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1. Introduction 

Broadly speaking futures markets play two roles. The first is 
that of sharing risk between agents, the second is that of disseminat- 
ing information regarding future supply and demand conditions. 
The recent papers of Gros sman  (1977), D a n t h i n e  (1978) and 
Bray (1981) have studied the informational role of futures markets. 
Our object is to study their risk sharing role and in particular how 
the nature of the risks influences the qualitative properties of the 
equilibrium. 

We consider a model of futures market equilibrium similar to 
that analysed by D a n t h i n e  (1978). The approach involves a partial 
equilibrium model in which an individually owned firm makes a 
production decision before the price of its output is known. In 
addition to selling his output on the spot market the producer can 
hedge against price risks by trading on the futures market. We as- 
sume that price fluctuations on the spot market are generated by 
demand fluctuations. It was observed by D a n t h i n e  (1978) and 
H o l t h a u s e n  (1979) that in such a framework the production de- 
cision depends only on the futures price. Holthausen studied how 
the production and hedging decision depends on the relation be- 
tween the futures price and the expected spot price. Our object is 
to extend Holthausen's framework to an equilibrium model. This 
is done in the simplest possible way by introducing a random de- 

* Support from the National Science Foundation (SES 8200432) is 
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mand function on the spot market and many identical speculators 
on the futures market. When discussing the typical speculator's de- 
mand for futures contracts we take his returns from investments on 
all other markets as given - -  these are represented by a single ran- 
dom variable. This approach while not entirely satisfactory enables 
us to show in a particularly simple way how risks in the rest of 
the economy impinge on this market. 

In a futures market there are no natural a priori bounds that 
can be placed on the positions taken by traders. We do not impose 
any such bounds but use an argument related to a concept of 
asymptotic risk aversion to delimit the price region in which the 
agents do not wish to take unbounded futures positions and show 
that a (not necessarily unique) equilibrium always exists in this 
region (theorem 1). Our main interest lies in exploring the qualitative 
properties of this equilibrium. In addition to the results of Danthine 
and Holthausen cited above our analysis is based on two key ideas. 
First, the investment decisions of speculators in the futures market 
depend not only on the returns of this market (the distribution of 
spot prices and the futures price) but also on the nature of the 
stochastic dependence between these returns and the returns spec- 
ulators get on other markets. Second, if the number of speculators 
becomes large, so that each of them trades only very little on the 
futures market under consideration, then in the limit the idiosyn- 
cratic risk is completely diversified away and only the covariance 
risk remains. Theorem 3 states that the futures market equilibrium 
converges to a unique limit when the number of speculators be- 
comes arbitrarily large and characterises its asymptotic properties: 
if the spot prices on this market and the speculators' returns on 
other markets are positively (negatively) dependent, then the equi- 
librium futures price q will lie below (above) the expected spot 
price Ep m the futures price thus exhibits backwardation (con- 
tango). The economic intuition behind the result is simply that in 
the positively dependent case (for instance) a speculator increases 
the overall variability of his portfolio by taking a long position in 
the futures market and requires compensation for this added risk 
in the form of an expected profit (backwardation). In the indepen- 
dent case no such return is required and the futures price is unbiased. 
In this case producers are fully hedged and all price risk is carried 
costlessly by speculators. The nature of the stochastic dependence 
between the spot price and the returns of speculators in the rest of 
the economy also influences the firm's production decision through 
its influence on the equilibrium prices. Equilibrium output is greater 
than, equal to or less than what it would be in the absence of risk 
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according as the stochastic dependence is positive, zero or negative. 
A correspondingly complete characterisation of equilibrium is not 
available when the number of speculators is finite but we do provide 
certain partial characterisations in lemmas 4 and 5 and theorems 2 
and 4. 

2. The Model 

We consider the market for a single homogeneous good ("wheat") 
produced by a fixed finite number m of identical competitive pro- 
ducers ("farmers"). Without loss of generality we put r e = l ,  the 
case of m > 1 requiring only trivial modifications. The technology 
is given by a cost function c (y) satisfying, for all output levels, 
y>O, 

Assumption 1. c (0) = 0, c" > 0, c" > 0, lim c" (y) = co. 
y- -~  oo 

The production decision is made in "spring" and the output is 
harvested in "autumn". After the harvest there is a spot mark~et on 
which the entire output is sold (the producer cannot store the out- 
put). The price on the spot market is a random variable p =p  (~o), 
defined on a probability space (~9, F, P). Here s is the set of states 
of the world, F is a ~-field of subsets of s and P is a probability 
measure on F. The spot price p (o)) is not revealed until autumn; 
in spring only the distribution of p (.) is known. We shall restrict 
attention to nonnegative prices which are genuinely uncertain in the 
sense that their variance is positive, and which are bounded above 
by some fixed constant K > 0 ;  i. e., consider only prices in the set 

L={p  : zQ--*Rlvar p>0 ,  and 0 < p  (co) <K for all co eQ}. 

