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1. INTRODUCTION

This paper continues the earlier studies [17, 18| whose object was to
develop an abstract framework for the analysis of problems of resource
allocation in continuous time over an infinite horizon. These papers gave
conditions on the preferences and technology sufficient to guarantee the
existence of an optimal program. In this paper I shall provide an answer to
the following question. What strengthening of these conditions guarantees the
existence of supporting prices?

I pose the problem of resource allocation as a convex programming
problem in a suitable infinite dimensional space (Section 2). A convex
programming problem is characterised by a family of preferred sets induced
by a utility function U and a technologically feasible set .#. Such a
framework is not confined to the analysis of an economy with a single
representative agent. If the economy consists of a finite number of
consumers, with preference orderings representable by concave increasing
utility functions (U,,.., U;), and a finite number of producers, with
technology sets (#,...,.#,,), then we may let U = ZI’;I a,;U;, where a; = 0,
YF,a;=1, and # =37, #. Suppose now that the existence of an
optimal program and an associated supporting price is established for each
parameter value a in the simplex. Under certain conditions (see e.g.,
Section 5, Theorem 5.15) such a pair leads to an equilibrium with transfer
payments. A fixed point argument involving the parameter o and the transfer
payments can then be added to ensure the existence of a competitive
equilibrium [6, 16, 20]. In this way an equilibrium (allocation-price) emerges
as an optimal program and an associated supporting price for a particular
parameter value in a family of convex programming problems.

When the problem of resource allocation ceases to be finite dimensional,
an essential step in the analysis is the choice of an appropriate program
(commodity) space. In [17] I considered a weighted version of the space of
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i_ebesgue integrable functions (&}'") where the weight v is determined by the
rate at which technologically feasible programs can grow over the infinite
horizon. In this paper I shall consider the subspace W!"c ¥!" of
absolutely continuous functions x for which both x and its derivative X lie in
L If P denotes a weighted version of the space of bounded
measurable functions, then prices will be chosen from the subspace W'
consisting of the absolutely continuous functions p for which both p and its
derivative p lie in <. Such a choice of price-quantity spaces allows one to
both price programs over an infinite horizon and cope with the special
relation (absolute continuity) that exists between stocks and flows in a
continuous time analysis. These two spaces have the further important
property that a certain adjoint relation (integration by parts and the
transversality condition) is valid (Section 3).

In the classical theorem of welfare economics of Arrow and Debreu
|8, Theorem 2|, if the technologically feasible set has a nonempty interior,
then the existence of prices follows directly from a separation theorem. The
feasible set .# for the convex programming problem of Section2 has
however a more complex structure. Thus, while a separation theorem can be
applied to obtain the existence of prices, a direct application of such a
theorem by failing to take into account the linear operations involved in the
construction of the feasible set fails to reveal the important induced adjoint
relation between the prices. These linear operator relations between the quan-
tities and the induced adjoint operator relations between the prices are basic
to the content of the true support price relation, the Euler—-Lagrange
inclusion (¥ in Section 4). Thus, a different approach is required.

When the sets that characterise the utility function U and the technology
set # are closed convex sets, a useful general framework has emerged from
the work of Rockafellar [10, Chapter III]. The approach involves the
analysis of a family of perturbations of the original problem. A certain
marginal function is introduced whose superdifferentiability at the origin is
equivalent to the existence of supporting prices (Theorem 4.7). The standard
criterion for the superdifferentiability of the marginal function is the Slater
condition [10, Eq. 5.24]. In Section 4 I give a natural generalisation of this
condition applicable to the convex programming problem of Section 2
{Theorem 4.10). This leads to the basic criterion for the existence of prices,
that the feasible set be nonempty under a family of perturbations
(Theorem 4.11). It is easy to see that this criterion includes the usual
constraint qualification condition in the standard Kuhn-Tucker theorem |10,
Theorem 5.2].

In Section 5 the results of Sections 2—4 are applied to establish the
existence of supporting prices for a continuous time infinite horizon
economy. The technology and preferences are assumed to be representable
by integral functionals along the lines of [17]. I show that if the technology
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and preferences are regular and satisfy compatible growth conditions, then
there exists an optimal program (Theorem 5.12(i)). If in addition the
technology has a property of separability and if consumption and investment
are bounded below on an optimal path, then there exists a supporting price
(Theorem 5.12(ii)). The existence of an equilibrium with transfer payments,
in an economy with a finite number of agents, is established in
Theorem 5.15. As noted in Remark 5.18, by supplementing this result with
an appropriate fixed point argument we obtain the existence of a competitive
equilibrium. It then follows from Theorem 5.12(iii) that the resulting
equilibrium (allocation-price) may be characterised as a solution of the local
Hamiltonian inclusions (H, T). An objective sought by Cass and Shell [7] of
writing the equilibrium of a competitive dynamical system as the solution of
a system of Hamiltonian equations is thus attained.

The paper concludes in Section 6 with two simple applications of the
results of Section 5. In the first example feasible programs are bounded; in
the second example feasible programs are unbounded and capable of growth
at a positive exponential rate.

