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Abstract: It is not known how acute sucralose and glucose alter signaling within the brain when
individuals make decisions about available food. Here we examine this using Food Bid Task in
which participants bid on visually depicted food items, while simultaneously undergoing functional
Magnetic Resonance Imaging. Twenty-eight participants completed three sessions after overnight
fast, distinguished only by the consumption at the start of the session of 300 mL cherry flavored water
with either 75 g glucose, 0.24 g sucralose, or no other ingredient. There was a marginally significant
(p = 0.05) effect of condition on bids, with 13.0% lower bids after glucose and 16.6% lower bids after
sucralose (both relative to water). Across conditions, greater activity within regions a priori linked
to food cue reactivity predicted higher bids, as did greater activity within the medial orbitofrontal
cortex and bilateral frontal pole. There was a significant attenuation within the a priori region of
interest (ROI) after sucralose compared to water (p < 0.05). Activity after glucose did not differ
significantly from either of the other conditions in the ROI, but an attenuation in signal was observed
in the parietal cortex, relative to the water condition. Taken together, these data suggest attenuation
of central nervous system (CNS) signaling associated with food valuation after glucose and sucralose.
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1. Introduction

Glucose is the main circulating sugar in the blood. Both plasma glucose levels and insulin (which
is released in response to rising glucose) have been shown to alter signaling in reward pathways at
biologically relevant levels [1]. Using functional magnetic resonance imaging (fMRI) combined with
a stepped hyperinsulinemic, euglycemic–hypoglycemic clamp technique, hypoglycemia (relative to
euglycemia) is reliably associated with greater activation during food-cue exposure in the insula and
striatum, along with higher hunger ratings. Circulating level of glucose has been found to modulate
brain reward circuity (increased food-cue induced activity in the insula and striatum) and associated
subjective reports of food motivation [2]. Related evidence linking insulin sensitivity to hunger and
hunger signaling has been observed in studies utilizing oral glucose intake [3]. Food-cue responses in
normal weight participants were attenuated after ingestion of glucose (dissolved in water) in the basal
ganglia and paralimbic regions, as were ratings of subjective hunger [4].
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However, Heni and colleagues [5] did not observe significant attenuation of food- cue- responsivity
following glucose ingestion, suggesting the possibility that methodological variance (e.g., timing of
intake relative to cue exposure) may be important.

Non-nutritive sweeteners (NNSs) are sugar substitutes which imbue foods with a sweet taste
without adding calories or triggering a glycemic response [6]. The health consequences of chronic
NNS consumption remains controversial [7–13]. It has been argued that NNS consumption disrupts
learned responses that normally contribute to glucose and energy homeostasis and may drive metabolic
dysregulation and increase the risk of obesity, diabetes, metabolic syndrome, and cardiovascular
disease [9,13]. According to this hypothesis, by decoupling sweet taste receptor activity (normally a
reliable cue of sugar consumption) from a subsequent rise in nutrient availability, learning processes
that ordinarily support appetite regulation are disrupted [13,14]. However, an obesogenic impact of
NNS has not been convincingly established. A review of studies investigating the relation of NNSs
and weight gain and obesity concluded that the hypothesized link between NNS and obesity lacked
empirical support [15]. Indeed, several well-designed intervention studies showed that chronic and
covert NNS substitution could reduce energy intake and body weight [7,11]. A systematic review with
meta-analysis also reported NNS use in place of sugar leads to reduced energy intake and reduced
body weight [12]. The NNS sucralose, which is commonly used in the world food supply [16], appears
to be particularly promising with regard to appetite suppression. A recent 12-week intervention study
comparing the effects of NNSs and sucrose found decreased energy intake with sucralose consumption
(but not with other NNSs) in overweight and obese individuals [8].

Present Study

While the acute effects of sucralose consumption on appetite signaling may diverge with chronic
sucralose ingestion effects, delineation of acute effects can provide clues regarding chronic effects.
While some studies assessed the immediate gustatory responses and neural activity after consumption
of sucralose [17,18], no study, to our knowledge, has directly examined the effect of acute sucralose
intake on brain activity during food decisions. By including water, glucose, and sucralose conditions
within the same study, we intended to distinguish acute effects of sweet taste (present in both sucralose
and glucose conditions) from the effects of the caloric load (present only in the glucose condition).

We additionally considered whether response to very brief (subliminal) presentation of food- cues
is sensitive to metabolic state [19]. Subliminal food primes have been shown to recruit activity within a
distinct neural pathway [20]. Our intent in including subliminal primes was so that if we did observe
study drink effects on appetite signaling during decision-making, the subliminal primes might allow
us to address whether metabolic state affected the rapid reward-orienting response to stimuli [20,21], or
was limited to the slower central nervous system (CNS) signaling associated with bidding on available
food. However, perhaps due to the small number of subliminal presentations in this study compared
to past reports, we did not observe any effect of subliminal presentations, even collapsing across all
conditions. Therefore, we do not discuss the subliminal primes further (though for completeness,
they are presented in Appendix A).

In the present neuroimaging study, participants bid money on visually depicted food. For each
food, the participant’s bid could determine whether the food was available upon completion of the
task. The task thus included both food-cue exposure, and food decision making. Some brain regions
have consistently been found activated when participants view visual food-cue pictures, including
the amygdala and hippocampus [22–25], striatum [22,23,26], orbital frontal cortex (OFC) [22,24,27],
and insula [22–24,26,28]. We utilized a food-cue mask inclusive of these regions to investigate brain
food-cue reactivity in our decision-making task. We examined the impact of study drinks on brain
response during food decisions, and especially on what brain activity predicted the amount of money
participants bid on particular food items. We hypothesized that relative to water, the consumption of
glucose and possibly sucralose would attenuate the MRI signal in regions that track food valuation,
and would lead to lower bids on food items. Identifying neural correlates of acute glucose and
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sucralose consumption during food choice may provide clues that inform the understanding of appetite
regulation and obesity. Moreover, gaining a better understanding of underlying brain function and
how this relates to motivated behaviors may also provide insights that extend to other disease processes
with overlapping neural pathways, such as drug addiction [29].