Convergence in L will always be convergence in probability, i. e., 
pn__,p for n--~oo if and only if for all e > 0  

P (~, Ip~ (~o)-p (o,)] =>e)-*0 for n-~oo. 

In addition to the spot market in autumn, there is a [utures marlcet 
held in the spring. We write q e [R for the price on the futures 
market, and z ~ • for the amount of the good the producer sells 
on the futures market (if z <0 he purchases futures). We do not 
restrict z in any way, i. e., allow arbitrarily large long or short 
positions. Given a production y > 0 and a futures trade z ~rR, the 
producer's profit in state ~ ~ ~9 is 

(y, z ,  ~ )  = p (~)  y - c (y) + z ( q -  p (~o)). 



236 M.J.P.  Magill and M. Nermuth: 

The first two terms on the right hand side represent the producer 's  
profit  f rom his production activities, and the last term is his gain 
(loss) f rom futures trading (all prices and costs are discounted to 
the same date). 

The producer 's  preferences are represented by a strictly increas- 
ing, strictly concave von Neumann-Morgenstern  utility function 
u = u (~r). Given prices (p, q) ~ L x R he chooses (y, z) ~ R + • R so 
as to maximise his expected utility 1 

u (y, z) =Eu (~ (y, z, co)) = ~ u (~ (y, z, co)) d P  (co). 
~2 

It is easy to check that U (y, z) is strictly concave. The producer 's  
optimal supply decision (yOpt (p, q), zopt (p, q)), if it exists, is there- 
fore unique. 

The total demand for the good on the spot markoet is exogenous 
and given by a random inverse demand function ~ (y, co). This func- 
tion is assumed to be (i) d o w n w a r d  sloping and such that  the de- 
mand price exceeds marginal cost at zero output  and (ii) genuinely 
random and continuous. Formally: 

Assumption 2. (i) For all co ~ s 4~ (y, co) is nonincreasing in y and 
(0, co) >c '  (0). (ii) For all y >-_ O, ~ (y, .) e L and yn ~ y  implies 
(y% . ) - 0 4  (y, .). 

The demand for futures contracts comes f rom a number  of 
identical speculators, i n d e x e d - i = 1 , . . . ,  s. A typical speculator is 
endowed with a random variable r = r (co) which represents his prof- 
its f rom his investments in other markets (taken as exogenous). 
We make the "limited liability" assumption 

Assumption 3. r (.) is bounded below. 

If a speculator buys ~ units of "wheat"  on the futures market% 
t h e n h i s  total profit in state co is 

/ I  (~, co) = ~ (p (co) - q) + r (co). 

His preferences are represented by a strictly increasing, strictly 
concave von Neumann-Morgenstern  utility function w = w  (H). 

1 TO justify this form for the firm's objective function it is best to 
think of the representative firm as being individually owned (a farm). 

For speculators we use the opposite sign convention as for producers, 
i. e., ~ > 0 means that the speculator buys futures. 
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Given prices (p, q ) e  L x R he chooses r E R so as to maximise 
his expected utility 

vr (0 = E w (H  (~, co)). 

Again, it is easy to check that W (0 is strictly concave, and hence 
the speculator's optimal trade r (p, q), if it exists, is unique. Since 
all speculators are identical, their total demand for futures con- 
tracts is s ~opt (p, q). 

A futures marI~et equilibrium is now a price system (p, q) and 
a set of production (y) and futures trading (z, ~) decisions such that 
all agents maximise their expected utility given the prices, and both 
the spot and futures market clear. Formally: 

Definition 1. A futures marl~et equilibrium is given by (p, q, y, z, ~) 
L x  R 4 such that q>_-0 and (i) y=yOpt (p, q), z=zOpt (p, q), ~= 
r (p, q); (ii) p (co)=4 (Y, co) V co es (iii) z=sr 

3. Futures Market Equilibrium 

Our main objective is to relate the qualitative properties of a 
futures market equilibrium to the underlying data of the model. 
To this end we begin by establishing some simple properties of the 
agent's optimal production and futures trading decision. These re- 
sults lead to an elementary proof of the existence of a futures 
market equilibrium. 

Note that in a futures market there are no natural a priori 
bounds on the positions that can be taken by traders. In a general 
equilibrium context it is well-known that this can lead to non- 
existence of equilibrium [see H a r t  (1975)]. In the present partial 
equilibrium context we admit "infinite" trades but show that the 
demand and supply schedules of producers and speculators always 
intersect for a price system at which all agents trade finite amounts. 

