimensions (111, p. 140). Our method of obtaining the 
chain rule is related to some work of Parry ([lS, 161). 

11. Notation and Assumptions 
In this section we define the symbols that we use throughout the paper. The 

underlying assumptions are made and some special assumptions are stated and 
labeled. To avoid repetition, we later use the symbols defined here without 
redefining them. The reason for making some of the assumptions will be pointed 
out when they come into use. 

Suppose F is a 1-1, continuous map of A onto (0,l)" where A is a convex set 
contained in R". We assume JF(x) ,  the Jabobian of F evaluated at x, exists, the 
components of F have continuous first order partial derivatives, and J F ( x ) + 0  for 
almost all XEA. Let D = F - ' .  We define the sequence of coordinates (n tuples of 
integers) associated with x~(0 , l ) "  as follows: 

a' (4 = CD(X)I, 6'(x) = D(x) - 10 (41 , 
... 

uk (x) = [ D (dk- ' (x))] , hk (x) = D (ak- ' X) - [ D (dk- ' (x))] , 
... 

where [z] =([z,], ... , [z,]) for Z E  R". ([zi] denotes the integral part of the real 
number zi.) 

Note that sk(x) need not belong to (0, l)", that is, S:(x)=O may occur for some 
jE{ 1, ... , n}. To avoid these difficulties we define the algorithm on the restricted 
set 

(0,l);={x~(O, 1)":dk(x)~(0, 1)" fork= 1,2, ...}. 

We impose the assumption that 
m(0, I);= 1 

where m denotes n-dimensional Lebesgue measure. Our underlying measure 
space, then, is to be m on the Lebesgue measurable subsets of (0,1)2. 

We define the cylinder of order v generated by a specified set of coordinates 
k', ..., k" as 

B'=B'(k', ..., k' )={xE(O,  l);:u'(x)=k/ j=1,  ..., v]. 
We remark that 

BBV(k', ... , k')cBV-'(k2, ..., k"). 

That is, 6 is a shift operator. Here Bo = (0,l))t. by definition. Of course we only 
consider k', . . . , k' which are admissible, that is which could arise by application 
of the algorithm to some XEBO. This is to assume B"+@ Also 

B"(x)=B"(u'(x), ...) a'(.)) 

is assumed to satisfy rn(B"(x))>O for all x~(0,l))t . .  
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From the definition of ui and 6, it is easily verified that 

x = F ( U ' ( X )  + F(a2 (x) + ... + F(u'(x) + 8'(x))...)) . 

f , i  ( t )  = F ( d  + t ) .  
We define 

The above identity can now be rewritten as x=f,,ofalo...ofaY(t) . Since there is a 
chain rule for Jacobians [l] just as there is for functions of one variable, and since 
the integral of a Jacobian is area [l], we make fundamental use of this composition 
of functions. The entire theory we construct is based on the following observation: 

Lemma 2.1. I f  B' is generuted by k', . . . , k', then 
V 

B'=fkI O f k 2  o * * * o f k Y ( 6 v ~ v ) =  n ofk~(8'Bv) .  
i =  1 

Proof: 

f k i  O f k 2  o ~ * * o f k Y ( 6 v ~ v ) =  u {F(k' + F ( k Z  + * e *  + F(k'+ 6'(X)). . .))> = u {X} =B'. 
XOB" XCB" 

The assumptions on F made above will be used throughout and when they 
hold we will write F E ~ .  Below we make three additional assumptions on F. 
Every use of these conditions will be clearly indicated. 

The following condition generalizes condition (C) of Renyi [18]: 

V 

where f ,  = n " f k i  for each v 2 1 and all admissible cylinders B'(k', . . . , k'). This 

condition is to assure us that no path of the process is too flat or too steep. 
It should be remarked that 6"B' ~(0,l)nF but strict containment can occur. 

In the n-dimensional continued fraction (to be discussed below) for example, 
m(6'B') = (n!)- occurs a countable number of times (whenever k' = (k ,  . . . , k), k 2 1). 
If 6'B' = (0, l&, we say B' is proper; otherwise B' is said to be improper. Difficulties 
associated with improper cylinders lead us to the next two conditions. 

(L) rn(6"BV(x))2L>O forall XEBO, v=1,2, .... 

Condition (L) assures us that 6'B' is never too small. 

of order v + 1 contained in B'(x) such that 

i =  1 

For each B'(x), there exists I?+' the union of a collection of proper cylinders 

Condition (9) implies that the sum of the measures of the proper cylinders of any 
given order is at least q > 0. 
6. 
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Renyi's usage of notation in [18] is followed throughout. For example, if we 
assume condition (L) holds for f E 8, we are assuming that m(6"Bv(x)) 2 L > 0 for 
all XEB', vz 1. The ambiguity between condition (L) and the numerical value of 
L is retained for notational convenience. 

111. Convergence of F-Expansions 

A very useful property for F E  8 to possess is that F expand almost all x ~ ( 0 ,  l)", 
that is diam B'(x) + 0 as v + co. We write this convergence as B"(x) + x .  Previous 
work of Renyi [18] onf-expansions, Schweiger ([25 to 271) on the Jacobi algorithm, 
and Schweiger [30] on certain n-dimensional expansions has considered classes 
of such algorithms. Convergence of the algorithm is useful in proving ergodicity 
of the shift. The following theorem characterizes this convergence. 

Theorem 3.1. Suppose F E 8 and condition (9) holds. 7hen 

m { x :  B v ( x ) + x } = l  

if and only if for all B" and all E > O ,  there exist countably many disjoint B P c  B" 
such that diam B'<E and m ( B ' - u  BP)=O. 