Existence and duality in infinite dimensional spaces have been treated
extensively in the literature. A useful background is provided by Chap-
ters I-III of Ekeland and Teman [10]. In Section 4, I assume that the reader
is familiar with two important results: first, the way in which a family of
perturbations of the problem (%) leads via the theory of conjugate convex
Sfunctions to the associated dual problem (°*); second, the way in which the
Fenchel conjugacy relation (.#7) between (#') and (7**) leads via the
marginal function (4.5) to the basic criterion for the existence of supporting
prices (Theorem 4.7). These results are given in [10, Chapter III].

A systematic treatment of existence and duality for a closely related class
of problems in the finite horizon case has been given by Rockafellar [22].
This paper has been strongly influenced by the results of Aubin—Clarke [3]
which also treats convex programming problems in which the utility function
U is not necessarily convex. At the time that this paper was completed the
results of Araujo-Scheinkman [1] came to my notice. They give conditions
for a related class of problems for the existence of prices, when the program
space is the space of bounded measurable functions, and hence provide a
natural link with the work of Bewley [5].

2. ABSTRACT FORM OF RESOURCE ALLOCATION PROBLEM

The class of resource allocation problems that I shall consider can be
reduced to a convex programming problem in a suitable infinite dimensional
space. Let (Z, W) denote Banach spaces, where W a dense subset of Z
denotes the program space. 1 assume that choice among programs is
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determined by a preference ordering > which is representable by a utility
function U(-) satisfying
AssuMpTIiON 1. U(-): Z - (—o0, 00) is a continuous concave function.

To characterise the technology I introduce two additional Banach spaces
(V, Q), two feasible subsets &/ — Z, # < Q, and a technology correspon-
dence G(-): Z - V with graph ¥ = {(z, ¥)| y € G(z)} satisfying

ASSUMPTION 2. 7, #, and ¥ are closed convex sets and
domG={z€Z|G(2)+ @} >« .

I introduce a differential operator L and a boundary operator A and let
Az=(Lz,Az} for z€ W. Let ¥(W,V) denote the continuous linear
operators from Wto V.

AssuMPTION 3. L e X (W, V), L€ (W, Q).
If I introduce the correspondence K(-): Z —» ¥ X Q defined by
K(z)=G(z) X . %, zeZ, (2.1)
then the set of rechnologically feasible programs # will be given by
F={ze|0€K(z)—Az}. (2.2)

2.1 DEeFINITION. I say that (U, #) are regular if Assumptions 1-3 are
satisfied.

2.2 DEFINITION. A program Z € # that solves the problem
sup U(z) (7)
ze ¥

will be called an optimal program.

3. PRICE-QUANTITY SPACES AND LINEAR OPERATORS

In this section I shall begin to reduce the abstract problem of the previous
section to a more concrete form. I shall introduce the infinite dimensional
spaces appropriate for the analysis of problems of resource allocation in
continuous time over an infinite horizon.

Let #"=_#(0, 0;R") denote the space of Lebesgue measurable
functions defined on [0, co) with values in R", n= 1. I shall be concerned
with certain linear subspaces of .#".
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3.1 DerFINITION. A function y € # satisfying 0 < y(f) < oo a.e. will be
called a growth function. A function v € # satisfying

0<vr)< oo ae., Jvmm<w
]

will be called a density function for [0, c0). Let y be a growth function. I say
that v is a density function relative to y if v is a density function satisfying

[ w0y di < co.

Let y be a growth function (to be determined in the subsequent analysis)
and let v be a density function relative to y. For the guantities I am led to
consider the following weighted space of Lebesgue integrable functions

L= xE 4" ||x||,="0 %) v(e) dt < 00!

For x € " we can define its distributional derivative % |27, p. 49| and we
are led to consider the space

Whn= (x€ P\ ie L.

It is readily shown that this space coincides with the space of absolurely
continuous functions x € ¥#!'" whose derivative % also lies in #['" |25,
Theorem III, p. 55]. W!" is a Banach space under the norm

Il = [ QX + 10 v(0) . (3.1)

For the prices I consider the following weighted space of essentially bounded
measurable functions

(X)Il 3p€/’l

I 2l = ess sup ( Ilp(t)ll < o

where  €ss SUPy (oo | P(O)| = inf{a € R | A(¢| || p(2)l| > @) =0}, where A(A)
denotes the Lebesgue measure of the set A. For p € ¥ 2" we can define its
distributional derivative p and are thus led to consider the space

Wol={pEL RN pEL VY
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which is a Banach space under the norm

Pl = ess sup = (IIP(t)II + 1 OID-

WX is just the space of absolutely continuous functions p € ¥ whose
derivative p also lies in ¥ 2. For x € " and p € ¥/ 1 define the
scalar product

()= plo)x)ds

noting that

I(P,X>l<| IIPI)II !IX(f)II v(e)dt <[ pllas [l *lly < oo

The following lemma on integration by parts is basic to the analysis that
follows.

