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1. INTRODUCTION 

This paper studies a class of variational problems that arise in the analysis 
of resource allocation over an infinite horizon. Such problems are charac- 
terised by an underlying technology that generates the basic set of feasible 
programs and by a preference ordering that selects from among these 
programs an optimal one. The problem of establishing the existence of an 
optimal program differs from the standard variational problems on a closed 
finite interval in that certain inequalities on parameters characterising the 
asymptotic properties of the underlying technology and preferences play a 
crucial role in the basic existence condition. 

This paper generalises the earlier results of Koopmans [7] and is closely 
related to the abstract approach developed by Bewley [2]. The basic 
existence result is applied in Section 4 to the model of an expanding 
economy introduced by von Neumann. The definition of impatience adopted 
in Section 5 is motivated by the results of Brown and Lewis [3]. 

2. CANONICAL RESOURCE ALLOCATION PROBLEM 

We are concerned with a class of resource allocation problems over the 
half open interval Z= [O, 03). Let (I, 3) denote the measurable space 
induced by Z, 3 the Lebesgue measurable sets and let A” =.,P(Z, S-) 
denote the space of all R”-valued (n > 1) T-measurable functions defined on 
(I, 3). Let < E A” satisfy 

J .’ II <(TN dr < 03 1 Vt E z (2.1) 0 
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and let 

X(f) = x0 + I t T(s) dt, t E I, (2.2) 
0 

where x0 E R: . r(t) denotes a flow of output of n goods at time t, x(t) the 
accumulated stocks. A technology set T(t) c R: X R:, t E I, gives the set of 
flow outputs r(t) producible with the existing stocks x(t). We require that 

(x(t), t(t)> E T(t) a.e. (2.3) 

2.1 DEFINITION. r(t): I+ R: x R: will be called regular if it is a 
closed, convex-valued measurable correspondence. 

2.2 DEFINITION. <EM’ satisfying (2.1)-(2.3) is called a feasible 
production program. Let Y denote the set of all such programs. We say I 
satisfies a growth condition if there exist y, y E 1 and k E R: such that 

0 < y(t) < y(t) a.e., 
i 

’ Y(Z) dr < 00, Vt E I, 
0 

II WI G y(t) a.e. vy E F, 

r(t) 2 Q(t) at. for some r E ,V, 

(2.4) 

(2.5) 

(2.6) 

Let 

if (J, [) E T(t) a.e. 

if (x, IJJ 6Z r(t) a.e. 

If r is regular then v/r is a normal integrand in the sense of Rockafellar [9, 
p. 173 and Proposition 2H, p. 1771. Thus for (x(f), T(t)) E J2”, 
yr(x(t), r(t), t) E J [9, Corollary 2B, p. 1741. Thus 

f? = dom Y(t) = dom 
I 

tyr(x(t), r(t), t) dt. 
I 

For y E J’ satisfying (2.4) define the Banach spaces 
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The family of seminorms 

induces a locally convex topology on Y, denoted by u(?/‘, i” “). 
A preference ordering on programs is induced by an integral functional 

u(t) = 1 G<(t), t> A 0) & I 

where A E J, 0 < d(t) < 00 a.e. 

2.3 DEFINITION. u(& f): R: XI- l-00, CO) will be called regular if 
4 * > t) is upper semicontinuous and concave, dom u( . , f) has a nonempty 
interior and u([, . ) E J’, for all t E I and 4’E R”, respectively. 

If u is regular then u is a normal integrand 19, Corollary 2E, p. 176) so 
that c(t) E M” implies u({(t), t) e .k. 

2.4 DEFINITION. We say that u satisfies a growth condition if there exist 
upper semicontinuous non-decreasing functions 1, $: R + -+ [-co, 00) and an 
upper semicontinuous concave function h: RI --$ R, satisfying 

h(C) > 0, h(i) > 0 for [E Kc R;, h(@) = Ah([), 1 > 0 

such that 

$(hK)) < NC, t) < ~VG)) V(i, t> E R: x 1. (2.7) 