P 

Pro05 Assume m {x: B"(x) + x }  = 1. For a. a. x there exists v(x) such that 
diam(B"(")(x))< E .  For each p we remove the set of BP such that X E B "  and BP(x)=  

Recent work of Schweiger [30] deals with a class of n-dimensional F-ex- 

pansions. We will refer to his conditions as condition (S). For f, = no fki, f k i ( t ) =  

F (k' + t), define 

B"(x)(x).  Collecting these sets, m(B" - u BP) = 0. The converse is obvious. F 
P 

V 

i= 1 

where z ( a )  is a non-negative, decreasing function on [ 1, cn) such that lim z ( x )  = 0. 
This inequality must hold uniformly for admissible k', . . . , k'. x- a, 

(S 3) All cylinders of all orders are proper. 

Theorem 3.2 (Schweiger). If F satisfies condition (S), then diam B"(x) + x as 
v + co for all x .  

The theorem is proved by considering the components off, and applying 
the mean value theorem for functions of n variables. Then (S2) yields the result. 
This result gives a relationship between the Jacobian and the diameter of the 
cylinders. However it is an open question whether or not the Jacobi algorithm 

# 
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satisfies (S2) .  In Section VI1 we show that Theorem 3.3 below applies to the Jacobi 
algorithm. The hypothesis clearly contains a version of condition (9). 

Theorem 3.3. Let F E 5. Also suppose there exists 1 5 I, A E (0, l), 0 < q' such that 
for each B" there exists 8"" E B", a cylinder of order v + I, satisfying 

a) diam (B"+') 5 A diam (B') 
and 

7hen 
m { x :  B " ( X ) ~ x } = l .  

Proof. Choose B' and E>O.  Repeatedly applying our hypothesis we obtain 
such that B v f k I  

diam B V f k 1 5 A k  diam B"5IZk<& 
and 

where k = min {Y: 2 < E } .  This implies (taking the union over all v + kI  cylinders 
with less diameter less than E )  

For any B V + k ' ~ B v  with diameter greater than or equal to E,  we have B v + Z k l  such 
that 

with diam ( B v + z k l ) < ~ .  This implies 

Z 
m ( B V -  u B v + p k l  ) < = (1 - 4") m(B"- B' fk') 5 (1 - q")2 

p= 1 

where the union is over cylinders satisfying diam 
obtain 

< E. By induction we 

) ( p:l 

m BV- u ~ v f p k '  s(1-q")~ 

and the theorem is proved with an application of Theorem 3.1. 
As a simple illustration of Theorem 3.3 we consider F(x ,  y ) = ( x / 2 ,  y / 2 )  with 

domain (0,2)'. Then D ( x ,  y ) = ( 2 x ,  2 y )  and the cylinders are squares. If we consider 
B'(k', ..., k"), then BYf1(k1, ..., kv,(l,l))=l?v+l is the square in the upper right 
hand corner of B". We have rn(h"+')=~m(B') and diam(k"+')=)diam(B'). Thus 
Theorem 3.3 applies with 1=1, A=), and q=q'=$. 

Another application of Theorem 3.3 will be made in Section VI1 to a generali- 
zation of the Jacobi algorithm. 
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IV. Ergodic Theory of the Shift 

For any F E S  with conditions (C)  and (L) satisfied, we show there exists a 
probability measure p invariant with respect to 6. This is the initial step in estab- 
lishing an ergodic theory for 5. The proofs follow Renyi's [18] technique for the 
one-dimensional case but must be modified to handle S'B'+(O, l&. It is this 
technicality that complicates Schweiger's [26] calculation of the results of Ryll- 
Nardzewski's theorem for the n-dimensional Jacobi algorithm. 

Theorem 4.1. Suppose that F E ~  satisfies condition (C)  and condition (L). 7hen 
there exists a probability measure p on (0,l)" such that p < < m and 6 is a measure 

preserving transformation for p. Moreover p(E)  5- m(E) holds for measurable 

E c(0, l )" .  nerefore, i f g  is any Lebesgue integrable function on (0, 1)", we have (by 
an Ergodic theorem) 

C 
L 

exists for a.a. [ m ] x ~ ( O ,  1)". &L1 and t = E ( g 1 9 )  where 9 = { E : 6 - ' E = E }  and 
E ( . )  is with respect to p above. 

V 

Proof: Let J, ( t )  = J,,(t), f, = n o  f k i ,  and B' = B' (k', . . . , k'). 

By an area theorem for Jacobians [ l ]  and Lemma 2.1 
i= 1 

S IJv(t)l dt=m(B'). 
d"BV 

Let 8' denote an admissible sequence k', . . . , k'. If 8' runs over all admissible 
sequences 

j IJ,(t)ldt=Cm(B')=l. 
8, dYBV 8, 

From this we obtain 

1 j,nsFIJ,,(t)l rn(6'B')S 1sC sup IJvI m(6'B') 
8, d"BV 6, 

and 

L E  y J v ( t ) I 5 1 s C  SUPIJ'I. 
8, g,, PBV 

(4.1) 

n 

i= 1 
Now we set E= X [ai, bi) where O s a i s b i s l .  

6- ' ( E )  = U (F(k' + F(k2  + + F(k' + t). . .)): t E  E n S'B"). 
6, 

Due to the 1-1 property of F, the above union is disjoint. By a Jacobian argument 
similar to the one above, we obtain 
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Using the earlier inequality (4. l), 

This yields 

(4.2) 

where E is the product of rectangles, and hence (4.2) holds all measurable subsets 

By the direct application a theorem of Dunford and Miller [SI, (4.2) implies 
of (0, 1)”. 