2. Materials and Methods

2.1. Participants

Study recruitment was done primarily through flyers placed near the campus of the University of
Southern California. Participants‘ characteristics are depicted in the result section. Due to excessive
motion artifact or incomplete coverage, imaging data could not be included from one glucose session,
one sucralose session, and two water sessions. To reduce variance across sessions related to hormonal
change, female participants (with one exception) completed both scanning sessions in the window
between 15 and 22 days post-start of their most recent menstruation (presumed luteal phase, though
not confirmed by bioassay) [30,31]. Participants gave written informed consent to all experimental
procedures approved by the Institutional Review Board of the University of Southern California.
The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the Ethics Committee of the University of Southern California (UP-16-00413).

2.2. Stimuli

In each administration of the Food Bid Task, participants were presented with 30 visually depicted
food items selected from “Food.pics”, a freely available database of 568 food images, each with
associated normative data [32]. Normative data include rating scores (derived from approximately
2000 adults) of palatability, desire to eat, complexity, recognizability, and valence, as well as nutrient
information for the item (mg of protein, fat and carbohydrates, kcal). The 30 items selected were
judged by the research team to be easily and unambiguously identifiable to participants across a range
of ages and backgrounds.

2.3. Procedures

Participants reported to Dana and David Dornsife Neuroimaging Center at USC between 8
and 9 am after an overnight fast. The start time for each of the three sessions, never varied for
a participant by more than 30 min. Weight was measured at each session. MRI was performed
using a 3-T Siemens MAGNETOM Tim/Trio scanner (Munich, Bavaria, Germany) with a 32-channel
head-coil. See the details of MRI imaging parameters and neuroimaging preprocessing procedures in
Appendix A. Prior to consumption of any drink, participants were trained on the procedures used in
the study and provided session baseline information including ratings of mood and hunger. Next
participants ingested 300 mL of water with a zero-calorie, mild cherry flavoring either (1) with no
other ingredient (“Water”), (2) mixed with 0.24 g sucralose (“Sucralose”), or (3) mixed with 75 g
glucose (“Glucose”). Drinks were prepared by the study coordinator. The rest of the study team
and the participant were blind to drink type. The order of drinks used in the three sessions was
approximately balanced (Water first for 10 participants, Glucose first for 10 participants, and Sucralose
first for 8 participants). Participants were instructed to consume drinks in less than two minutes.
Immediately after consumption, participants rated the pleasantness of the drink by rating scale (1–10).
Testing on the Food Bid Task began approximately 55 min after consumption. Prior to the Food Bid
Task, participants completed one or more fMRI tasks that had no connection to food, and are not
discussed in this report. Sessions were no fewer than 2 days apart, and no greater than 30 days apart.
In order to increase the valuation of depicted food items, study sessions continued for 30 min after
completion of the scan, and participants were made aware that their only opportunity to eat would be
if they bid enough (see below) on a randomly selected food item. Figure 1 provides the timeline of
measures included in this report.
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2.4. Appetite Rating

Participants reported on their appetite three times during each session: (1) at the start of the
session (prior to consumption of the study drink), (2) just before entering the scanner (approximately
5 min after completing consumption of the study drink), and (3) upon completing the scanning
session (approximately 90 min after completion of the study drink). For this report, we consider only
responses to these questions, “How hungry do you feel right now?” and “How much do you want
to eat something sweet?” Participants responded to these questions on a scale from 0 to 100 with 0
representing “not at all” and 100 representing “a lot.”

2.5. Food Bid Task

The food bid task was adopted from Suzuki et al. (2017) [33]. The task utilized the
Becker–DeGroot–Marschak (BDM) auction method [34] to elicit participants’ valuation for food
items. Participants were endowed with $5 that, if not spent, would be given as bonus compensation.
In each trial of this task, the participant selected a bid ($0, $1, $3, or $5) indicating the amount that
they were willing to pay for the depicted food. At the end of the experiment, the computer randomly
selected one of the trials from the imaging session to be implemented (i.e., making that trial “real”, and
the others not). If an item was randomly chosen, an associated “price” was randomly generated for
it (either $0, $1, $3, or $5, with equal probability). If the participant’s bid was lower than the price,
then they did not receive the food (and instead kept the full $5 endowment). If the participant’s bid was
equal to or greater than the price, the price (not the bid) was deducted from their $5 endowment and
the participant received the food item (plus any remaining amount from the $5). For example, if the
bid amount for an item was $3, and the price for the item was $1, the participant would receive the
food, and $4 (the amount remaining from the $5 endowment after paying the price). Participants went
through several practice examples until comfortable with the procedure. The BDM auction method is
incentive-compatible in the sense that the optimal strategy for participants is to always bid the amount
that is closest to their true willingness to pay for the depicted item.