Theorem 1. Under assumptions 1--3 there exists a futures marl~et 
equilibrium. 

The proof depends on the following three lemmas. The first ob- 
servation (originally due to D a n t h i n e  (1978) and H o l t h a u s e n  
(1979)) is that the producer's optimal output yOpt (p, q) does not 
depend on the spot prices p, but is determined simply by equating 
marginal cost to the futures price q. 

Lemma 1. At equilibrium y > 0 and c" (y)=q. 

Proof. (See appendix.) 
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u' (o o ) =  lim u" (y), etc., - =  
y---)- co 

The idea is that if c' (y) # q, for instance c' (y) < q, then the producer 
could increase his profit (with certainty) by raising both his output 
y and his futures trade z by the same small amount ("selling the 
extra output on the futures market"). 

By lemma 1 and definition 1, when looking for an equilibrium, 
we need only consider price systems of the form 

(Pv, qu) = (r (Y, "), c' (y)) for y > O. 

Let z (y) denote the producer's optimal supply of futures, given 
prices (Pv, qv) and given that his output is y, and let r (y) = r (Pu, qu) 
denote the demand for futures of the typical speculator. If we admit 
the values + 0% these optimal trades always exist. To obtain a 
more precise characterisation we define the following quantities 8 

B (y) 
[ ( y ) = ~ , A ( y ) =  S (Pu(t~ B(y)= S (qu-Pu(CO)) 

Pu > qu Pu < qu 

u' ( -  oo) w' ( -  oo) 
> l ,  f l = - - > l  (3.1) u' (oo) w' (~o) 

Lemma 2. 

(i) z (y) = 

(ii) r (y) = 

oo i f .=<f (y )  

1 < f ( y ) < .  finite if 
1 

-oo if f (y) < u  

- oo i f  fl < f (y) 

1 < f ( y ) < f l  finite if 7 
1 

oo if f (y) < 

Moreover, z (y), ~ (y) are continuous 4 in y and when z (y) (re- 
spectively ~ (y)) is finite, it is the unique solution of U~ (y, z)= 0 
(respectively W' (r 

Proof. (See appendix.) 

Note that the optimal futures trades z (y) and ~ (y) will always 
be finite if the marginal utility of wealth of both types of agents 

8 We admit "infinite" values and use the obvious conventions, e. g., 
= oo whenever u' ( -  oo)= oo or u' (oo)= 0. 

4 The concept of continuity is extended to infinite values in the natural 
way by requiring lim z (y) = z (7) even if z (y) = oo. 



On the Qualitative Properties of Futures Market Equilibrium 239 

either tends to zero for very large limits of wealth or tends to in- 
finity for very low levels of wealth (or both) 5. Even if this is not 
the case, the producers and speculators will never want  to trade 
infinitely with each other (i. e., z (y)=~ (y)= oo or -oo)  since 
1 1 

~- <fl and ~- < ,  by Eq. (3.1). 
Intuitively lemma 2 can be understood as follows. B (y) (resp. 

A (y)) represents the expected money gain (resp. loss) associated 
with the sale of one futures contract when the prices are (Pv, qv). 
Using the strict concavity of u, the expected utility gain A U for the 
producer (say) from selling an extra unit on the futures market is 
therefore always greater than 

B (y) u' (oo) - A  (y) u'  ( -  oo) 

and tends to this expression if his futures position z goes to infinity. 
This implies the first line in the lemma, and the rest can be proved 
similarly. 

B (y) 
One can also say that the quotient / (y) = - X ~  is a measure of 

how good the "odds" are for a seller of futures contracts. If y in- 
creases, then Pv (o~)=r (y,~o) decreases and qv=c'(y)  increases, 
i. e., selling of futures becomes more attractive (the odds improve). 
Formally, it follows easily from the definition resp. assumptions 1, 
2 that / (y) satisfies 

Lemma 3. / (y) is continuous in y and there exist numbers 0 <= yl < y2 
such that 

0 for 0 =<y___<yl 
[ (y) = finite and strictly increasing from 0 to 0o for yl < y < y2 

oo for y _-> y~ 

Proof. (Immediate.) 

The proof of theorem I can now be completed as follows. By 
lemma 3 there exist uniquely defined numbers (see Fig. 1) 

ye, yu, yU, yw, yW e [yl, y2] 
such that (3.2) 

: (yo)= t t t (yw)= t 

5 In the terminology introduced in the next section, the asymptotic 
risk aversion of both types of traders is infinite. 
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Yl Y~ Yw yC yw y~ Yz 

~q 

I 

Fig. 1 

Y 

By construction yu <ye <yU, yw <ye <yW and of the two  intervals 
[y~, yU], [yw, yW] one is contained in the other.  Lemma 2 implies 
(see Fig. 2) 

- oo for  y =< y~, oo for  y < yw 
z (y) = finite for  yu < y < y~ C (y) = finite for  yw < y < yW 

oo for yU <_ y - oo for  yW =< y 

~ - . - Z  # . . . . . . .  

o 

Fig. 2 

7 W iy ~ 3t 

(The equilibrium is drawn for s= 1, only one speculator. The point y0 is defined 
below, cf. Lemma 6.) 