I v - 1  

(4.3) 

exists for all g E L 1 ( O ,  1)” and a.a. xe(0,l)”. We may also define (applying (4.3) 
1 v - 1  

above) 
p ( E ) =  lim - m(6-jE) 

v - m  v j = o  

which easily has the properties 
C 

P ( E )  S x  M E )  
and 

If condition (9) also holds, the proper subcylinders of any cylinder B’ have 
measure greater than or equal to q m(Bv). This allows us to obtain a lower bound 
on p ( E )  and have p equivalent to m. Renyi has no difficulty here because all of his 
cylinders are proper. 

Theorem 4.2. Suppose we have an F E ~  with conditions (C), (L), and (9) holding. 
men there exists a probability measure p on (0,l)” such that p - m  and 6 is a measure 
preserving transformation for p. Moreover 

4 C 
- m ( E ) 5 p ( E ) S - - m ( E )  
C L 

holds for measurable Ec(0,l)”. merefore, i f g  is any Lebesgue integrable function 
on (0, l)”, we have (by  the Ergodic theorem) 

exists a.e. [m] -2ELl(m)  and i = E ( g 1 9 )  where 9 = { E :  6 - ’ E = E ) .  
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Proof: The only additional work beyond Theorem 4.1 is to establish the lower 
bound on p ( E ) .  Below c will denote a summation over all admissible cylinders of 

E' will denote a summation over all proper admissible cylinders of order v.  

For each v - 1 cylinder B"- ',condition (9) states that there exists l?", a collection 

order v ;  8" 

6" 

of proper cylinders of order v such that 

rn B"2 q rn (B"- 1). 

Z m ( B " ) ?  1 rn(B")? 1 qrn(B"-')=q, 
Thus 

8" &"-I  & , - I  

and 

Now 

1' inf I J,  I 
4 rn(E)Z-  m ( E ) .  8 Y  

8" 
2q C ' S U P  IJVI C 

I 

To complete the ergodic theory for 8 we show our measure preserving trans- 
formation 6 ergodic with respect to rn (and hence with respect to p) for all F such 
that m { x :  B " ( x ) + x }  = 1. This allows us to replace the g ( x )  in Theorems 4.1 and 
4.2 by the constant J g ( x )  d p ( x ) .  Our technique is used by Billingsley ([2], p. 44) 
in connection with continued fractions and by Schweiger [30] in a similar context. 
Renyi [18] used a theorem of Knopp [13] to show ergodicity while Schweiger [25] 
has used the Lebesgue density theorem [22]. 

The following lemma shows the invariant sets have positive density in proper 
cylinders. 

Lemma 4.1. Suppose F E ~  and condition (C) holds. n e n ,  if { D :  D a 
rectangle, m(D) = d,  6- ' D = D} (0 < d < l), 

rn(EnB")  d 
2- 

m(B") - c 
unijorrnly in E E  $d and proper B", v 2 0. 

V 

Proof. As usual we write J, ( x )  = J,,(x), f ,  = n o f k i ,  where B" = B'(kl,  . . . , k"). 

Since ~ - ' E = E ,  

z 

i =  1 

Z , ( X )  = Z, - " , ( X I  = Z, (6" X )  = Z,(fv- ' ( x ) ) ,  for X E  B". 
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Using this relationship (and 6" B" = (O,l)nF), 

But 

so that 

or 

m(E n B")Z-  m(E)  m(B") 
C 

m ( E n B " )  d 
m(B") C 

Z->O. 

Next we note that condition (9) allows us to replace an improper cylinder by 
the proper cylinders contained in it and lose an arbitrarily small portion of  the 
cylinder. Lemma 4.2 corresponds directly to a result of Schweiger [25] concerning 
the Jacobi algorithm. 

Lemma4.2. Suppose F E ~  and satisfies condition (q). %en for an arbitrary 
cylinder B" and E > 0, there exist countably many disjoint proper cylinders BP and 
an integer vo = vo ( E )  such that 

"0 

(i) B " = J  u BP 

(ii) m ( B V -  ("j 8.) < E .  

p = v + l  

and 

p = v + l  

It  is clear that (ii) can only be improved by taking the union over all proper cylinders 
of order p contained in B". 

Proof: Let B"+' be the union of a collection of proper cylinders of order v + 1 
contained in B' such that 

m(B"') 
, 

< 
m(B') . 

Below u' denotes the union over proper cylinders of order p. 
P 

m(B"- u' B"+l)=m B" -m(U'  Bv+')S m(B")-m(B"+') 
- I m(B") - q m(B') = ( 1  - q) m(B"). 
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Take any E'+l cE' which is improper. Let 8'" be a proper cylinder such that 

m(BV+') q= < m ( g V + l )  

Then 
m(E'+l -  u' ~ 'z )S ( l -q )m(Ev+l )  

8" + 2 = g v +  1 

which implies 

m ( E ' - ( ( u '  E'") u (u' P 2 ) ) ) 5  (1 - q)  m(E' - u' E V + l ) 5  (1 - 4)' m(E"). 

We proceed by induction and let 

vo ( E )  = min { p :  (1 - q ) P  < E } .  