Within each imaging session, participants bid on each of the 30 food items during each of two task
runs. Thus, in total, participants made a bid two times for each food item during each session. Prior to
half of the trials the depicted food was first subliminally presented, but as noted above, we saw no
evidence that this impacted brain activity or behavior even when all conditions were combined, and so
investigating differences between conditions was not warranted (though is included in Appendix A for
completeness). The general timeline for each trial is presented in Figure 2. A blank white screen with
fixation cross was presented for a jittered duration, with a mean of 3.5 s and exponential distribution.
This was followed by supraliminal presentation of the food for that trial which remained visible for 3 s.
Next the participant indicated a bid on the item, within 3 additional seconds, by pressing the key on a
keypad that corresponded to the intended dollar amount. Importantly, although participants could not
enter bids until after the visual food-cue disappeared, the requirement to bid was predictable and so it
is likely that participants were formulating their bids while the food was visually presented. Therefore,
we did not separate these periods with a jitter in the design phase (they occur in temporal lock-step)
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and instead treated the period beginning with cue-presentation and ending with bid entry as a general
“food valuation period” in analyses. Mappings between keys and bid amounts were randomized
across trials in order to dissociate the bid amount from the spatial information. The bid the participant
made was visually presented in the center of the screen immediately after the participant’s keypress
(feedback phase, 0.5 s). At the end of each trial, a blank white screen with fixation cross was presented
during an intertrial interval (ITI phase), again with duration jittered using an exponential distribution
with a mean of 3.5 s.
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2.6. Attribute-Rating Task (Outside the MRI Scanner)

Following the procedure of Suzuki et al. (2017), after all three imaging sessions were completed,
participants estimated the nutrient content for each depicted food item. See Appendix A for details.
Participants were not informed that they would be providing these estimates prior to the task.
In addition, participants were asked to report their guess for the market price for each food item.
The order of the questions was randomized across participants.

2.7. Data Analyses

Primary analyses used linear mixed-effects models (LMMs; [35]). This approach allowed us to take
the full response patterns into account, without averaging over individual items or conditions. F and
p values were obtained using the lmerTest package [36], which uses the Satterthwaite approximation
for degrees of freedom. Pairwise comparison using Holm–Bonferroni procedure adjustment was
done using the emmeans function in the emmeans package [37] when significant effects were shown.
Repeated measures ANOVA (Analysis of variance) was used when analyzing the appetite scores.

2.7.1. Appetite Analysis

Before analyzing the appetite for the sweet food and hunger score, we first replaced the 38 missing
values (7.5% of the scores were missing/incomplete and missing). Since we had no reason to expect
a relationship between the study manipulation and missing data, missing data were imputed using
the predictive mean matching (pmm) method from the mice package in R [38], taking the averaged
imputed value over 50 imputations. However, we also carried out analyses using the data without
imputation. Both one-way and two-way repeated measures ANOVA were used to test the baseline
appetite scores difference and measurement time and drink effects on Appetite score changes from
baseline. Drink type, measurement time, and the interaction between measurement time and drink
type were the fixed-effects terms. Drink type was also a random slope nested within a random intercept
participant term, taking into account intra-individual variability.
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2.7.2. BID Task Data Analysis

In our primary LMM analysis of bids during the Food Bid Task, participants’ bids for the food
items were our dependent variable, and the fixed effect was drink type (water, sucralose, or glucose)
and the random effects included random intercept and slope for the drink type by participant. Baseline
hunger and appetite for sweet food were included as covariates in order to minimize the impact
of pre-study drink session variance in appetite (e.g., a participant that happened to be hungrier
when arriving at their water session than their glucose session). BMI and gender were additionally
included as covariates since past research has shown that BMI and gender could be moderators of
cue reactivity [39,40].

2.7.3. Neuroimaging Data Analyses

Data were processed using the fMRI Expert Analysis Tool (FEAT) version 6.0. In addition to
six motion parameters, we included nuisance regressors for time points corresponding to motion
outliers for both models using the FSL motion outliers program (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
FSLMotionOutliers), which defined outlier time points using the upper threshold of the 75th percentile
plus 1.5 times the interquartile range. Temporal derivatives and temporal filtering were added to
increase statistical sensitivity. Inter-trial interval periods were not modeled, and therefore provided
the implicit baseline for analyses. For imaging analyses, we were primarily interested in the effects of
study drink on (1) overall activity during food valuation, and (2) activity tracking participant bids
during food valuation.

Our analyses focused on the food valuation period, which began with the presentation of the food
picture for the trial and ended when a bid was recorded (see Figure 2). The first general linear model
(GLM) included (1) food valuation period unweighted and (2) food valuation period weighted by bid
for the food. Trials in which participants did not respond were modeled with a separate regressor of
no interest, as were the regressors for subliminal priming (see Appendix A).

Region of Interest (ROI) Analyses

ROI analyses were carried out in order to examine several possible effects of the manipulation.
Below we describe these ROIs, which were directed at (1) examining response to depicted food stimuli
within brain areas known to be active during visual food-cues (food-cue ROI, see Appendix A for
details), and (2) examining functional connectivity with the portion of the medial orbital frontal cortex
(mOFC) (previously implicated in value-tracking) that overlapped with bid-related activity in our
analysis (mOFC ROI).

mOFC ROI: In order to examine study manipulation effects on value-tracking activity, we focused
on the medial orbitofrontal cortex, based on the extensive literature establishing its importance both in
the context of food valuation [33,41] and of valuation more generally [42–44]. Because the medial OFC
is large and heterogeneous, we limited the ROI to the overlap between the anatomically defined medial
OFC based on the AAL database [45] and the cluster-map identifying bid-tracking activations during
food valuation (across conditions to avoid “double dipping” confound, see [46]). An exploratory
psychophysiological interaction (PPI) analysis was then performed in which we used the time-series of
mean activity in this cluster as a seed to predict activity throughout the rest of the brain during the
food valuation period vs. rest. Group-level statistics images were thresholded with a cluster-forming
threshold of z > 3.1 and a Bonferroni corrected cluster probability of p < 0.05. Three group-level
paired-t analyses (sucralose vs. water, glucose vs. water and sucralose vs. glucose) were performed in
FEAT using a mixed-effects model, with FSL’s FLAME1 option with outlier deweighting.