2.5 DEFINITION. Let A = h(k), J= sups~O,I,sIz i h(c). We say (r, u) satisfy 
compatible growth conditions if 

--CT) < 1 f(_y(O&) d(t) dt, 1; &(r)I) A(t) df < 03. (2.8) 
I 

2.6 DEFINITION. Let f = u + V/p, f’(t) = j,f(x(f>, r(f), r) A(t) dt. r E P 
is an optimal program if 

3. EXISTENCE OF OPTIMAL PROGRAM 

3.1 PROPOSITION. If (r, u) are regular and satisfy compatible growth 
conditions, then there exists an optimal program. 
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Proof. Equation (2.5) and the homogeneity of h(.) imply h(&)) < r(r)J 
a.e. VY E Y. By (2.7), u(r(t), t) < $(y(t)l) = a(t) a.e. Vt E Y. Thus 
d-G), %>, f> = a(0 -f(x(f), t(f), f) > 0 a.e. VC E 7” and G(t) = J”, g(x(t), 
C(f), 4 d(f) df = a* -F(t), where --co < a* =JIa(f)d(f) df < 03 by (2.8). 
Let cr,r:=, c 7” such that r, + r*, a(Y, Y’) and let G, = G(&), 
I;=lim,,, G,, G* = G((*). Since G(<)>O, VCE T, 0 <G< co. If 
G = co, then G* < G. Suppose 0 < G < co and select a subsequence 
{Llmm=l= cr,rz=, such that G(<,) = G, + G. Let xl,(r) denote the charac- 
teristic function of If = [0, f], ui = (0 ,..., l,..., 0) E R: and v,(t, r) =x,,(r) vi, 
i= 1 ,..., n. For each t E I, let q(7) = ui(t, t), then 17 E Y’ by (2.4), so that 

lim [ Ui(t, 7) cm(r) dr = 1 U/(f, 7) r*(r) d7, t E I, i = l,..., n 
m-m “1 I 

implies 

lim x,(f) = lim 
I?-- 02 

m-oo jx,+idS,(r)drj=x,+~~T*(r)dr=x*(f), VfEI. 

Let 2, = (&)zzk, k = 1,2,... and let Zk, co Zk denote the o(‘Y, T’) closure 
and convex hull of Z,. Since <* E Z, c co Zk = co Z, and since 
COZk=CO;, where the latter denotes closure in the norm topology 
[4,Theorem V.3.13, p. 4221, C* Ecoi. Thus if we let [<,,,I = (&}z=r, 
there exist A,[&,,] = Cz=, akm& E co Z,, k = 1,2,..., where akm > 0, 
CL k akm = 1, k < z < co such that 

tz ll~klrml - r* II;‘,cc = 0 
so that 

hl A k [x,(t)] = x*(f) a.e. 

Since g(., f) is lower semicontinuous 

WC*) = 1 c+*(f), 5*(f), f> d(t) dt 
“I 

G ; pm g(A,[x,(f)l,A,[r,(f)l, 04t) df. J - 

By Fatou’s Lemma 

j 
!h g(~,[.M)l, 4kn(~)l~ t>dW df 

I k-m 

< pm J dAk[x,(f)~, Ak[&,(f)l, t> d(f) dt. 
- I 
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Since g(. , t) is convex 

dx,(& t,(t), f) 40 dt 

so that G* < !j.m,,, A,[G,] = I; and G(4) is a(%‘, F”‘) lower semicon- 
tinuous. Since (2.5) implies .Y is a norm bounded subset of Py:‘, by the 
theorem of Alaoglu 14, p, 4241, .? is relatively a(T“, Y’) compact. Since 
Y(r) is a(? -, Y’) upper semicontinuous (let F = Y in the above argument), 
it follows that .Y is a(Y., Y’) closed. By (2.5) (2.6), (2.8), -co <,E= 
sup,&(<) < ~0. Thus (cEW‘(F([)&p}I.,,,- is a family of nonempty 
a(?/, Y “) closed subsets of the o(P ., 7 “) compact set ,3’, with the finite 
intersection property. < E n, <rc { < E 7 ’ ) I;(<) > p} # 0 is an optimal 
program. 

4. APPLICATION TO VON NEUMANN MODEL 

We consider an economy with m>?r goods in which 
l= (c, v) E JP x .M” denotes the consumption-investment program over 
the interval I= [0, co). Output devoted to investment accumulates to form a 
productive stock of capital, output devoted to consumption is immediately 
consumed so that x = (0, z) where z(t) = z, + sk v(z) dr. 