3.1 LemMa. Ifx€ Wi p€ WR then (i) lim,, , p(t) x(t) = 0 and (ii)
J& p(e) X(8) dt + & () x(r) dt + p(0) x(0) = 0.

Proof. Since x € Wi, p€ W', we have

|0°C |p() x(D)|dt = || pllo lIx]l; < o0 62)

~00

L o) x(0) {dtg 1Bl [0 + 1Pl 121 < 00 (3.3)

Equation (3.2) implies p(¢) x(t) - n as ¢t —» oo for some n € R; (3.3) implies
n=0. Since x and p are absolutely continuous, the function ¢ defined by
¢(t) = p(t) x(t) a.e. is absolutely continuous. Thus by the theorem on
absolutely continuous functions [24, Corollary 14, p. 107] for any 0 <<
n< oo, ¢(n)=¢(t) + [V ¢'(x)dr. Let ¢(t) = x10.0)(T) 9’ (), then (i) implies
0=9¢(s) + lim,,_ o, |{° ¢.(t) dr. Since ¢,(t)— ¢'(r)a.e. as n— oo and since
|6.(7)| < |4'(1)| a.e., (3.3) and the dominated convergence theorem [24,
Theorem 15, p. 88] imply lim, [ ¢.(t)dr =[P ¢'(r)dr so that ¢(t)=
— [® ¢'(r) dz, YVt € [0, o). (ii) follows with r=0.

I am led to consider the following choice of spaces for the problem in
Section 2. For integers n=2 1, m=>0

Z=glmm W=WLhx el V=2 Q=R (3.4)
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I let z = (x, ¢) where x is a path of stocks of n capital goods and c is a path
denoting consumption and other flow activity for m commodities. The
differential operator L and the boundary operator A are defined by

Lz= % (x)=x, Az = x(0), Vz=(x,c)E W, (3.5)
where X is the path of investment associated with x and x(0) is its associated
vector of initial stocks.

We need to find a pair of linear operators suitable for characterising a
dual problem from which supporting prices will emerge. To this end we
recall that the domain of the adjoint of a differential operator depends
crucially on the choice of the domain for the differential operator
[9, p. 1223]. With this in mind we are led to consider the subspace of W
defined by

Wy={z€ W|lz =0} =ker 4,

namely, the kernel of 1. Noting that W is dense in Z, we form the adjoint
L} of the restriction of L to W,, Lyz= Lz, Yz € W,. By definition

(P, Lyz)=(L§p, z), VzeW,,

where L is well defined since W is dense in Z [9, p. 1188]. It is easy to
check that
Lip=(=p0), LF€z (W)

3.2 DEfINITION. Let L € (W, V), A € (W, Q), and let W be dense in
Z. We say that the spaces (Z, W, V, Q) and the linear operators (L, 1)
satisfy the adjoint relation (#) if there exists a unique linear operator
n € L(Y, @*) such that

(p,Lz) + (—L¥p,z) + {(mp,Az) =0, YZEW, VpeY, (#)

where Ly € £(Y, Z*) is the adjoint of the restriction of L to the kernel of A
and Y={pE V*|L¥p € Z*|.

3.3 Remark. Lemma 3.1 implies that the spaces (3.4) and the linear
operators (3.5) satisfy the adjoint relation (#) with

np = p(0), e (Y, R"), Y=Wwxl

(—Lg, m) is the pair of linear operators in terms of which the dual problem
(-2°*) will be formulated, just as (L, A) is the pair of linear operators used to
formulate problem (.7°).
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It is convenient to let {( , )) denote the natural scalar product on
(Z* X V* X @*) X (Z X VX Q). If we define

B(z)=(z,Lz,Az),  y(p)=(—L{p, p, p), (3.6)

then the adjoint relation (%) may be written as

&(p)B)H=0, VzEW, VpEY. (#)

This is the basic scalar product between prices and quantities in the analysis
that follows.

3.4 Remark. The adjoint relation (#) can be established for more
general linear operators and spaces. For example if A is surjective and ker A
is dense in Z (the so-called trace property) and if the spaces (Z, W, V, Q) are
appropriate Hilbert (Sobolev) spaces, then (%) is satisfied |14, Theorem 2.1,
p- 114; 2, Theorem 1, p. 484]. The adjoint relation (#) forms the key to the
abstract approach to partial differential equations developed by Lions and
others {14, 15].

4. EXISTENCE OF SUPPORTING PRICE

In this section I assume that the spaces (Z, W, V,Q) and the linear
operators (L, 4) satisfy the adjoint relation (#). To establish the existence of
a supporting price I shall use the theory of pricing based on the concept of
conjugate convex functions. To this end I reduce the convex programming
problem (') to an unconstrained maximum problem in terms of a single
function F. Let the function

F(-}:2ZXVXQ—> |00, ™)
be defined by

F(P)=F(y1, Y2, y3) =U(y) + (¥, 3:) + Yo 01) + ¥ o ¥s3)s
if yyew

=—w, if y &W, (4.1)

where & = {(y,, ¥,) | ¥, € G(y,)} denotes the graph of G(-), and W(-),
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¥ _(-), and W4(-) are the indicator functions of ¥, =/, and .# respectively,
the indicator function of a subset S of a space X being defined by

Y.(x)=0, if xes
= —c0, if x&8.