Across different ROI analyses, individual signal changes (beta values from statistical models)
were extracted separately for each participant during each session. LMM analysis was done to test the
drink effect on brain signal change for each of the ROIs described above with drink type as a fixed

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLMotionOutliers
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effect and participant entered as a random intercept with baseline hunger, appetite for sweet food, BMI
and gender as covariates.

Whole-Brain Analyses

In addition to ROI analyses, whole brain analyses were carried out. Group analysis with multiple
sessions for each subject was performed in FEAT using a mixed-effects model, with FSL’s FLAME1
option. In accordance with the model discussed above, group-level paired-t analyses were carried out
(sucralose vs. water, glucose vs. water and sucralose vs. glucose) with FEAT using a mixed-effects
model. For these we utilized FSL’s FLAME1 option with outlier deweighting. All statistical maps
were cluster corrected for multiple comparisons (cluster height threshold: Z > 3.1; cluster significance:
p < 0.05).

3. Results

3.1. Participants Characteristics

Participants were right-handed (in order to reduce heterogeneity in the mapping of function to
brain area, which can differ in left-handed individuals), nonsmokers, weight stable for at least 3 months,
non-dieters, not on any medication (except oral contraceptives), with normal or corrected- to-normal
vision, and no history of diabetes, eating disorders, or other significant medical diagnoses. Twenty-eight
volunteers (14 females, mean age = 25.36 ± 4.74, range 19–36 years old) with no history of eating
disorders, diabetes, or other major medical illnesses participated in the study, see characteristics of
subjects included in the final analyses in Table 1. Seven participants (25%) had a body mass index
(BMI) index in the normal weight range (18.5 to <25 kg/m2), 14 participants (50%) had BMI in the
overweight range (25 to <30 kg/m2) and 7 participants (25%) had BMI in the obese range (>=30 kg/m2)
(classification based on World Health Organization criteria [47]) All 28 participants completed two
runs of the Food Bid Task on each of three days (with the exception of one run for one participant on
one day due to a time constraint).

Table 1. Characteristics of subjects included in the final analyses.

Characteristic Mean ± SD or N (%)

Gender
Male 14 (50%)

Female 14 (50%)
Age (years) 25.36 ± 4.74 1

BMI (kg/m2) 27.61 ± 5.02 1

Ethnicity
Caucasian 6 (21%)

Black or African
American 7 (25%)

Hispanic or Latino 4 (14%)
Asian 10 (36%)
Other 1 (4%)

Education (degree)
Bachelor’s 18 (64%)

Graduate school level 9 (32%)
High school 1 (4%)

1 Values are means± SDs (standard deviations). BMI—body mass index
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3.2. Study Drink Rating

Participants rated both glucose (t(54) = 2.69, p = 0.03) and sucralose (t(54) = 2.62, p = 0.03) as
more pleasant than water. Participants also rated both glucose (t(54) = 15.65, p < 0.0001) and sucralose
(t(54) = 14.96, p < 0.0001) as sweeter than water. Participants reported similar ratings of the pleasantness
(t(54) = 0.07, p = 0.94) and sweetness (t(54) = 0.69, p = 0.49) of the glucose and sucralose drinks.

3.3. Appetite Rating

There were no baseline difference in hunger (F(2,54) = 0.13, p = 0.88) or appetite for sweet food
(F(2,54) = 1.27, p = 0.29)) prior to drink consumption. In addition to pre-drink appetite ratings, as noted
above, post-drink appetite ratings were acquired approximately 5 min after drink consumption, and
then again approximately 90 min after drink consumption. Post drink appetite ratings were analyzed
as difference scores relative to pre-drink ratings. Two by three repeated measures ANOVAs were
carried out to examine the effects of measurement time (appetite change at first and second post-drink
assessment points), and drink effects (glucose, sucralose and water drinks) on changes from baseline.

For hunger score (Figure 3a), a significant main effect of measurement time (F (1,27) = 50.02,
p < 0.001), a marginally significant main effect of drink (F (2,54) = 2.80, p = 0.07) and a significant
interaction effect between measurement time and drink (F (2,54) = 4.39, p = 0.02) were found. The first
hunger score change (approximately 5 min after drink consumption) did not differ significantly between
drinks (all p values of paired t comparisons with Holm method multiple comparison correction were
larger than 0.1). The second hunger score (approximately 90 min after drink consumption and after
completing the Food Bid Task) increased less after glucose than after sucralose (t(88.7) =−3.078, p < 0.01)
or water (t(87.5) = −3.084, p < 0.01) and no hunger difference was found between water and sucralose
consumption (t(88.7) = 0.28, p = 0.78). For appetite for sweet food (Figure 3b), only a significant main
effect of measurement time (F (1,27) = 12.95, p = 0.001) was observed, with the second sweet food
craving score change significantly higher than the first change.
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3.4. Food Bid Task

The Food Bid Task began approximately 55 min after consumption of the study drink. Across all
participants, 4.3% of the trials (221/5110) were excluded from the task analysis due to the absence of
responses within the allotted time. There was a marginally significant (trend) drink effect on participant
bids for depicted food (F (2, 19.73) = 3.39, p = 0.054). Post-hoc comparisons indicated that this overall
marginally significant trend was driven by a marginally significant trend towards lower bids after
glucose relative to water (z = −2.25, p = 0.07) as well as after sucralose relative to water (z = −2.28,
p = 0.07). No significant difference was found between sucralose and glucose (z = 0.018, p = 0.99),
each with Holm–Bonferroni adjustment for multiple comparisons. The mean bid in the water condition
was $1.93, in the glucose condition was $1.68 (13.0% lower than water condition), and in the sucralose
condition was $1.61 (16.6% lower than water condition). The difference in bids for each food item
between different drink conditions are presented in Table 2. No effect of gender (F(1,18.97) = 0.71,
p = 0.41) and BMI (F(1,20.49) = 0.71, p = 0.12) was observed.