4.1 DEFINITION. A reduced form production set L’(t) c R’: x Ry is a set 
of pairs (a, b) such that b is the output producible with the stocks ~7. The 
technology set r(t) is representable in reduced form if there exists a 
production set n(t) such that for (‘J, c) = kl, xz, cl, c,) 

W) = (01,C) E R:” x R? I b, 4 + h) E W>, (Cl, L) > 01 a.e. 

For x E R” let x > 0 denote x > 0, x # 0 and let x P 0 with x = h1 ,..., x,) 
denote xi > 0, i = l,..., n. 

4.2 DEFINITION. A production set Ii’ c RT X R”, is standard if (i) I7 is a 
closed convex cone, (ii) (a, b) E ZZ with a = 0 implies b = 0, (iii) there exists 
(a, 6) E 17 with b 9 0, (iv) (a, 6) E 17, a’ > a, 0 < b’ < b implies (a’, b’) E Ii’. 

4.3 EXAMPLE. The production set I7 in von Neumann’s model [lo] is 
the convex polyhedral cone 

(4.1) 
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where (A, B) is a pair of m x s matrices (m > 1, s > 1) satisfying (i) 
aij, b, > 0, (ii) for any j there exists i such that aij > 0, (iii) for any i there 
exists j such that b, > 0. (i)-(iii) imply (4.1) is standard. 

4.4 EXAMPLE. Let g: RT --) Ry , g = (g’,..., g”) satisfy (i) g’(.) is upper 
semicontinuous and concave, (ii) g’(a) is homogeneous of degree 1, (iii) 
a’ > a implies g(a’) > g(u) and g’(a’) > g’(a) for some i @ {j 1 uj > uj} if 
a’ # a. (i)-(iii) imply that the production set 

n = {(a, b) I b ,< g(a), (a, b) > 0) (4.2) 

is standard. As a special case let g(u) = Au where A is a non-negative 
irreducible m x m matrix. In this case p* in Proposition 4.6 is the Frobenius 
root of A [6, Theorem 2, p. 531. 

4.5 DEFINITION. For any (a, b) E II, p(u, b) = sup{p E R 1 b > pa} is 
called the expansion rate of the process (a, b). p* = ~up~,,~)~np(u, 6) is 
called the maximal expansion rate for l7. 

The following result is due to von Neumann [ 10, p. 361 and Gale 15, 
p. 2901. 

4.6 PROPOSITION. If II is a standard production set, then there exist 
p* E R”, a* E Rm, p* E R such that 

(i) @*p*,p*)(--a, b) < Ofor all (a, b) E II, 

(ii) p* = p(a*, b*) = SU~~,,~)~,, p(u, b), b* =p*a*, 
(iii) p* > 0, u* > 0, p* > 0. 

4.7 DEFINITION. I7 is productive if (a, b) E n with p(u, b) = p* implies 
a 9 0. 

4.8 EXAMPLE. Consider (4.1). M’ c M = ( 1, 2 ,..., m } is an independent 
subset of goods if there exists S’ c S = { 1,2,...,sl such that for each 
i E S\M’ and j E S’, uij = 0, while for each i E M’, b, > 0 for some j E S’. 
The pair (A, B) in (4.1) is irreducible if the set M has no nontrivial 
independent subsets. If (A, B) is irreducible, then II in (4.1) is productive [5, 
p. 2951. A simple argument shows that n in Example 4.4 is productive. 

4.9 PROPOSITION. Let z,, + 0. If I is representable in reduced form by a 
standard, productive set II with maximal expansion rate p*, ty the discount 
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factor is exponential A(t) = e-“, -CQ < 6 < 00, u is regular and satisfies a 
growth condition with K = {c = ([, , 6,) E R trn 1 cl g- 0) 

(4.3) 
= In s, p=o 

and if 

6 >PP* (4.4) 

then there exists an optimal program. 