If we use the notation (3.6), then (4.1) implies that F(3(z)) is defined on Z
and Z is an optimal program if and only if

F(B(2)) = @ = sup F(B()) = sup F(A(2)) )

The existence of a supporting price will be obtained by introducing a dual
function defined as follows.

4.1 DeFINITION. The function F*(.): Z* X V* X @* - [-o0, o)
defined by

* — 1 — ’ E—
Fr@= _jnof [K~4.y)—F()]
will be called the concave dual of F(-).

4.2 DEefFINITION. If § & dom F, then the subset
F(P)={GEZ* X V* X Q*|F(»)—F(N=(g y— F)Vy€ZXVXQ}

is called the superdifferential of F at . F is said to be superdifferentiable at j
if OF(7) # .

4.3 Remark. It follows from Definitions 4.1 and 4.2 that
—J € oF(7) if and only if 7 maximises F(y)+ (@, »));
furthermore,
—GEGF(y) ifandonly if FX@+F(p)=(-4¢F) (42)

Since F*(.) is defined on Z* X V* X @*, the function F*(y(p)) is defined
on Y={p&V*|L,p* € Z*}. Consider the problem of finding p € Y such
that

F*0(P) = o™ = sup FX((p)): (%)
By the definition of F*(-),

F*(y(p)) + F(B(z)) = {—¥(p) B(2)), VZEW, VpEY. (1)
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), (#), (#), and (#*) imply
w*+wz0.
4.4 DEFINITION. p € Y satisfying (i) F*((p)) = w* and (i) w* + 0w =0
will be called a supporting price.

If we define F*(y(p)) = —oo for p € V*\Y, then (.#*) becomes
w* = sup F*(y(p))= sup F*((p)). (7*)

4.5 Remark. 1t follows from (4.2) that 7 is an optimal program and p is
a supporting price if and only if

—¥(P) € oF(B(2)). (&)

[ shall now imbed problem (#*} into a family of perturbed problems along
the lines of Rockafellar’s approach to duality theory |10, Chapter 1II]. The
key step is the introduction of the following function.

4.6 DEFINITION. The function a(-): ¥ X Q » [—0, o] defined by
a(é) =sup F(z,Az + &),
zeZ
where Az = (Lz, Az) is called the marginal function.

The principal result of Rockafellar’s abstract approach to the problem of
pricing is the following equivalence criterion. The proof given by Ekeland
and Temam |10, Proposition 2.2, p.51] is readily adapted to the present
context. A related result was obtained by Gale [11, Theorem 2, p. 23].

4.7 THEOREM. Let the spaces (Z, W,V,Q) and the linear operators
(L, 1) satisfy the adjoint relation (#). If F(:): ZX VX Q— |-, ©) is a
concave, upper semicontinuous function, then there exists a supporting price
if and only if the marginal function is superdifferentiable at ¢ = 0.

[ shall derive a sufficient condition for the superdifferentiability of the
marginal function by forming a perturbation of the feasible set .# in (2.2).
4.8 DEFINITION. For {€ V X Q let
Fr={ze W | L€ K(z) — Az},

1 shall say that the feasible set # is nonempty under perturbations if there
exists a sphere S, (0) of radius # > 0 about the origin in ¥ X Q such that

F @, VEES,(0) (+)
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The following condition for the lower semicontinuity of a correspondence is
of basic importance. The result is due to Ursescu [26] and Robinson [21; 2,
Theorem 1, p. 546].

4.9 THEOREM. Ler X and Y be Banach spaces, R: X — Y a correspon-
dence whose graph is a closed-convex subset of X X Y. If Intdom R~ ' # &,
then R™'(y) is lower semicontinuous for all y € Intdom R ™',

This result leads directly to the following condition for the superdifferen-
tiability of the marginal function.

4.10 THEOREM. If (U, *) are regular and # is nonempty under pertur-
bations, then the marginal function is superdifferentiable at £ = 0.

Proof. Consider the correspondence R(-): W — V X Q defined by

R(z)=K(z) — Az, if zew
=, if z&..

Clearly, #,=R~'({). By Assumptions 2 and 3 the graph of R is a closed
convex subset of W X V' x Q. Since W, V, and Q are Banach spaces and
since (%) holds, by Theorem 4.9 R ~'(¢) is lower semicontinuous for all
£€ §,(0). Since a(f) =sup,z-1p U(z) and since by Assumption [ U(:) is
continuous, by the maximum theorem [4, Theorem 1, p. 115] (&) is lower
semicontinuous for all £ € §,(0). Since by Assumption 1 U(-) is concave and
since R has a convex graph, a(f) is concave. It follows that a(¢) is
continuous for all {€ §,(0). Thus by a standard result on superdifferen-
tiability [10, Proposition 5.2, p. 22] da(0)# 2. 1}

Combining Theorems 4.7, 4.10, and Remark 4.5 yields the following.