Table 2. Bid difference in cents between drinks.

(Bid Difference from Overall Mean)
Food Item Mean Bid Water Sucralose Glucose

Sundae $2.33 +$0.56 −$0.24 −$0.33
Filled Chocolates $1.73 +$0.51 −$0.13 −$0.39

Cheese and Cold Meat Platter $1.73 +$0.31 −$0.28 −$0.02
Apple $1.36 +$0.30 −$0.27 −$0.04

Waffle with Whipped Cream $2.23 +$0.39 −$0.16 −$0.23
Sushi $2.05 +$0.32 −$0.20 −$0.13

Tomatoes $0.84 +$0.25 −$0.25 −$0.01
French Fries $2.33 +$0.34 −$0.14 −$0.20

Gummi Candy and Licorice Mix $1.15 +$0.27 −$0.20 −$0.07
Bowl of Rice $1.16 +$0.28 −$0.18 −$0.11

Pizza (With Mushrooms) $3.22 +$0.34 −$0.12 −$0.22
Crackers $1.10 +$0.24 −$0.17 −$0.06

Nuts (Cashews) $1.76 +$0.20 −$0.19 −$0.02
Cheese Platter $1.84 +$0.21 −$0.17 −$0.05

Roast Beef $3.03 +$0.15 −$0.22 +$0.06
Pizza (With Salami) $3.33 +$0.24 −$0.12 −$0.11

Doughnut / Donut Jam $1.84 +$0.25 −$0.06 −$0.20
Salad Plate $2.02 +$0.13 −$0.17 +$0.04

Loaf of Bread $1.29 +$0.06 −$0.20 +$0.13
Popcorn $1.46 +$0.17 −$0.08 −$0.09

Crisp Bread $0.80 +$0.08 −$0.16 +$0.07
Chocolate Muffin $1.75 +$0.10 −$0.12 +$0.01

Broccoli $0.92 +$0.16 $0.01 −$0.17
Peanuts $1.04 +$0.02 −$0.07 +$0.06

Strawberries $2.83 −$0.01 −$0.08 +$0.10
Banana $1.19 −$0.01 −$0.07 +$0.07
Toast $1.33 −$0.05 −$0.11 +$0.17

Opened Chips Bag $1.44 +$0.09 +$0.04 −$0.12
Croissants $2.28 −$0.10 +$0.03 +$0.06

Green Asparagus $0.82 −$0.09 +$0.16 −$0.06

In a secondary (post hoc) analysis, we removed items for which participants bid “0” on all the
six experimental runs (3 drinks, with 2 runs per drink), treating these as missing values. We reasoned
that these items may have had no value (perhaps the participant did not like or want to eat the
food even if free) and so could have reduced power to detect changes between conditions. With
these items removed (mean of 3.0 out of 30 food items per participant) the drink effect on bids was
significant overall (F (2, 20.29) = 3.70, p = 0.04). No effect of gender (F(1,19.37) = 0.80, p = 0.38) or
BMI (F(1,20.25) = 2.26, p = 0.15) was observed.
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Finally, we carried out correlational analyses directed at identifying attributes (based on available
normative data of perceivers’ judgments for the stimulus set) of the 30 food pictures that were associated
with how glucose and sucralose impacted bids. Although not corrected for multiple comparisons,
there was some evidence that glucose (relative to water) led to reduced bids more for foods high in
sugar, high in calories, high in fat. While a similar pattern was observed with regard to sucralose,
correlation coefficients were generally lower and non-significant (see Table 3).

Table 3. Association between Bid difference of drinks and food attributes.

Food Attribute Water Bid–
Sucralose Bid

Water Bid–
Glucose Bid

Sucralose Bid–
Glucose Bid

palatability 0.12 0.21 0.18
healthiness −0.28 −0.41 −0.3 (p = 0.1095)
familiarity −0.03 0.01 0.07

fat 0.26 0.4 2 (p = 0.0275) 0.31 1 (p = 0.097)
vitamin −0.24 −0.33 1 (p = 0.079) −0.22
sodium 0.03 0.07 0.08
calorie 0.35 1 (p = 0.058) 0.44 2 (p = 0.015) 0.25

carb 0 0.1 0.18
sugar 0.3 (p = 0.113) 0.38 2 (p = 0.0385) 0.23

protein 0.12 −0.06 −0.27
1 p value < 0.1; 2 p value < 0.05.

3.5. The Effect of Study Drink on Food-Cue Network ROI Activity during Food Valuation

Beta values were extracted from the a priori food-cue ROI [29] discussed above (all clusters
combined). A significant drink effect was found for beta-values within the network during food
valuation (F(2,32.20) = 4.52, p = 0.02). In post-hoc comparisons, beta-values were observed to be
significantly lower after sucralose relative to water (t (23.3) = −2.91, p = 0.02). Beta-values did not differ
significantly between glucose and water (t(22.8) = 1.70, p = 0.20) nor between glucose and sucralose
(t(24.1) = 1.64, p = 0.20). Pre-drink appetite for sweet food (which was included as a covariate in the
model) significantly predicted beta values overall, with increased signal when participants had higher
baseline appetite score for sweet food (β = 0.24, p = 0.03). No significant effect of BMI or Gender was
found. See Figure 4 for mean beta-values within the food-cue mask in each of the drink conditions.
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Figure 4. Signals change during food valuation in food-cue region of interest (ROI) by drinks.