Lemma 4.2 allows us to conclude that E E y d  has positive density with respect 

Corollary 4.1. Suppose F E ~  and satisfies conditions (C) and (9). 7hen 
to any cylinder. 

m ( E n E ' )  ~ d 
m(E") = C 

uniformly in E E y d  and E' (v 2 0). 

cylinders as above. For all E > 0, 
Proof: We apply Lemmas 4.1 and 4.2. C' denotes a summation over proper I 

P 

V" \ 

C'm(EnE'+l)+. . .+C'm(EnE'o)+m 
m ( E n E ' )  V + l  

C' m ( E  n E'+')+. . + C' m ( E  n E ' O )  2 
- C ' m ( E v + l ) + . . . + ~ ' m ( E ' o ) + &  * 

If we let E -+ 0, we can obtain 

Finally we can prove 6 ergodic if m {x: E'(x) + x} = 1. 
Theorem 4.3. Suppose F E  8 satisfies conditions (C), (q), and m {x: E'(x) -+ x} = 1. 

Then 6 is ergodic under m. 
Proof: By definition, 6 is ergodic under m if 6 - ' E =  E implies m(E)=O or 1. 

Corollary4.1 states m ( E n E ' ) z  C'm(E)m(B') for all cylinders E'. If A is any 
rectangle it is easy to see that A can be approximated in measure by a countable 
union of cylinders (since diam E'(x)+O a.e.). Thus m ( E n A ) 2  C-'m(E) m(A) .  
L e t t i n g A = ~ , m ( E n ~ ) 2 C - ' m ( E ) m ( ~ ) a n d m ( E ) = O o r  1. 

r 
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V. Rohlin's Formula 

In this section we obtain bounds on the p-measure and the m-measure of 

compute the entropy of one-dimensional $expansions. Kinney and Pitcher [ 121 
have used Rohlin's formula for bounds on one-dimensional $expansions when 
the formula did not represent entropy. The calculations of this section follow 
Rohlin [20] as Schweiger [27] did in his computation of entropy for the Jacobi 

algorithm. Jv(t)  will denote J,,,(t), f, = n 0 fk,. The next theorem corresponds to 

Theorem 4.1 and only gives an upper bound for p(Bv (x)). 
Theorem 5.1. Suppose that F E  8 satisfies conditions (C) and (L). Assume log IJD(*)I 

is Lebesgue integrable on (0,l)" and that 6 is ergodic (indecomposable) with respect 
to m. Then, if we take p to be the measure of TTheorem 4.1, 

e BV(x)  for large v. Our formula will be similar to that which Rohlin [20] used to 

V 

i= 1 

for a. a .  x. Also 

C 
L ProoJ By Theorem 4.1, p ( E ) S -  m(E).  Then 

1 p(BV) 1 c 
=- log ___ I- log -. 1 1 1 1 

- log 
v m(Bv(x)) v p ( F ( x ) )  v m(Bv) - v L 

-- log 

exists, Thus, if lirn - log ~ 

1 1 
v-m v m(B'x) 

1 1 1 1 
v-oo v m(Bv(x))  - v ~ m  v p(BV(x) )  ' 

I lim - log lim - log 

Conditions (L) and (C) imply 

1 

1 c  

1 

I- log -. 
v sup IJv(-)I - v L 
1 1 

--log 
dYB"(X) 

.* which will then be equal to 
1 1 

We next obtain a limit for -log 
v IJv(6vx)l 

1 1 
v m(B"(x)) * 

lim - log 
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For X E B " ,  f vo6" (x )=x  so that 

Jf""&)= 1 9  

and by the chain rule [l] 

J f " .S" (X)  = J f " ( 6 W )  * J a 4 4  
v-  1 

Therefore 

Noting J,= J D  we have 

By the Ergodic Theorem 

exists for a.a. tE(0, 1)". 
If we add condition (q), then Theorem 4.2 gives us a p - m and the new condition 

allows us to conclude that m(B"(x)) and p(BV(x ) )  have the same bounds. The 
conclusions of this theorem fully correspond to Rohlin [20]. 

Theorem 5.2. Suppose we have an F E ~  with additional conditions (C), (L), and 
(9). Assume log IJD(.)I is Lebesgue integrable on (0,l)" and that 6 is ergodic (in- 
decomposable) with respect to m. Then if we take p to be the measure of Theorem 4.2, 

. 

for a.a. x ~ ( 0 ,  1)". 
Proof: Since Theorem 5.1 can be applies, we need only establish 

1 1 1 1 lim - log 
V-m v m(Bv(x))  v-m v p(Bv(x))  ' 

= lim - log 

By Theorem 4.2 
4 c 
- m ( E )  5 p ( E )  5 - m (E) .  c L 

This implies (letting C' = max { C/L,  C / q } )  

1 1 
log 

mB"(x )  v 
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Rohlin [20] has shown that in the case of one-dimensional f-expansions the 
entropy of 6, h(S), is given by 

h (6) = f log I cp'(t) I d~ ( t )  

where c p = f - ' .  Since Theorem 5.2 above has an integral of the same form, it is 
natural to conjecture that, if m { x :  B"(x) -, x }  = 1, then 

h(6)=! log IJD(t) l  d p ( t ) .  

Utilizing some results of Rohlin [20] we will establish this result below. 
In Rohlin's terminology a measure preserving transformation on (Q, B, P )  is 

called an endomorphism. A transformation T is said to be exact if 0 T-"B  is 
composed of sets of P-measure 0 or 1. 

Theorem 5.3. Let F E ~  satisfy condition (C), (L), (9) and m (x: B"(x) + x }  = 1. 
Then 6 is an exact endomorphism. 