4.11 THEOREM. Let the spaces (Z, W, V, Q) and the linear operators
(L, A) satisfy the adjoint relation (#). If (U, ) are regular and * is
nonempty under perturbations, then there exists a supporting price pE Y. If
ZE W is an optimal program, then the pair (Z, p) satisfies the global
Euler-Lagrange inclusion

—)(P) € OF(B(2))- (&)

4.12 Remark. (&) is the infinite dimensional version of the familiar
Euler—Lagrange inclusion, which reduces to (E) in Section 5 when the spaces
and linear operators are given by (3.4) and (3.5). (£) can be expressed in a
variety of equivalent ways. A form that is useful for the qualitative analysis
of the equilibrium pair (Z, p) is the Hamiltonian form. A variant of this form
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that reveals the role of the functions and sets that underlie (.7°) is obtained as
follows. We introduce the return function ®: Z X Y — [—o0. o) defined by

Pz, p)= sup {p.v). (4.3)

@ is concave in z and convex in p. Since the superdifferential of the indicator
function ¥g(x): X -» [—00,0] of a convex subset S of a Banach space X is
the normal cone to S at x,

O¥s(x) =Ns(x)={g € X*| (9. {—x)2 0,V E S}

and since —(r, p) € 0¥¢(z,v) if and only if r€ —0. ®(z, p), v € 3,P(z, p),
where g, @(z, p) denotes the subdifferential of @ with respect to p, applying
the theorem for the superdifferential of a sum of functions [10,
Proposition 5.6, p. 26| yields the following.

4.13 PROPOSITION. If the pair (Z, p)€E W XY satisfies the global
Euler-Lagrange inclusion (&), then it satisfies the global Hamiltonian
inclusions

LFp€ 0, P(2, p)+8U(Z) + N A2)
Lz€3,0(z, p) #)

5. PRICING PROGRAMS OVER AN INFINITE HORIZON

I shall now consider the abstract problem of resource allocation in the
framework of continuous time over an infinite horizon. The technology and
preferences will be characterised by integral functionals along the lines
developed in |17, 18]. I shall show that the resulting problem can be posed
as a special case of the convex programming problem studied in Sections 2
and 4, the basic Banach spaces and linear operators being those studied in
Section 3.

I consider the economic activity of an economy over an infinite horizon.
At each instant ¢ € [0, o0) a vector of stocks x(t) = (x,()... x, (1)) of 2= 1
capital goods is used to produce a flow output c(¢t) = (c,(t),.... c,(¢t)) of
consumption and x(t) = (%,(¢),..., X,(t}) of investment. It is convenient to let

z(t) = (x(t), c(1)), t € [0, ).

I shall follow the ideas in [17] first constructing a feasible set of programs
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and then choosing a program space W that reflects the maximum growth
capacity of these programs.

5.1 DEFINITION. A technology correspondence I'(t): [0, c0)— R*" is a set
of triples (x, w, {) giving the consumption-investment flows (w, {) producible
with the stocks y at time ¢, I'(-) is said to be regular if it is a closed, convex
valued measurable correspondence.

5.2 DEeFINITION. For x, € R, let ¥ = {x€R" |x < x,} denote the set
of feasible initial conditions. Let % (x,) denote the set of paths
(x, ¢, X) €.#°", where x is absolutely continuous and

x(0)€.2.  (x(t), c(t), ¥(1)) EI(t) ae

Let D be a closed convex subset of R", and let A(#{)=D X R"ae., &' =
{z €.#7" | z(t) € A(¢) a.e.}. The set of technologically feasible paths is given
by

7 Ax) = {2 ) EF (x,) | z€.").

5.3 DEerINITION. 1 shall say that I' satisfies a growth condition if
(i) ¥ ,(x,) + @ and (ii) there exists a growth function y such that

12(0), (DI = 7(r) ae. V(2. X) € F (xo). (5.1)

If I" satisfies a growth condition with growth function y and if v is a
density function relative to y, then

Z Jxg)c
If we introduce the local indicator functions
w,: R*™ % [0, 00) - [~00, 0], wr: R*" X |0, 00) = |—00, 0]
defined by

ya(& 1)=0, if £€A(@) yr(n, 1) =0, if nerl)

a.c.
=—w, if EEA(), =—, if n&r()

and the global indicator functions
Wj{:y:,'zn—’ [—w, 0], W;:y'l,dn—' [—CD, O]

defined by

m@:f%#moa w@=f%@mnm (5.2)
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then

& =dom ¥, ¥ =dom ¥,.

Thus if we choose the program space

W=W."x£L" (5.3)

and let the spaces of investment and initiai conditions be given by

V=w1" Q=R" (5.4)

if the operator A: W — ¥V X Q is defined by

Az =(Lz,Az) = (¥, x(0)), Vzew (5.5)

then the set of technologically feasible programs # — W is given by

F=lz€X|z€ F,(z, L2)EFT = {z|(2,X)E Z ,(x,)}. (5.6)

5.4 Remark. 1t is clear that % is a closed convex subset of R". To show
that & < ¥!'*" and & < &!*" are closed convex sets we note that if 4(-)
and I'(-) are regular, then y,(-,?) and y,(-, ¢} are upper semicontinuous and
concave on R> and R3", respectively. A standard argument based on
Fatou’s lemma shows that ¥_(-) and ¥(-) are upper semicontinuous (in
the norm topology) on & !'*" and #|**", respectively, so that =/ and ¥ are
closed. The convexity of .« and ¥ follows from the concavity of ¥ (.) and
¥, (-). Thus Assumption 2 is satisfied. In view of the topology (3.1) on W'-"
it is clear that (L, 4) satisfy Assumption 3.