In order to allow visual comparison of the main effect of glucose and sucralose (each relative to
water) on primary dependent variables (bids and brain signal within the food-cue ROI) along with
appetite scores, we first normalized all dependent variables as z-scores, and then plotted the 95%
confidence intervals for all comparisons. These are presented in Figure 5, with order matching the
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temporal sequence of the acquisition of the measure. Each of these main effects is described above, but
the conversion to z-scores and the ordering in temporal sequence allows the main effects to be better
visualized. The only significant difference between glucose and sucralose was that the second hunger
score (approximately 90 min after drink consumption) increased less after glucose than after sucralose
(t (88.7) = −3.078, p < 0.01).
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Figure 5. 95% confidence intervals for the effect of Glucose and Sucralose (relative to water) on
standardized (z-score) dependent variables. Four bars in each drink condition refer to hunger score
about 5 min after drink ingestion, willingness to pay for the food about 55 min after drink ingestion,
brain signals from food-cue a priori mask when viewing the food pictures about 55 min after the drink,
and hunger score about 90 min after the drink ingestion. In general, intervals that do not intersect 0
indicate p < 0.05 for comparison with water condition. However, these confidence intervals do not
reflect Holm–Bonferroni adjustment used in analysis of bids.

3.6. Whole Brain Analyses of Activity during Food Valuation Period

Overall increase in brain activity during food valuation across drinks was, as expected, quite
extensive (see Figure 6 below). It included the network of regions previously linked to food-cues:
lateral OFC, dorsolateral prefrontal cortex (dlPFC), left ventral striatum, left amygdala, hippocampus,
bilateral anterior insula, bilateral middle insula, bilateral precuneus, and left postcentral gyrus), as
well as the fronto-parietal network which is generally active during decision- making tasks [48–50],
and in the visual cortex.Nutrients 2020, 12, x FOR PEER REVIEW 12 of 21 
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3.7. Drink Effects on Whole Brain Activity Associated with Food Valuation

In secondary whole brain analyses, we compared neural activity during food valuation for each
drink condition (glucose vs. water, sucralose vs. water, and glucose vs. sucralose). The only cluster
in which a significant activity difference between the glucose and water condition was present was
a cluster in the left parietal lobe (partially overlapping the postcentral gyrus) in which activity after
glucose was significantly diminished relative to water. This cluster overlapped the network of regions
that were generally active during food valuation (see Figure A2a in Appendix A). For the comparison
of sucralose and water, significantly lower activity was observed after sucralose in a set of regions
that included left dlPFC, visual cortex, frontal gyrus, and cingulate (mostly posterior), precuneous,
supplementary motor cortex, frontal operculum, each of which overlapped with the areas showing
general increase in activity during food valuation (see Figure A2b in Appendix A). No significant
differences were observed in the comparison between glucose and sucralose conditions.

3.8. Bid-Correlated Brain Activity during Food Valuation Period

Regions in which brain activity during food valuation was positively associated with bids across
drinks are presented in Figure 7a.

Many of the regions associated with bid (greater signal on trials in which participants bid more
money) overlapped the food valuation period main effect contrast map (Figure 7a). This included
bid-correlated clusters in the OFC, visual cortex, cingulate, paracingulate gyrus, frontal pole, frontal
gyrus, thalamus, caudate, brain stem, hippocampus, putamen, and accumbens. Exceptions to this
overlap with the general food valuation activity map were a large cluster within the medial OFC and
small bilateral clusters in the frontal pole, which tracked food bids but which were not generally active
during food valuation relative to rest. No significant differences were observed between drink sessions
on the association between bids and brain activity.

Because the medial OFC has been implicated in valuation, and was prominent in our map of
bid tracking, we carried out an exploratory PPI in which we (1) identified clusters in which activity
was more correlated with the seed during food valuation, and (2) investigated whether there were
regions in which connectivity with the bid-tracking seed significantly differed based on drink condition.
For example, it might be the case that regions preferentially sensitive to particular qualities of depicted
food (e.g., sweetness) would differ in their association with the medial OFC seed as a function of drink.
As shown in Figure 7b, we identified regions more correlated with the orbitofrontal seed during the
food valuation period than in other periods of the task. Significant functional connectivity with the
medial OFC was observed in a bilateral network of regions that included the caudate, anterior insula,
and nucleus accumbens, as well as part of the frontal pole, part of lateral OFC. In contrasts of PPI
results between drink conditions, no significant differences were observed either in the whole brain
nor in the areas showing positive functional connectivity.
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4. Discussion

Our study aimed at investigating the effects of acute ingestion of glucose and of sucralose on
subjective hunger, food valuation, and associated brain activity. In interpreting our results, it is
important to keep in mind both the baseline metabolic state (overnight abstinence) and the timing of
assessments relative to consumption.

4.1. Primary Findings Related to Acute Glucose Consumption

Relative to water, glucose intake was associated with (1) significantly reduced change in subjective
hunger 90 min after consumption (t(87.5) = −3.08, p < 0.01) but not 5 min after consumption
(t(87.5) = 0.74, p = 1)), marginally significant reduction in monetary bids on foods approximately
55 min after consumption (z = −2.25, p = 0.07), and reduced signal change during food valuation
within a small cluster of the left parietal cortex (which was part of the extensive map in which signal
was elevated during food valuation with all conditions combined). Within the food-cue ROI, signal
change was not significantly attenuated after glucose (t (22.8) = −1.70, p = 0.20) though the pattern of
results was in the expected direction.