The  curves z (y) and r (y) can be shown to be continuous,  and 
hence there must exist at least one point  y* in the interior of 
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[y~, yU] n [yw, yW] such that z (y*)=s t  (y*). It is easily checked that 
(p*, q*, y*, z*, ~*), where 

p* =4 (y*, .), q* =c" (y*), z* =z  (y*), ~* =r (y*), 

constitutes an equilibrium. [] 

4. Properties of Equilibrium 

In this section we study certain qualitative properties of the 
futures market equilibrium (p, q, y, z, r in particular the rela- 
tionship between the futures price q and the expected spot price 
Ep ("backwardation" q <Ep or "contango" q >Ep), and the ex- 
tent to which the output y is hedged (z) in the futures market. 

Define the asymptotic riss aversion ~ of the producer by 

u' ( -co)  1. 
~ u -  u'{oo) 

By definition 0 <r =< m and Cu =0  if and only if the producer is 
risk-neutral (u" (~r) = constant). Define similarly Cw for the speculators. 

Lemma 4. At equilibrium 

_ _  1 . rEp-cl[ < T m m  {0,~, ew} 

where (r v = E [p-  Epl is the mean absolute deviation of the spot 
price from its expected value. 

Proof. (See appendix.) 

6 ~u can be interpreted as follows: ~u+l  gives the minimum odds at 
which the agent would be willing to accept arbitrarily large bets. To see 
this consider an agent who faces a lottery (bet) which pays him the amount 
L>0 with probability p and - L  with probability 1 -p .  The expected 
utility of this bet is U (L)=pu (L)+(1-p) u (-L) ,  so that U' (L)= 

u' (-L) pu ' ( L ) - ( 1 -p )u ' ( -L ) .  Thus U'(L)>O if and only if P > - -  
1 - p  = u' (L) 

and hence by the concavity of u ('), U' (L)RO for all L>O if and only if 
u' ( -oo)  

P > -  = r + 1. Thus the agent is willing to accept arbitrarily 1 -p  = u'(oo) 

large bets (L-ooo) if and only if the winning odds 1 - ~  are at least 
g 

Ou + 1. Note that many standard utility functions have ~u = m in which 
case the agent will never accept infinite bets. 
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Lemma 4 shows that the asymptotic risk aversion of the less 
(asymptotically) risk-averse side of the market provides an upper 
bound for the extent to which the futures price q can differ from 
the expected spot price Ep  after normalisation by the risk factor a~0. 
In particular if one side of the market becomes asymptotically risk- 
neutral, then q---*Ep. 

Next define for arbitrary (not necessarily equilibrium) values 
(y, z, ~)~ R + x  [P.~ the r i sGpremium A u (y, z) of the producer and 
the risk-premium A w (r of speculators by 

Eu (er (y, z, co)) =-u (E (:r (y, z, co)) - A u  (y, z) ) 

E w (1-1 (~, co)) - w (E (11 (~, co)) - A w  (~)). 
(4.1) 

The following lemma says that, at equilibrium, E p - q  is the mar- 
ginal risk.-premium 7 for both speculators and producers. 

L e m m a  5. A t  equil ibrium 

(i) Au u = - A z  u = Ep  - q  = coy (u' (=), p} 
E u' (=) 

coy (w' (/I), p) 
(ii) A~ w = E p - q =  - Ew' (II) 

Proo[. (See appendix.) 

Define Y, the certainty output ,  as that output that would prevail 
at equilibrium if the market clearing price on the spot market was 
not random, but fixed at its expected value q~ (y)= E r (y,.). In this 
case the producer would choose his output y so as to equate mar- 
ginal cost c' (y) with the (certain) price p, and the market clearing 
price would be p =q~(y). By assumptions I and 2 the equation 
c' (y)=~ (y) has exactly one solution :~ >0. It is easy to check that 

=ye where the output s yC is defined in (3.2). 
It turns out that there are only three possible types of equilibria 

- -  these are described in theorem 2 below. We note that the first 
equivalence in theorem 2 is really only a statement about the pro- 
ducer's optimal production-hedging decision and is true for arbi- 
trary price profiles - -  not necessarily equilibrium ones, as was ob- 

a Au ~ w= ~w (~), ~d '  = ~-y (r, z), etc. 

s Note that ye is efficient in the sense that it maximises the expected 
surplus y 

S (y)= E ~ ff (t, co) d t - c  (y). 
0 
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served by H o l t h a u s e n  (1979) in his study of producer behaviour 
under price uncertainty. 