Proof: We apply a theorem of Rohlin ([20], p. 30). Let 'iB be the collection of 
all proper cylinders of all orders. To index % we define Bv(x),  X E ( O ,  l)nF, to be the 
v-th proper cylinder containing x.  For a. a. x Bv (x )  exists and Bv(x)  + x. It is easy 
to see that 'iB generates the Lebesgue measurable sets. 

a, 

v =  0 

To complete the proof we need to establish 

for proper cylinders B" and measurable X c B '  with 8"" measurable. It is easy 
to show that 

Using the inequalities of Theorem 4.2 

Rohlin ([20], p. 17) also proves an exact endomorphism is mixing of all degrees. 
Corollary 5.1. Let F E S  satisfy conditions (C), (L), (q), and m { x :  Bv (x )  3 x} = 1. 

Our main result is established as a result of 6 being an exact endomorphism. 
7hen 6 is mixing of all degrees. 

The following lemma will be necessary. We define <= {B' (x) :  XEBO}. 
.. Lemma 5.1. Suppose F E ~  satisfies conditions(C), (L), and (q). Then 

H ( 5 ) =  -Cp(B1)logp(B1)< +co 
if and only if 
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Proof: Using condition (L) and summing over 5, we obtain 

As in the proof of Theorem 6.1, 

Taking supremum and infimum over B followed by in 
symmation over 5, we obtain 

, 

grati n over B and finally 

1 1 
IJlogIJ,(x)( dxSCrn(B)log . Cm(B)log supIJ,(.)I - 

i;f I J1(. )I 

1;f I J1( - ) I  . 
dB 

But 

I m p )  log c 1 
- rn (B)  log 

1 O S m ( B )  log 
SUP IJ1(.)1 - 
SB 

so that the sums bounding - C rn(B) log m(B)  and 1 log IJD(x)l dx converge and 
diverge together. By virtue of the inequalities of Theorem 4.2 -1 m(B) log m(B)  
and H ( 5 )  converge or diverge together. i 

Theorem 5.4. Suppose F E 8 satisfies condition (C), (L), and (9) with 

log IJD(.)IELl(rn, (0, V). 

I 1 1 1 1 
h(6)= lim -log = lim - log a. e. 

v-m v ~ ( B ” ( x ) )  v--rm v p ( B ” ( x ) )  

Proof: By Rohlin’s generalization ([20], p. 21) of the Kolmogorov-Sinai 
Theorem [2], 

h@)=h(6 ,  5 ) .  

The Shannon-Mcmillan-Breiman-Chung Theorem ([2,4]) then allows us to 
conclude 

= h ( 6 )  for a.a. x 
1 1 

lim - log 
v--rm v p(BV(x)) 

if we have 
1 

H ( 5 )  = 1 AB1) log Cc(B’)< + m. 

Applications of Lemma 5.1 and Theorem 5.2 then complete the proof. 
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VI. A Kuzmin Theorem for F-Expansions 
Much of the value of our work is dependent on calculating h(6), the entropy 

of the shift associated with a given F-expansion. Unter the conditions of Section V, 
h(6) is given by 

where p-rn has been discussed in Section 111. But even in the one-dimensional 
case p or, equivalently, dp/drn is difficult to find for a given F. However, in the 
one-dimensional case, some recent work of S.Guthery finds an F for which a 
given p is the invariant measure (personal communication). Unfortunately his 
results do not extend to the n-dimensional case. 

In the introduction we noted results of Kuzmin [14] and Vinh-Hien [30] 
which give a rate at which 

approaches p ( x ) ,  the density for the invariant measure associated with f (here f 
refers to a one-dimensional f-expansion). Recently Schweiger [29] has generalized 
the Kuzmin theorem to the Jacobi algorithm when n = 2. In this section we gener- 
alize the Kuzmin theorem to arbitrary F-expansions satisfying conditions (C), (L), 
(q), and rn { x :  B'(x) -P x }  = 1. We also require that 

6B"(k', k2, ..., k")=B"--l(k2, ..., k"), v22 .  

Our results include those of Schweiger on the Jacobi algorithm [29], and our 
theorem holds for Schweiger's general F-expansions [30]. However, Schweiger's 
general theorem has a bound of o(v) instead of o(fi)+e-'fi (see Theorem 6.1 
below), which we have been unable to obtain in our situation. 

For each admissible cylinder of order 1, B(k) ,  we have 6 B ( k ) s O ,  1))1. The sets 
6 B(k)  can be used to partition the set Bo. (The induced partition is the finest 
partition measurable with respect to the o-algebra generated by 6B(k) . )  We 
assume this partition is countable and denote our partition by { A i } z l .  With each 
Ai we associate 

Since our interest is in statements true almost everywhere we may assume rn(Ai) > O  
for all i without loss of generality. It is clear that 

{ k : B ( k )  is proper}. 

Next weobtainaKuzminrelationforp(.). SupposeEcAi.p(E)=p(6-'E)and 

6 - ' ( E ) = { x : d ( x ) E E } =  u {fk(t): t E E } =  U f k ( E ) .  
ksdi kedi 

Due to the 1-1 nature of F the unions above are disjoint. Thus 

P ( E ) = f P ( x ) d x =  f p ( x ) d x =  f p ( x ) d x  
E 6 - ' E  kedi f k E  

= 1 j p ( f k ( x ) )  IJfk(')I d x *  
kodi E 
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This implies p ( e )  satisfies 

The relation (6.1) suggests that we formulate a Kuzmin theorem where the 
recursion is done in separate components. The following lemma points out that 
such an approach is feasible: 

Lemma 6.1. Let $o(x) be given and $,,(x) be defined by 

where f, = 

where k V E g i .  

f k i  and the last summation is over all admissible cylinders (k', . . . , k") 
i =  1 

Proof: The proof is by induction. Assume 

(') 

$v(x)=~~~(fy(x))IJ/v(x)O X E A i ,  i = l , 2 ,  . * . ?  

where the sum is over all admissible (k', . . . , k') with k"Egi .  For v = 1 the induction 
hypothesis holds by definition. Now, for X E A ~ ,  

$V + 1 $V ( f k  lJfk  
k s & i  

( v )  j 

= c !h( f ' ( fk (XN)  J J , , ( f k ( X ) ) J I J S , ( X ) I ?  
k s Q i  

where the second summation is taken over all admissible (k', ..., k') with kVEgj  
and f k ( X ) E A j .  