The general pattern of findings in the glucose consumption condition is consistent with prior
research. One study that directly examined the food-cue reactivity after glucose ingestion revealed
decreased in-scanner food-cue induced hunger and desire for food scores compared with water [51].
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Participants in that study also indicated lower amounts of money that they were willing to pay for food
after glucose ingestion. Moreover, a meta-analysis showed that low level of blood glucose increases the
willingness to pay for food [52]. Evidence has shown that ingestion of energy containing glucose elicits
a decrease in food-cue reactivity in brain regions associated with hunger [18,53,54]. While the area
within the left parietal lobe in which reduced activity post-glucose (relative to water) was observed is
not implicated in appetite signaling, it has been implicated in visual attention orientation [55] and
food reward during visual food-cue presentation [56]. Indeed, attention related activity in the parietal
lobe in response to food stimuli has been reported to be greater among individuals with higher BMI.
Therefore, the observed attenuation after glucose consumption could reflect a decrease in attention
to food-cues.

4.2. Primary Findings Related to Acute Sucralose Consumption

Relative to water, sucralose intake was associated with marginally significant reduction in
monetary bids on foods approximately 55 min after consumption (z = −2.28, p = 0.07), and reduced
activity within the a priori food-cue ROI (t(23.3) = −2.91, p = 0.02) and several additional regions
including the visual cortex, dorsolateral prefrontal cortex, and posterior cingulate. Collectively,
the findings provide evidence that at approximately 1-h post consumption, sucralose reduces CNS
activity associated with food valuation. This acute appetite suppression effect may contribute to
aforementioned recent evidence that consumption of sucralose sweetened beverages can result in
decreased energy intake throughout the 12-week intervention and reduced BMI after the intervention
(compared with baseline) in overweight and obese individuals [8].

Although the mechanism of the observed diminished food-cue ROI activity after acute sucralose
consumption is not clear, it is likely that receptors in the mouth or gut that are normally sensitive
to sugars play a role. Sweet taste perception of both sugars and NNSs is peripherally mediated by
the T1R3 and T1R2 receptors on the tongue [57], though only the T1R3 appears to be sensitive to
sucralose [58]. Sucralose has high binding affinity (lower dissociation constant) to T1R3 receptor
compared to glucose [59]. The upper gut has receptors that respond to sweetness, leading to satiety
hormone release. It has been found both sucralose and glucose could induce GLP-1 release in a human
L cell line [60]. A recent study [61] examined the function of the sweet taste receptor in arcuate nucleus
using sucralose and the findings suggested that sweet taste receptors could lead to anorexigenic signals
in the brain and thus reduce food intake. Though NNSs were initially considered to be without
glycemic [6] and metabolic effects, more recent evidence suggests that NNSs may have metabolic
effects [9].

4.3. Comparison of Acute Sucralose vs. Acute Glucose Consumption

Contrary to our expectation that glucose consumption relative to sucralose consumption would
cause greater reduction in food bids and attenuation in brain activity associated with food decision
making, no significant differences were observed. It is possible that differences would have been
observed had the Food Bid Task been administered at a different time point. It is worth noting
that appetite ratings, were not different between these conditions five minutes after the study drink
consumption but were significantly lower after glucose 90 min after study drink consumption (see
timeline in Figure 1).

4.4. Food Decisions and the Orbitofrontal Cortex

As expected, activity correlated with participants’ bids was observed throughout regions previously
linked to appetite but was especially prominent in a large cluster of the medial orbitofrontal cortex.
The mOFC was not part of the network that was generally recruited during the task, but its association
with value is in keeping with an extensive literature in neuroeconomics [33,41–44]. Based on
psychophysiological interaction analysis (PPI) we identified the mOFC cluster to be functionally
connected during food valuation to a network of regions that included bilateral caudate, anterior insula,
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nucleus accumbens, the frontal pole, and part of lateral OFC. We observed no statistical evidence that
drink consumption altered functional connectivity with the mOFC.

4.5. Limitation

Several limitations of this study are worth noting. First and perhaps most significantly, our sample
size is relatively small. Small sample studies can lead to inconsistency, and serious problems of low
replicability of neuroimaging results [62]. We have made our data accessible using the standardized
“Brain Imaging Data Structure” (BIDS) format [63] to facilitate future meta-analyses that may more
definitively address this issue. Second, our sample was quite heterogeneous in BMI [64]. While this
heterogeneity might be a strength in a large study where associations with these variables could be
explored, the modest sample size here does not provide sufficient power to do this. The heterogeneity
may have resulted in loss of power to detect effects that would be evident in a more homogenous
sample. A third limitation of our experimental design is that we did not record subjective hunger
(appetite scale) for the 75-min window in which participants were completing the neuroimaging
portions of the protocol. Given the dynamic nature of post-ingestive signaling relevant to hunger,
regular assessment of appetite during this period would be informative.

5. Conclusions

We observed both behavioral and neural evidence of impact from acute glucose and acute
sucralose on food decision-making. Most noteworthy, during the Food Bid Task (approximately 55
min after consumption of sucralose) brain activity within regions previously established as responsive
to food-cues was attenuated, and there was a marginally significant reduction in participants’ bids
on food items. Although the relationship between these observed acute effects and the effects of
regular sucralose consumption are not clear, it is possible that acute effects could result in decreased
energy intake over time. Future work should focus on investigating this possible connection, and on
identifying the signaling mechanism underlying the observed effects.
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Appendix A

Appendix A.1. Attribute-Rating Task, Magnetic Resonance Imaging Parameters and Preprocessing Procedures,
and Brain Regions with Significant Decreased Activity after Glucose or Sucralose

Attribute-rating task (outside the MRI scanner). After all three imaging sessions were completed,
participants rated their estimates of nutrient content for each food item. Participants were not informed
that they would provide these estimates prior to the task.