I shall use the following two properties to show that the feasible set .# is
nonempty under perturbations.

5.5 DEFINITION. The technology correspondence I” is separable if there
exists a correspondence f'(-) satisfying 0 € f(x, t), V(x, t) € D X |0, o), and
a <0 such that

r={xwdlo+l€ () ()20 a)} ae (5.7)

5.6 DEFINITION. If I’ is separable, a feasible program z is normal if
(c(0), X()) > (0, ax(¢)) a.e.

As in Section 2 I assume that choice among programs in W is determined
by a preference ordering > which is representable by a utility function U(-). 1



412 MICHAEL J. P, MAGILL

now make the additional assumption that U(-) is an integral functional
which depends only on consumption

U(e) = J': we(t), 1) dt. (5.8)

I shall invoke the following properties for the instantaneous utility function u.

5.7 DEFINITION. u(w,t): R" X [0, 00) > (—o0, o) is said to be regular if
u(-, t) is continuous and concave, dom u(-,t)=R" and u(w, -) € #, for all
t€ [0, 0) and w € R", respectively. u is said to be increasing if u(w’,t) >
u(w, t), if o' > w (w} > w,;, i=1,.,n)forall t € [0, ®).

5.8 DEFINITION. u satisfies a growth condition if

(i) there exists a density function ¢ such that

N0, ulw, 1) < u(t) Yw ER" a.e., (5.9)

(ii) — < lm u(0, 1) dt < oo. (5.10)

5.9 Remark. In Definitions 5.7 and 5.8 I assume that u(., ¢) is defined
on all of R", The extension of u(-,t) off the non-negative orthant of R"
allows U(-) to be defined on all of W, a property that plays an important
role in establishing the existence of prices. The essential economic restriction
on u is (5.9) which is a uniform bounded steepness condition of the type
considered by Gale [12,p. 7].

5.10 DerFINITION. 1 shall say that (u,I") satisfy compatible growth
conditions if (i) u and I each satisfy growth conditions, (ii) there exists § > 0
such that fu(s) < v(f) a.e., where v is a density function relative to y.

5.11 Remark. Consider the correspondence g induced by I' by the
definition { € g(y, w, ¢) if and only if (x, w, {) € I'(t) a.e. To express the local
version of the Euler—Lagrange inclusion (&) in Hamiltonian form I introduce
the local version of function (4.3), the return function ¢(& n.t): R*" X
[0, 0) — [0, 0) defined by

¢ n, )= sup nv. (5.11)

veglf.t)

5.12 THEOREM. Let the technology and preferences be represented by the
integral functionals (5.2) and (5.8).
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(i) If (u,I') are regular and satisfy compatible growth conditions,
then there exists an optimal program Z € W' " x £ 1",

(ii) If in addition x, € Int dom D, I is separable, u is increasing, and
Z is normal, then there exists a supporting price p € W', p(f) > 0 a.e.
(iii) The pair (Z, p) satisfies the local Hamiltonian inclusions

(—P(t), 0) € 8,9(2(1), PO), 1) + 0, u(E(2), ) + Np(X(r))

. . (H)
x(t) €0, 8(2(2), B(2). 1) ae.
and the transversality condition
lim p(¢) x(¢) =0. (T)
[ Sndv el

Progf. (i) Since u is regular, u is a normal concave integrand [23,
Theorem 2E, p. 176]. Since u satisfies the growth conditions (5.9) and
(5.10), and there exists A > 0 such that Au(¢) < v(t) a.e., U(-) defined by (5.8)
is continuous on #!'" in the norm topology [23, Theorem 3L, p. 204]. Since
the preferred sets {c | U(c) = U(c’)} are convex, the weak and strong closures
coincide {9, Theorem V.3.13, p. 422]. Thus the upper semicontinuity of U(-)
in the norm topology on &}'" implies the upper semicontinuity of U(-) in the
weak a(&1", £ 2" topology. Since I' is regular and satisfies a growth
condition, Proposition 7.5 in [17] implies that the set {(c,x)|(x,c,X)€E
Z ,(x,)} is weakly compact. Thus the projection € = {c| (x, ¢, X) € ¥ x,)}
is weakly compact and (i) follows.