Theorem 2. Let (p, q, y, z, ~) be an equilibrium, then 

E p ~ q  ~ y ~ z  ~ y~<yC. 

Thus if the futures price is below the expected spot price 
(q <Ep), the output is only partly hedged (z<y) and is less 
than the "certainty output" ye. The converse is true when q > Ep. 

Proof. Since u' (~r)=u' (p ( c o ) ( y - z ) - c  (y)+zq) and since u" is a 
decreasing function, the sign of y - z  is the same as the sign of 
- c o v  (u', p), which is the same as the sign of E p - q ,  by lemma 5(i). 
This proves the first equivalence, Moreover, the function 

g (y) = $  (y) - c' (y) (4.2) 

is downward sloping, and g (yb)= 0. If y is the equilibrium output 
on the futures market, then g (y) =~ (y) -c" ( y )=Ep-q .  This im- 
plies the second equivalence. [] 

In general it is hard to determine which of the three cases in 
theorem 2 will obtain in a given market. Indeed, in view of the 
possible non-uniqueness of the futures equilibria, different cases may 
be consistent with the same underlying data. As we shall see below, 
however, when the number of speculators becomes large (s--* oo) 
this non-uniqueness vanishes and we can give sufficient conditions 
for the various cases in terms of the form of the stochastic depen- 
dence between the spot price on our market (4) and the spec- 
ulators' returns on other markets (r). 

Following L e h m a n n  (1966) we say that a pair of random vari- 
ables % Z :-O--* [R are positively (negatively) dependent if for all 

•2: 

P[~p _-<0qZ_-<fl}_->(<) P {~p_-<~} P{Z<fl} (4.3) 

with strict inequality for some (~,/3). It is readily shown that if 
(%Z) are positively dependent (negatively dependent), then (%f (Z)) 
are negatively dependent (positively dependent) if f is a decreasing 
function. Also if (% Z) are positively dependent (negatively depen- 
dent), then coy (%)5) > 0 ( < 0). Of course (~v, Z) are independent if 
and only if there is equality in (4.3) for all (~,/3) ~ ~2. 

In our model we say that (4, r) are positively dependent (etc.) 
if and only if (~b (y,-),  r(.)) are positively dependent (etc.) for all 
y _-> 0. We need the following lemma. 
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Lemma 6. There exists a unique output yO > 0 such that 

~opt (r (yo, .), c' (yo))= o. 

Thus the speculator's demand curve ~ (y) intersects the y-axis in 
exactly one point yO (see Fig. 2). 

Proo/. (See appendix.) 

Now let es=(p  8, qS, y~, z 8, ~s) denote an equilibrium on the 
futures market when there are s => 1 speculators (all endowed with 
the same r (~o), which is assumed not to depend on s. Such equilibria 
exist for all s, by theorem 1. To exclude some degenerate limits of 
little economic interest, the following assumption will be useful. 

Assumption 4. (i) z (yw) < 0 < z (yW), (ii) 8 (yu) > 0 > ~ (yU). 

Assumption 4 is not restrictive. It says simply that if the prices are 
so favorable for a seller of futures contracts that one side of the 
market is already willing to sell an infinite amount,  then the other 
side will also want to sell futures (possibly only in finite amount), 
rather than buy. A sufficient condition for assumption 4 (i) is that 
~ -<_~w, i. e., the producer is asymptotically less risk-averse, and a suf- 
ficient condition for assumption 4 (ii) is that ew < eu, i. e., the spec- 
ulators are asymptotically less risk-averse. Of course assumption 4 
is always satisfied in the special case where both types of traders 
have infinite asymptotic risk aversion. In remark 1 below we indi- 
cate briefly the limiting behaviour of the equilibrium when assump- 
tion 4 is violated. Our main result is the following. 

Theorem 3. Let assumptions 1, 2, 3, 4 (ii) be satisfied and let (eS), 
s = 1 , 2 , . . . ,  be a sequence of futures mart~et equilibria. Then 
for s--~oo, this sequence converges to the unique limit 

e = (p, q, y, z, ~) = (r (yo, .), c' (yo), yo ,  zopt (~ (yo, .), c' (yO)), O) 

where yO is as in lernma 6. Moreover, 

(i) Ep=q,  z = y = y  c iff. cov [w' (r), p] =0, 

(ii) Ep > q, z < y  <ye iff. cov [w' (r), p] <0, 

(iii) Ep < q, ye < y < z iff. coy [w' (r), p] > O. 