Since f k ( X ) E A j  and ( v ) ~  are all admissible sequences such that 6 ' B v ~ A j ,  then 
( k ' ,  . . . , k', k )  with (k', .. . , ~ " ) E ( v ) ~  runs over all admissible sequences ending in k .  
This allows us to write (using the chain rule) 

( v +  l ) i  

$ v + I ( x ) =  $o(fv+l(x))  IJfV+,(x)I, X E g i .  

Lemma 6.1 motivates Theorem 6.1 below. 
Theorem 6.1. Let p ( * )  be any function ( q / C s p ( x ) S  C/L) on Bo satisfying 

. 

i .  

Let { $ v } v L  be a sequence of recursively defined real-valued functions satisfying 

(Clv+l(x)= 1 (Clv(h(x>) IJfk(x)I, x ~ A i 7  i = l , 2 ,  
ks&i 
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where 0 < m S $o 5 M ;  $o and p have continuous first order partials satisfying 

Further we assume lJf,,(x)l 5 D ,  < + co uniformly in v and x, and 

uniformly in v and x. 7hen 

I $,(x) - a P (41 < b ( e -  -afi + 4fi)) 
where a,  b, A are constants and 

a(x)=sup(diamB"(y)), v S x < v + l .  
YEBO 

Remark. (i) a(x) is monotone decreasing. 
(ii) a(x)+Oasx-+co. 
(iii) diam B"(x)Sa(v). 
Proof. We fix x E Ai. By Lemma 6.1 

( V ) i  

+v(x)=C+O(fv(x)) tJJv(x)t, XEAi. 

and 

S n N D ,  D ,  + M D ,  = D,.  

We now state another Lemma to be used in the remainder of the proof: 
Lemma 6.2. If constants t, T exist such that 

then 

We make the first application of Lemma 6.2 by noting 

CM . Then where g=- and G = -  
m L  
2 c  2 4  

g P (4 < $ v ( 4  < G P (x). 
7 Z. Wahrscheinlichkeitstheorie venv. Geb., Bd. 16 
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By application of Lemma 6.1, we have 

("h 
P A X ) =  c cpo(fv(x)) IJ."(X)l 

W)= c C O ( f V ( 4 )  IJ."(X)l. 

and 
( " ) i  

Using condition (C) 

We let Cc: = u B (k', . . . , k"). By the mean value theorem for integrals ([ 13, p. 269), 
k' 'E8i  

By the mean value theorem for functions of several variables ([l], p. 117), 

where y and y' belong to B', and 11 * 11 is Euclidean distance. Combining the above 
results 

Now define 
1 li=- s cpo(x)dx>O. 
C &r 

We now write 

cp" (x) > Ii -c fi ( N  + g A )  a(v) = li - c, a (v). 

In the same manner we obtain 

or, defining 

1 
1;=- s ( O ( X ) d x > O ,  

C,(x)> 1; - cz a(v). 
c ay 
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It now follows that 

and I! 
$v (x) < G p (x) - 1: + C2 O(V)=P (x) ( G -A P(x )  +=) 

P (4 
S p ( x )  ( G - ~ + - a ( v ) ) .  LI,' c2c 

4 

There exists a vo such that vz vo implies 

L Cc,o(v) 
g, =g+- I i  - 'g c 4 

and 
L 

G, = G -- I: += a(v) < G .  c 4 
L 
c Gl -gl = G -g -- (Ii+ If)+ 

Now 

where the last summation (E') is over proper cylinders of order v and the last 
inequality is due to condition (9). The importance of this result is to establish 
lower bound on Ii + 1; which is uniform in i and v. It is this bound which allows us 
to iterate below and obtain the geometric bound. Now 

G1-g,S(G-g) (1- +) +C3a(v).  

Now O<qSl, O<LSl, and without loss of generality C>1. Thus O<ij= 

1 -z< 1, and 4L 
c 

Gi -gi S (G-g) 4 + C3 ~ ( v ) .  

g P (4 < $0 (4 < G P (4, 

We now summarize the result just obtained. From the conditions that 
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we have shown that for sufficiently large v 

g1 P (4 < + V W  < G1 P (4 
where g < g , <  G 1  < G ;  G , - g , s ( G - g )  G +  C, a(v). 