(i) Since Assumption 1, and by Remark 5.4, Assumptions 2 and 3 are
satisfied, (U, #) are regular. Since the spaces and linear operators
(5.3)-(5.5) satisfy the adjoint relation (), to apply Theorem 4.11 it remains
to show that # is nonempty under perturbations. We need to find >0
such that for all £€ §,(0)c £"" X R" there exists z € & satisfying Az €
K(z) — & In view of the separability of I, if &= ({, 8), this is equivalent to
showing that the differential inclusion

X(0) € f(x(0), 1) —e(r) — &(1)

(5.12)
x(t)ED ae, x(0)e #—0

has a solution x & W," for all ({,6)€ S,(0). Since Z is normal, Z is an
optimal program for the technology set (5.7) if the lower bounds on
consumption and investment are removed. For this modified technology set
we may choose c € ¥ ,‘J'" and in particular ¢ = —{. Since x, € Int D, there
exists # > 0 such that x,— 8 € D for all § € R" such that ||8]] < #. By the
separability of I, 0€ f(x,t) for all (x,¢{)€ D X [0,00) Thus x(¢)=
x,—Bae. is a solution of (5.12) for all £€ S, (0). Since x € W,", .F is

409/88/2-7
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nonempty under perturbations. By Theorem 4.11 there exists a supporting
price g€ W2y
(iii) Let H(-): ¥!"*— [~o00, c0) be a proper integral functional

HO)= [ A0 de

where A(-) is a normal concave integrand satisfying
h(& 1) S B+ b (& ve),  VEERK (5.13)

for some integrable function § and constant 5>0. It follows from a
measurable selection argument |10, Proposition 2.1, p. 271] that the concave
dual of H(-) is

H@ = K00,

where

h*(n, 1) = !igkfk [~-né—h(& 1)) ae.

Thus H*(g) + H(y) + (g, y) =0 if and only if

:O (h*(q(0), 1) + h(y(0), ) + q(¢) ¥(1)) dt =0 (5.14)

which is satisfied if and only if
h*(g@), 1) + h(p(), 1) + g(t) (1) =0 ae.
since the integrand in (5.14) is nonpositive. Thus
—q €ESH(y) if and only if —q(r)€oh(y(t), 1) ae.  (5.15)

Let A =u+ y, + y,. Since u, yr, and v, are normal concave integrands, A
is a normal concave integrand. Since u satisfies a growth condition and by
virtue of the definition of an indicator function, h satisfies (5.13). By
Theorem 4.11 the pair (Z, 5) satisfies the global Euler—Lagrange inclusion
(€) which reduces to

—(p,0, p)EGH(z,Lz),  —p(0) € N 4(42). (5.16)

(5.15) and (5.16) imply that the pair (Z, p) satisfies the local
Euler-Lagrange inclusion

—(5(e), 0, B(t)) € OR(Z(1), £(1), ) ae. (E)
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It follows from the separability of I and the definition of /4 that p(r) €
ou(é(r), t) a.e. Since u is increasing p(f) > 0 a.e. The argument used to show
that (&) implies (#) shows that (E) implies (H), substituting ¢ in (5.11) for
@ in (4.3). Since (X, p) € W} x W, the transversality condition (T)
follows at once from Lemma 3.1(1).

5.13 Remark. Theorems 4.11 and 5.12 can also be used to analyse the
problem of resource allocation when the economy consists of a finite number
of producers with technology sets (#,..,.#,) and a finite number of
consumers with preference functions (U,,..., Uy).

Let I',(-), i = l...., m, denote the technology correspondence of each firm,
D,=R%,i=1,.,m.

ASSUMPTION (a). ['(-) is regular and separable, i=1,..,m, and I'(-) =
S () satisfies a growth condition, with growth function y.

Let .#, denote the set of programs (z;,¥,) such that z,€ W!"x ¥,
), X (D) ET(), x(t)ER" ae., x(0)=x% i=1..,m Then # =
m F and F = {z]|(z,Lz) E.F}.
I assume that the preference ordering of each consumer can be represented
by an integral functional

Ufc)) = f'w w0 dt,  j= 1ok

5.14 DEFINITION. A utility function u is strictly increasing if u(w’, t) >
u(w, t) whenever w’' 2 w (w{ =z w;, i= l,.,n, w;> w; for some j) for all
t€[0,0). 1 say that U defined by (5.8) is (strictly) increasing if u is
(strictly) increasing.

ASSUMPTION (b). u; is regular, strictly increasing, and satisfies a growth
condition compatible with v, where v is a density function relative to y, j =
L,..., k.

Let XX '={a€R%|Yj_,a;=1} denote the (k— 1)-dimensional
simplex. Consider the family of induced utility (convolution) functions U:
£ (—o0, o0) defined by

U(c)=U(c; a) = c/selizg .

L

[i a,ULc)

j=1

k
> d=c], ae Xt (5.17)

i=1

For c€ £ 1 let ¢ > 0 denote ¢(¢) >0 a.e.

5.15 THEOREM. Let Assumptions (a) and (b) be satisfied.
(i) For every a € X~ there exists an optimal program € W ", If
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a >0, 7 induces a Pareto optimum (Z,,..,Z,,¢ ,..,c*) where =37 | 7,
F=Y"4 @

(i) Let x,=>"7,x)>0 and let (Z,,...7,,¢"...c") be a Pareto
optimum. If 7 is normal, %(t) > 0 a.e. and & > 0, j = 1,..., k, then there exists
a price system p € WX, p(t) > 0 a.e. such that |%,,..,2,,¢....,&, p| is an
equilibrium with transfer payments.