A sufficient condition for Case (i) [resp. (ii), resp. (iii)] is that 
(r r) are independent [resp. positively dependent, resp. negatively 
dependent]. 



On the Qualitative Properties of Futures Market Equilibrium 245 

Proof. From the proof of theorem 1, for each s, an equilibrium 
es=(ps, qS, yS, zS, ~) is given by the intersection y* of the curves 
s~" (y) and z (y), as shown in Fig. 3. More precisely, p*=4 @8, .), 

q" =c" (y~), z ' = z  ~ (PL q'), ~" = 1 , ~- z .  By lemma 6 each curve s8 (y) 

intersects the y-axis only once at y0. Assumption 4 (ii) implies that 

y~ < y0 < y~. 

Therefore z (y) remains bounded in a neighborhood of y0. As s--*oo 
the curves s~ (y) approach the vertical line through y0, so that 
yS__~y0. This proves the first part of the theorem. 

To verify the rest, note that for s--*oo: ~s--~0, hence / / (~s ,  r = 
~8 (p (to) - q )  + r  (co) --*r (co), hence (by lemma 5) 

coy {w' (r (,o)), p (o,)} 
Ep8 _q8 _ . _  Ew' (r (~o)) 

The function w' is always positive and decreasing, hence coy {w" (r), 
p} > 0 ( < 0) if (p, r) are negatively (positively) dependent. The desir- 
ed result now follows from theorem 2. [] 

0 

45) zero,) sr z/y) 

/ 

Fig. 3 

Intuitively, when the number of speculators is large, market 
clearing implies that each one of them trades only little on the 
futures market. The "idiosyncratic risk" (due to the spot price 
variability per se) is then diversified away (it vanishes to the second 
order), and the speculators are concerned only with the "covariance 

17 Journal of Economics, Vol. 46, No. 3 
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risk" stemming from the correlation between the spot price p and 
their other returns r. If this correlation is positive, then buying 
futures increases the variability of the speculator's total portfolio. 
To compensate for this he requires a positive expected profit from 
buying futures, i. e., backwardation (q < Ep). Conversely if the cor- 
relation is negative, then buying futures decreases the variability of 
the speculator's total portfolio. The speculator is prepared to pay 
for this risk reduction by accepting an expected loss (q > Ep). When 
the spot price and other returns r are independent, then the futures 
price is unbiased. In this case the spot market price risk is car- 
ried by the speculators at no charge. The bias in the futures price q 
is thus independent of the agents' attitudes towards risk. 

If a speculator adds a small investment ~ to his portfolio r, his 
utility in state to changes by (up to a first-order approximation) 

w (~ (p (to) - q) + r (to)) - w (r (to)) = ~ (p (to) - q) w' (r (to)) 

and his expected utility changes by 

CEp [p (to)-q] w' (r (to))= r [coy {p, w" (r)}+(Ep-q) Ew" (r)]. 

The term in square brackets is the expected utility gain from a small 
unit investment, which must be zero at equilibrium. For example 
if (p, r) are positively dependent, then coy (p, w' (r)} < 0, and E p - q  
must be positive. 

In a different context the results of theorem 3 for futures mar- 
kets may be compared to the Arrow-Lind theorem (see A r r o w -  
L ind  (1970)) and its generalisation (see M a g i l l  (1984)) for the 
valuation of public goods. The independent case (theorem 3 (i)) 
corresponds to the original Arrow-Lind result by which a risky 
public project spread amongst many individuals is valued at its 
expected value. 

Rernarl~ 1: Theorem 3 implies, that the futures equilibrium for large 
numbers of speculators is unique, even though for small numbers 
of speculators there may be more than one futures equilibrium (cf. 
also Th. 4 below). The reason for this is twofold: first, in the limit, 
each individual speculator's optimal trade ~ must go to zero; sec- 
ond, by Lemma 6, there is only one output level y=yO at which 
the associated prices 9 (y), c' (y) induce the speculator not to trade 
in futures. 

Remark 2: To see what happens if Assumption 4 (ii) is violated 
imagine for example that r (yU)> 0. Then the speculators are so 
eager to buy (rather then sell) futures contracts - -  due presumably 
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to very strong negative correlation between their other income 
r (co) and the price p (co) - -  that they are willing to do so even at 
terms sufficiently unfavorable to them so as to induce the other 
side (the producer) to supply an infinite amount of such contracts, 
namely at the prices (pu, qU)= (4 (yU, .), c" (y~)). Of course Ep u < q~. 
In such an implausible case, as the number of speculators increases, 
prices would converge to (pu, q~), output to y~ and the producer's 
supply of futures contracts would go to infinity. Assumption 4 (ii) 
excludes such a possibility. 