For each food item, participants were asked:

(1) how high is the item in fat?
(2) how high is the item in carbohydrates?
(3) how high is the item in protein?
(4) how high is the item in vitamins?
(5) how high is the item in sugar?
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(6) how high is the item in sodium (salt)?
(7) how high is the item in calories?
(8) how familiar is the item?
(9) how healthy is the item?
(10) how palatable is the item?

Participants were instructed to indicate their guess about the nutrient by moving the slider density
from “not at all” to “very much”. In addition, participants were asked to report their guess for the
market price for each food item. The order of the questions was randomized across participants.

MRI imaging parameters. Participants laid supine on a scanner bed, viewing stimuli through
a mirror that is mounted on the head coil. Blood oxygen level-dependent (BOLD) response was
measured via an echo planar imaging (EPI) sequence with prospective acquisition correction (PACE).
Acquisition parameters during the functional acquisition were as follows: TR = 2 s, TE = 25 ms,
flip angle = 90, resolution = 3 mm3 isotropic, 64 × 64 matrix in FOV = 192 mm. A total of 41 axial
slices, each 3 mm in thickness, were acquired in an ascending interleaved fashion to cover the whole
brain. The slices were tilted to align with each individual’s anterior commissure–posterior commissure
line plane, to minimize signal dropout in the orbitofrontal cortex [65]. Anatomical images were
collected using a T1-weighted three-dimensional magnetization prepared rapid gradient echo with
TI = 900 ms, TR = 1.95 s, TE = 2260 ms, flip angle = 90 degrees, resolution = 1 mm, 256 x 256 matrix in
FOV = 256 mm. This high-resolution structural image was used for alignment and normalization of
each individual’s brain into standard MNI space. Subsequently, EPI images were standardized by
applying the transformation used to normalize each participant’s high-resolution image.

Neuroimaging Preprocessing. Preprocessing of fMRI data was carried out utilizing several tools
from the Oxford University Centre for Functional MRI of the Brain Software Library (FMRIB) [66–68].
Head movement was corrected in three dimensions using MCFLIRT (Motion Correction using the
brain software library’s Linear Image Registration Tool) [69]. Six motion parameters were added
into the general linear model (GLM) to explain variance in signal related to head motion. FMRI files
were pre-processed using motion correction, high-pass filtering (100 s), and spatial smoothing with
a Gaussian kernel of full width at half-maximum = 5 mm. Functional data were first mapped to
each participant’s anatomical image and then registered into standard space (Montreal Neurological
Institute, MNI) using affine transformation with FMRIB’s Linear Image Registration Tool to the avg152
T1 MNI template.

Food-cue ROI (Region of Interest). In order to examine responses in brain areas sensitive to
food-cues, we utilized an a priori ROI mask, derived based on previous published reports localizing
responses to food-cues as identified in a meta-analysis [29]. This “food-cue mask” included reported
coordinate peaks from eight regions within our slice position coverage: left OFC, left ventral striatum,
left amygdala, left hippocampus, bilateral anterior insula, bilateral middle insula, bilateral precuneus,
and left postcentral gyrus. For each region (with the exception of the ventral striatum) we drew
4-mm-radius spheres around the peak voxel reported in the meta-analysis (see detailed information in
Tang et al., 2012). For the ventral striatum, a 2-mm-radius sphere was drawn because of its smaller size
(Figure A1 in Appendix A for information about the food-cue a priori ROI mask).
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Figure A2. (a). The numbered arrows in the figure point to the brain regions with significant decreased
activity after glucose (relative to water), which included: (1) left parietal lobe (partially overlapping the
postcentral gyrus); (b). The numbered arrows in the figure point to the brain regions with significant
decreased activity after sucralose (relative to water), which included: (1) left dlPFC; (2) frontal gyrus;
(3) posterior cingulate; (4) precuneous.

Appendix A.2. Subliminal Priming Data Analyses

Since recent work suggests response to very brief (subliminal) presentation of food-cues is sensitive
to metabolic state [19], and includes a distinct neural pathway driving a response in the amygdala [20],
we included subliminal food primes embedded within our task. Our analyses focused on the food
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valuation period, and the GLM included the following regressors: (1) Subliminal food- cue priming;
(2) Subliminal checkerboard priming; (3) food valuation period unweighted and (4) food valuation
period weighted by bid for the food (de-meaned relative to all bids in the run). Trials in which
participants did not respond were modeled with a fifth regressor (treated as a regressor of no interest).

To examine possible effects of study drink on subliminal priming related brain activity, ROI
analyses were carried out in order to examine amygdala response to subliminal primes. Brain signals
were extracted from bilateral amygdala, which was taken from the probabilistic Harvard–Oxford
Cortical Structural Atlas with probability larger than 50%, for the subliminal prime period. Individual
signal changes (beta values from statistical models) were extracted separately for each participant
during each session. LMM analysis was done to test the drink effect on brain signal change for the ROI
described above with drink type as a fixed effect and participant entered as a random intercept with
baseline hunger, appetite for sweet food, BMI and gender as covariates.

Mean beta values within the amygdala (bilateral) were calculated for the subliminal prime period
contrast between the presence vs. absence of the 33 ms food-cue presentation. Collapsing across all
conditions, we observed no evidence of differentiation within the amygdala based on the presence of
the subliminal prime (t (27) = 1.26, p = 0.22). Nor did we see any difference between drink conditions
in this contrast (F (2,131) = 1.50, p = 0.23). We do not consider the effect of subliminal prime in
further analyses.

Although we intended to use response to subliminal primes to examine whether drink effects
were present for the rapid orienting response previously documented in the amygdala for food [20] and
other reward cues [21], we did not observe any signal in the amygdala associated with our subliminal
food primes even when all sessions were combined. This was likely because of the relatively low
number of subliminal presentations.
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