Proof We use Proposition 4.6 to show that r satisfies a growth 
condition (2.4)-(2.6). For any E > 0 let r,(p; a, b) =pb - @* + E) pa. Since 
IZ is standard and productive, Proposition 4.6(i) and (iii) imply p*p*a* > 0, 
r,(p*; a, b) < r,(p*; a*, b*) = r,* < 0, V(a, b) E IZ, (a, b) f 0. Let v(p) = 

SUf+a.b,HInE r,(p; a, b), where Z = ((a, b) E Rtm 1 CT! 1 (ai + bi) = 1). Since 
rE(.; .) is continuous on Rm x RZm and since I7 n Z is compact, y(p) is 
upper semicontinuous [ 1, Theorem 2, p. 1161. Thus for any v > 0 such that 
rT + v < 0 there exists ,u > 0 such that if r] E R”, q 9 0 satisfies /I q/I < p then 
V&J* + II) < rT + v < 0. But then rp(p* + v; a, b) < 0, V(a, b) E If, (a, 6) # 0 
andp*+q+O.Thusifwesetfi=p*+q 

Bb < @* +&)$a, V(a, b) E II, (a, b) # 0. (4.5) 

Consider f= (C, V) E .E” for which F(t) = 0 a.e. Then (z, + j”b U(r) dz, z?(t)) = 
(F(t), i(t)) E I7 a.e. By (4.5) g;(t) < @* + E) jZ(t) a.e. so that 

@F(t) < (@zo) ecp’+‘)’ a.e. (4.6 1 

Thus for any 5 = (c, U) E ,Y, (zO + jb u(r) d?, c(t) + u(t)) = (z(t), q(t)) E ZZ 
a.e., since c(t) > 0 a.e., (4.5) and (4.6) imply 

@q(t) < @* + &)65(t) < @* + &)(bzo) eCp-+‘)’ a.e. 

Thus since @ 9 0, for any E > 0 there exists y, > 0 such that 

y(t) = y, e(O* + ‘)’ a.e. (4.7) 

satisfies (2.4) and (2.5). Since z0 %- 0 there exists 0 > 0 such that Ba* < zo. 
Since ZZ is standard and productive, by Definition 4.2(iv) and 
Proposition 4.6(ii), for any 0 < E < 1 the path 

<(t) = (g(t), y(t)) = (w*z(t), (1 - e) p*z(t)) ax., z(0) = 8a* $0 
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is feasible. Thus for any 0 < E < 1 there exists k, E K such that 

ky(t) = kte(‘-E)p*f a.e. (4.8) 

satisfies (2.6). Since 4 = h(k,) > 0 and since (4.7) and (4.8) are valid for any 
0 < E < 1, it follows from (4.3) and (4.4), that (2.8) is satisfied. The result 
follows from Proposition 3.1. 

4.10 Remark. The definition of K in Proposition 4.9 implies 
U(r) = U(c). The problem is to maximise the benefits arising from the stream 
of consumption c over the interval [0, co). The problem of choice is the 
problem of balancing the benefits of the present (arising from consumption) 
against those of the future (arising from investment). When (4.4) is satisfied 
this problem of resource allocation has a solution. Let m = 1, a simple 
argument shows that if 

J<PP* (4.9) 

then there is no optimal program. If CT(t) denotes consumption optimal at 
time t for the problem on [0, T], then 

c,(t) + 0 Vt < T, CAT) -+ Co as T-o0 

The limit of the finite horizon optimal paths is, in a real sense, the worst 
possible path. Let p = 1 - r, then it can be shown that 6 + qp* is a measure 
of the rate of impatience on a path of consumption growing exponentially at 
the rate p*. Since (4.9) reduces to 

a+ ‘Ip” <p* (4.10) 

if the rate of impatience is less than the maximal rate of growth p*, then the 
problem of resource allocation has no solution. If (4.10) holds and if agents 
mimick the limit of a sequence of finite horizon problems in attempting to 
arrive at a solution, then they are led to a program of fruitless over- 
accumulation of capital. 

5. UPPER SEMICONTINUITY AND IMPATIENCE 

The essential economic content of the existence condition (4.4) or (2.8) 
may be uncovered if we recognise that these conditions arise from the 
requirement that the preference function U(.) be upper semicontinuous in the 
a(F-, 7-‘) topology on T/- = pi,,. If for any <, c E Y such that 
U(r) < U(c) and for any [E Y there exists r E Z such that U(< + C,) < 
U(C) VT> 7, where CT= [rXIT,m)r then U(.) is said to exhibit impatience on 
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F. It is easy to show that for any [E Y, [xCT,,,) -+O in the o(Y, 7’) 
topology as T + co. Thus if U(.) is upper semicontinuous in the a(Y, F’) 
topology on F’, then U(-) exhibits impatience. The real force of the existence 
condition (2.8) thus lies in the requirement that the preference ordering 
represented by U(.) exhibit impatience in the topology of growth generated 
by the technology. 
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