As a final exercise let us ask what happens when the number 
of speculators, s, becomes very small. Noting that nothing in the 
preceding analysis depended on s being an integer, we now treat 
it as a positive real number and let s-*0. This means simply that 
at all prices (p, q) the aggregate demand of speculators for futures 
contracts, s~ ~ (p, q) will become smaller and smaller (provided it 
is finite). Intuitively, the speculators will then "disappear" from the 
market and one would expect the futures market equilibrium to 
converge to a pure spot-market equilibrium as defined below. 

Definition 2. (p, y) e L • R § is a spot-marl~et equilibrium (without 
futures trading) if (i) Eu (p (~o) y - c  (y)) = max, given p, (ii) p (0)) = 

Thus (i) the producer chooses his output y => 0 so as to maximise 
his expected utility, given the prices p ( . )  and (ii) the spot mar- 
ket clears. 

Lemma 7. Under assumptions 1 and 2 (i) a spot marl~et equilibrium 
(p, y) exists (ii) 0 < y < yC for any spot marl~et equilibrium. 

The spot-market equilibrium need not be unique; the set of all 
spot-market equilibrium outputs is denoted by 

Y = {y => 0 ] (p, y) is a spot-market equilibrium for some p ~ L} 

Lemma 8. y ~ Y ~ z (y) = O. 

Thus the spot market equilibrium outputs y are characterised by 
the property that at the associated prices (p~, qv)-~ (4 (Y, "), c" (y)) 
the producer would not want to trade on the futures market. We 
make the "generic" assumption 

Assumption 5. The curve z (y) intersects the horizontal axis trans- 
versaUy at all y ~ Y. 

By theorem 1 for any number of speculators s > 0 at least one 
futures equilibrium e 8 (ps, qS, y8 zs, ~,) exists. Denote the set of all 

17" 
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equilibria by E 8, and the corresponding set of equilibrium outputs by 

y 8  = proja  E 8 (s > 0) .  

Theorem 4. Let assumptions 1, 2, 3, 4 (ii), 5 be satisfied and let y8 
be the set o/[utures equilibrium outputs for s > O. Then 

lira Y~ = Y n (yw, yW). 
$--*0 

Proof. By lemma 8 the set Y of spot market equilibria is given by 
the intersection points of the z (y)-curve with the horizontal axis. 
By assumption 5 these intersection points are discretely spaced, and 
by assumption 4 (i) Yn(yw, yW) ~0, yw, yW ~ y. From the proof of 
theorem 1 for all s > 0, the set 378 of futures equilibria is given by 
the intersection points between the curves z (y) and s~ (y). As s--*0 
the curve sr (y) approaches the horizontal axis in the interval 
(yw, yW) (remaining "infinite" elsewhere). It is geometrically obvi- 
ous that the set ys converges to Yrn (yw, yW), cf. Fig. 4. [] 

/ 

l /r 

Fig. 4 

5. Appendix 
Proof o/Lemma 1. 

By assumption 2 (i) for y =0, the spot price is higher than the 
marginal production cost with certainty, hence y =0 cannot be an 
equilibrium. Let y > 0 be an equilibrium output and define 

f (e) = U (y + e, z + e). 
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For e sufficiently small this is well-defined; moreover  [" (0)=0.  
We have 

[" (~)=Eu" (.) (p (co)-c" ( y + e ) + q - p  (co)) 

=~ ['  (o)=Eu" (.) (q-c' (y))=0. 

Since u '>O,  this implies q=c" (y), as asserted. [] 

Vroo[ o[ Lemma 2. 

We prove first (ii). Let y > O, (p, q) = (py, qy) = (4 (Y,'), c' (y)), 

(p (co)-q), B= S ( q - P  (co)), [ (Y) = B ,  and denote by ~ (y) A =  I 
p>q p<q 

the speculator's optimal trade given (p, q ) =  (p~, q~). Clearly if A = 0  
then ~ ( y ) = -  ov and if B = 0 ,  then ~ (y)= oo. Assume therefore 
A > 0, B > 0 and consider W" (8) = Ew" [~ (p (co) - q) + r (co)] (p (co) - q). 
Since W' (0 is continuous and strictly decreasing in r it suffices 
to show that  

W ' ( r  for r (A.1) 

W' (0 --+- B w'  (oo) + A w'  ( - oo) for ~--+- oo. (A.2) 

To  prove (A.1) write 

W" (r = - B 1  (0 +A1 (0 
where  

B1 (~) = j" w'  [8 (p (co) - q )  + r  (co)] ( q - p  (co)), 
P<q 

A1 (~) = 5 w'  [r (p (co) - q) + r (co)] (p (co) - q). 
lv>q 

Using the strict concavity of w we have, for all r e R ,  co e s 

w" ( -  oo) > w'  [~ (p (co) - q )  + r  (co)] > w" (oo) ->_0. 