By noting that we have earlier shown 

l$l<D4, j=1,  ..., n,  

we can repeat the argument to obtain (for a fixed v 2 vo) 

gz P ( X ) <  +2vYx)< G2 P ( X )  

where g ,  < g, < G ,  < G 1 ,  and 

G 2  -gZ s (Gl  - g l )  4 + c4 a(v) 

where C4 is a function of D4. 
The argument for g ,  and G 2  can be iterated to obtain 

gr P (XI < +r v (x) < Gr P (XI 
where 

Gr-gr 5 (Gr- 1 -gr- 1) ij + C4 O(V) 5 ... 
5 $ ( G  - g )  + C4 a (v) ($-I + $- ' + 1 . .  + 1) 

Therefore 
G , - g , s C ,  e-"+C,cJ(V) . 

c4 where - l= log& C , = G - g ,  c 6 = 7 ,  and lim G r =  lim g r = a  follows. 
If we set r = v, 1-q  v=r+m v = r + w  

C I +vz ('1 -a  P (x)l < P  (Gv-gv) s (c, e- + c6 
This gives us 

a= lim J +, , / , , (x )dx .  
V+m BO 

Finally choose NE [v', (v + 1)'). Applying Lemma 6.2 we obtain 

I &(x) - a p (x)l <z (C, e- + c6 a(v)) 5- ( C, e+ e- + c6 a (0)) * 

C C 
L 

') 

Fin a 11 y 

C C 
L L 

setting b=- C,e'+- c6. 
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Corollary 6.1. The constant a of the previous theorem has the value 

a=  J $,(x)dx.  
BO 

( V ) i  
Proof: 

J $v(x)dx=C J $ v W x = C  c J $ O ( M ) )  IJv(x)l d x .  
BO i Ai i Ai 

But f v  takes Ai  1-1 onto f , ( A i ) .  Thus 

The Kuzmin theorem appears in Schweiger's paper [30] with an error bound 
of the form b z(v). He then uses this result to generalize a result of Gauss that states 

m (6- " ( E ) )  + CcW. 
We have no difficulty generalizing Schweiger's theorem to the F-expansions 
considered above. 

Theorem 6.2. Let F E ~  satisfy conditions (C), (L), (q), and m ( X :  B'(x) + x }  = 1. 
Also assume that the hypothesis of Kuzmin's lheorem9.1 is satisfied for p and 
f,. m e n  

1 rn (6- ' (E ) )  - ,u ( E ) /  < b m ( E )  (e- a fi + 0 (fi)) , 

for all Borel sets E .  
Proof: Define $o(x)= 1. Then Theorem 6.1 states 

(6.2) 

But Corollary 6.1 shows a =  f $o(x) dx  = 1. Multiplying (6.2) b y  I E ( x )  and inte- 
grating, we have BO 

I I&) $v(4 d x  - Cc ( E ) /  < b m @)(e- afi + 4fi)). 

I $, (4 - a P ( X I  I < b (e- a v5 + 0 (fi)). 

I 

BO 

We complete the proof by I O  

= J I,-,,(x)dx=m(6-vE). 
BO 
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The next application of the Kuzmin Theorem gives us a rate on the strong 

Theorem 6.3. Let F E ~  satisfy conditions (C), (L), (q), and m {x :  B'(x) + x }  = 1. 

mixing condition. It is this result which allows us to obtain the limit theory. 

Also assume the hypothesis of Theorem 6.1 i s  satisfied for p and f,. Then 

I p ( B  (k', . . . , k") n 6 -  '- " E )  - p (B  (k',  . . . , k")) p (E)I 

5 - (e- ' fi + c (fi)) p (B  (k', . . . , k')) p (E) ,  
C b  
4 

for all admissible k', . . . , k" and Bore1 sets E. 
Proof. Let B(k', . . . , k") = B" be a proper cylinder. Define 

with $' defined recursively as usual. 

However, since Jii3 { k :  B (k )  is proper}, 
Since I ) ~ ( X ) = O  for x#Bs,  we cannot apply Kuzmin's Theorem to { $ v } v 2 0 .  

The hypothesis of Theorem 6.1 then applies to the sequence { $ v } v z s ,  and 

(6.3) I$v(x) -a  P (x)l < b (e- Iv5 + 4fi)). 
Applying Corollary6.1 to { $ v } v 2 0  gives a = l .  We multiply (6.3) by ZE(.) and 
integrate to obtain 

C b  I 1 ~ ~ ( X ) $ v ( x ) d x - p ( E ) ) < b ( e - " + + ( f i ) ) m ( E ) ~ - ( e - ' v 5 + o ( ~ ) ) p ( E ) .  
BO 4 

Proceeding as in Corollary 6.1, 

Thus the conclusion of our theorem holds for proper cylinders. Lemma4.2 
states that the measure of any cylinder can be approximated by the measure of 
countably many disjoint proper cylinders whenever condition (4) holds. This 
completes the proof. 
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I 

I .  

To apply the limit theory developed by Ibragimov ([7 to 91 and Reznik [19] 
we need the following assumption 

For the cylinder B"(x)  and gEL,(O, 1)" we write 
I 

and 

Then we have 
Theorem6.4. Suppose FES satisfies conditions (C), (L), (q), (M) and m{x: 

diam Bv(x)  + 0} = 1. Also suppose the hypothesis of Theorem 6.1 is satisfied for p 
and f,. Assume gEL,(O, 1)" and S g dp=O. Then if 

Ilglllr= (S g z  d/J,L)+. 

m 

1 Ilg--~glvII,< +a, 
v= 1 

m 
i t  follows that 

Ilgll:+22 f g(t)g(6'(t))dt=oZ< +a 
v = o  (0,l)" 

and, ifa90, 

(i) (Ibragimov) 
v- 1 

and 
(ii) (Reznik) 

I v -  1 I 

One-dimensional examples of Theorem 6.4 (i) and (ii) can be found in Vinh 
Hien [31], Ibragimov [8], and Reznik [19]. 

VII. Examples 
In this section we present two main examples to which our theory has appli- 

cation. Besides the independence example developed first, we develop a generali- 
zation of the Jacobi algorithm. 