Therefore B1 (~) < w'  ( - m) B. Moreover ,  

Bl" ( ~ ) = -  j" w'" (.) ( q - p  (co))2>0. 
P<q 

Now,  using the boundedness assumptions on p, r, it is not  difficult 
to see that  

B1 (r --~ w'  ( - m) B for r oo 

(even when  w'  ( -  oo) = oo. Similarly, 

A1 ( O - + w '  (m) A for r 
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This proves (A.1), (A.2) can be proved similarly, which establishes 
assertion (ii). An analogous argument proves (i). The remaining 
assertions are easy to check; for example 

z (y) --*oo for f (y) -*~, etc. [] 

Proof of Lemma 4. 
Let (p, q, y, z, ~) be an equilibrium and define A=A (y), B =B (y) 

as in Lemma 2. By definition 

a = A - B = E p - q  I 2A=a+b[ B b-a 
b=A+B=E]p-q] [ ~ 2 B = b - a J  ~ A -- b+a (A.3) 

By lemma 2 

max ~-, ~- < -~ < min (e, fl). 

Putting ~= min (Ou, ~w) and noting that ~u=oc-1, Ow=fl-1, we can 
rewrite this as 

1 B 
o+---T < X <e +1 

or using (A.3) 

This implies 
b + a < ( e + l )  (b-a) < ( e + l )  2 (b+a). 

0 eb>(e+2)a>-eb or ]al< e--~b. 

From this the assertion of the lemma follows easily, using the 
triangle inequality 

b=E]p-ql<Elp-Epl+[Ep-q]=(rp+]a].  [] 

Proof of Lemma 5. 
We prove only (ii), the proof of (i) being analogous. The first- 

order condition for utility maximisation for a speculator can be 
written 

0 = W' (r = E w' (//) (p (co) - q) = E w' (//) (p (co) - 

- E p +  Ep-q)  = c o v  (w', p) +(Ep-q) Ew'. 

This implies the second equality in (ii); for the first use (4.1) to 
write the first-order condition as follows 

0 = w '  (EII-Aw) (Ep-q-Agw). 

Since w' >0  by assumption, this implies E p - q  =Ag w. [] 
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Proof of Lemma 6. 
For any y ~ (yw, yW), ~=r  (y) =~opt (r (y, .), c' (y)) is the unique 

solution of the equation 

[ (r  [~ (r (y, co)-c" (y)) + r  (co)] (r (y, co)-c '  (y)) =0. 

We have 
f~ (r y) = E w "  (.) (~-c')~ <o, 

fy (r y) = E w'" (.) r ( r  c") ( r  c') + w" (.) ( r  c"). 

In particular for r fu (0, y)=Ew" ( . ) (r  by assump- 
tions 1, 2. Therefore whenever r162  (y)=0, 

ar f~ 
dy = - - ~  <0, i. e. 

the curve ~ = ~ (y) intersects the horizontal axis always from above, 
hence in exactly one point y0, yw < y0 < yW (cf. lemma 2). [] 

Proof of Lemma 7. 

(i) For y > 0 define 

h (y)=Eu" (r (y,o) y - c  (y)) (r (y, co)-c' (y)). 

By assumptions 1, 2, h (0) > 0 and b (y) < 0 for y sufficiently large. 
Therefore there exists y > 0  such that h (y)=0. With p = r  (y, .) 
this is a spot market equilibrium. 

(ii) Let (p, y) be a spot market equilibrium. Then 

0 = h  (y) <Eu" (py-c)  (p-c')  = cov{u', p}+(Ep-c ' )  Eu'. (A.5) 

Recalling the function g (y) = r  (y) - c' (y) defined in (4.2) we also 
have 

E p - c ' =  g (y). 

coy (u', p} > 0 since u' is downward By (A.5) this implies g (y)= Eu' 
sloping. Since by definition g (yC) = 0 and g is also downward slop- 
ing, we must have y < ye. [] 

Proof of Lemma 8. 
The producer's expected utility is (d. (2.3)) 

u (y, z) =Eu [p (~o) y - c  (y) +z ( q - p  (o))] 
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with partial derivatives 

Uy=Eu" (.) (p (o,)-c' (y)), U~=Eu" (.) (q-p  (o,)). 

Therefore Uu = -Uz  for q = c' (y). Now if y e Y, we must have 

Uy (y, O) =0 where p =r  (y, .). 

With q=c" (y) this implies Uz (y, O) =0, i. e., z (y) =0. Conversely, 
if z (y) =0, then Uz (y, O) =0, where (p, q) =(r  (y, .), c' (y)). Again 
this implies Uv (y, O) = O, i. e., y ~ Y. [] 
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