The simplest and most natural algorithm is 

F ( ~ 1 3  . . . 3  xn) ( fi (xh? f i  ( x i ) ,  . . . ?  f, (xJ) 9 

n 

i =  1 
F: X (Ai, Bi) + (0, l)", 
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where fi is either in the class of increasingf's considered by Everett [6] or decreas- 
ing f ' s  considered by Bissinger [3]. It is clear that S(t)=(Sl(tl), ..., Sn( tn ) )  where 
Si(-) is the shift for the process generated by fi. If eachfi (with n = l )  satisfies 
condition (C)  with Ci, then we have invariance (pi) and ergodicity. Thus the F 

being considered has C = n Ci, q = L = 1, and p = ,X pi. The results available to us 

could of course have been obtained as direct application of Renyi [20]. 
Next we define a modified Jacobi algorithm and indicate its development. 

The proofs follow Perron [I71 and Schweiger ([23,25,26]) and are not included 
here due to their excessive length. Our algorithm generalizes the Jacobi algorithm 
and an example of Kinney and Pitcher [12] who considerf(x)= M/x. 

Let M, , M2, . . . , Mn be a fixed set of positive reals such that M i z  1 forj = 1, . . . , n. 

* 

n n 

I =  1 i =  1 * 

Z 
(zl, ... , z,,): z n z  M,; " 2  - Mj,j=2, . .. , n . It iseasy to see that D =  F-' 

Ml Y 2  9 Ml Y 3  

M2 Y l '  M3 Y l  Mn Y ,  ' Y ,  

Zj- 1 

O b l ,  . . . , yn)=  (- ~ - - 3 ..., 
has the form 

Some simple computations show (xe(0,l)n: S:(x)=O for some k z l }  to be a 
countable set of hyperplanes intersected with (0,l)" and hence to have measure 0. 

The coefficient matrices defined below correspond to those which Schweiger 
used for the Jacobi algorithm. Relationships of our matrices to F are given below. 

and 

A'= 

0 

0 
M2 
Fl ... 

0 



b 

I :  

where 

Some Ergodic Properties of Multi-Dimensional F-Expansions 

(fi 
F,= i = l  , j=1 ,2  ,..., n .  J 

Mi 
i =  1 

Next we define 
k -  1 

sz"x)= n AV(x) 
v=  0 

101 

=(o!~), i =O,  ..., n, j = O ,  ..., n .  

It is not hard to see that det Q"(x)=(- l)nk n 2, k z 2 .  
i = l  Fi 

The following lemma allows us to recover x and corresponds to a result of 

Lemma 7.1. Zf x~(O,l)nF, then 

M. 

Perron [17]. 

n 

mf,; + 2 m!, j sg Fj 
j= 1 x . =  

n 9 

mi:: + m:, 6: Fj 
j= 1 

where k =  1,2, ..., i =  1,2, ..., n, and ~ f , ~ ~ s z ~ ( x ) .  

theorem can be obtained. 
Using Lemma 7.1 and following Perron [17], the following convergence 

Theorem 7.1. Zf x ~ ( 0 ,  lg, then 

V 

Our most difficult task comes in evaluating JSY(t) where f v ( t ) =  no&@). 

A determinant evaluation similar to one which Schweiger ([23], p. 72) makes 
must be carried out. We find 

i =  1 

. -  
This yields 

so that condition (C)  is verified. 
It is difficult to verify condition (L) for arbitrary Mi. If M, = M 3  = ... = M n =  1 

with M ,  an integer, then 6 ' B V 1  {X:xj sxn ,  xn€(O, 1) and x ~ ( 0 ,  l)F}, which occurs 
if and only if k'= (k ,  k ,  k, . . . , k), k 2 1. Thus m(sv  B") 2 l/n ! = L > 0 and condition (L) 
is verified. 
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Given any cylinder B' we choose a proper cylinder B V + l c B v  with a'+'= 
(0, 0, . .. , a). This gives condition (4) with 

I =  1 
e 

Thus Theorems 4.2, 4.3 and 5.4 hold. Since the form of p(x) is not known we 

As an alternative to the classical approach to Theorem 7.1, we can conclude 
cannot conclude Kuzmin's theorem holds. 

a. e. convergence as a result of Theorem 3.3, since it can be shown that 

diam (B"+")S3, diam (B'). 

where 3, = (2 n F)(max { M ,  ,2([2 n F] + 1)))- and 

1 
M;-  '(max { M ~ ,  2([2n F] + I)}) 

LF,"+' 

= ( ( 1 + j1&)"" ( 1 + 
I =  1 

It is quite natural to ask whether all F E ~  satisfying conditions (C), (q), and 6 
ergodic have the property that m{x: B'(x)-+x} = 1. This is not the case as our 
consideration of F(x, y)=(l/x, y + 5 mod 1) (where 5 is irrational) will show. Now 
IJF(x, y)l= l/x2 +O for all x~[l;oo) and the cylinders are rectangles. The invariant 
measure is simply the product of Lebesgue measure and Gauss' measure : 

c 

dx d y  
(log 2)(1 +x) . d,(x, Y)' 

Since 6, and 8, are both ergodic on (0,l) (see [2]) we may conclude 6 =d1 x 6, 
ergodic on (0, l),. Also L = q = 1 and, following Renyi [20], we may choose C = 4. 
Thus all conditions are satisfied but Bv(xl, x,) is a rectangle of height 1 erected 
above the one-dimensional continued fraction cylinder for xl. Therefore 
diam(B'(x))Z 1. 
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