Proof. (i) follows by a straightforward argument from Theorem 5.12(i).
(i1)) Let € ={c|(x,c)E.F}. Since Z is normal we may assume cE ¥
implies ¢ 2 ¢’ €Z. Let # = {(U,,..., U) | U;=U(c’), 3%, ¢/ € #}. By the
free disposal and convexity of ¢ and since U, are concave and increasing, #
is a convex subset of R¥. By a standard separation theorem, since (Z,...., Z,,,
¢',..., @) is a Pareto optimum there exists @ € ¥~ ! such that

& k
NaUuzYN aUu, YU,..U)€EZ, (5.18)
j=1 Jj=1

where (7,-= U{&). Thus 7 is an optimal program for the utility function
(5.17) with a = a. Since by Assumption (b) U; is concave and continuous on
LI j=1,..,m, it is readily shown that U is concave and continuous on
2", By the proof of Theorem 5.12, .# is nonempty under perturbations.
Thus by Theorem 4.11, (&) is satisfied. Since £(z) > 0 a.e., this implies

—(p.0, p) € (0,0U(7),0) + 0¥ (%, ¢, X). (5.19)
If we let § = —p, since . < % (x,), (5.19) and the separability of I imply
(BC+X) (@ X))z (Poc+X)—(G.x). V(neXHEF
and hence, since # =" | 7,
(P e+ %)= (GX)Z(Prei+2)— @ x),  V(x,0,%) €7,
i=1,.,m (5.20)

so that each firm maximises intertemporal profit, (p,c;+ ¥;) being the

revenue derived from flow output and (g, x,) the rental cost of capital.
(5.19) and the separability of I imply g € éU(¢). It is readily shown that

this implies p € o?,-an(E"),j= l,..., k. By the definition of a supergradient

aU) - U @) < (p, ¢/ = &), vele £ =1,k (5.21)

Since & >0 and U; is strictly increasing, j=1,..,k, @ in (5.18) satisfies
a; >0, j=1,.,k It follows from (5.21) that each consumer maximises
utility subject to the budget constraint

(P ~FY<0, j=1l...,k.
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This property combined with (5.20) and Y7L, &=¢=3%_, ¢/ is the

definition of an equilibrium with transfer payments |7,,..., Z,,,¢',.... &, p]. |

5.16 Remark. Since the equilibrium price satisfies g€ W=, by
Lemma 3.1

(B%)) + (Box;)=—p0) x(0),  Vx,€W,"
Thus if %, = {c,|(z;, ¥;) € #;}, then (5.20) implies
(P, ¢yz{p.c)y V,EE, i=l.,m.

Thus firms may also be viewed as purchasing new capital equipment at each
instant at the cost p(¢) X,(¢) and subsequently owning the capital. The inter-
temporal profit which is maximised then reduces to {, ¢;). Thus the stock-
flow-rental economy of Theorem 5.15 which is characterised by the activities
[x;sCis %i5 ¢y i=lo,m, j=1,.,k| and the price system (g, ) may be
reduced to a flow-ownership economy characterised by the activities [c;, ¢/,
i=1,., m, j=l,.., k| and the price system p. In the latter description of the
economy capital has disappeared and only the flow activity of producers and
consumers remains.

5.17 Remark. Theorem 5.15(ii) is the familiar theorem of welfare
economics [8, Theorem 2 and Remark] giving conditions under which a
system of prices can be adjoined to a Pareto optimum to generate an
equilibrium with transfer payments. Theorem 4.11 serves in place of the
separation theorem, which is not applicable here, to guarantee the existence
of a system of prices. Clearly, in the reduced form flow-economy the
existence of JE€ ¥ X" may be obtained via a separation theorem, by
exploiting the lower semicontinuity of U.

5.18 Remark. |16] shows in a related framework how results similar to
(i) and (ii) in Theorem 5.15 may be supplemented by a fixed point argument
to obtain the existence of a competitive equilibrium.

6. APPLICATIONS

In this section I consider two simple applications of the results of the
previous section. In the first case feasible programs are bounded, in the
second case feasible programs are unbounded and capable of growth at a
positive exponential rate. In both cases 1 assume that the utility function U
satisfies the following condition:
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ASSUMPTION A. The utility function u in (5.8) is given by
ulw, t) = u(w)e?, 0<d< oo,

where (i) u(w): R — R is regular, (ii) there exists b > 0 such that |ou(w)| £ b
for all w € R, (iii) u is increasing.

6.1 ExamMpLE. (Bounded case). Consider the following reformulation
of the classical one commodity economy of Koopmans [13].

ASSUMPTION B. The output correspondence f in (5.7) is given by

SO0 =10.h()) ae.  h@)=| @O -1)d 1ER,.
where (1) ¢(x') < ¢(x) for all ' Zx€ R, (i1) 0 < A < ¢(0), (iii) there exists
x € (0, o0) such that ¢(x') < A.

#(x) denotes the marginal product of capital and 1 denotes its exponential
depreciation rate. Assumption B implies that there exists § € (0, o0) such
that A(0)=A({) =0, h(x) >0, x € (0,7). We let D=0, %], a € (—o0, —4}.
Let m = |af| + max,,¢; A(r). I x, € [0, £], then every feasible path satisfies
x(t) € [0, 7], c(t) € [0,m], X(t) € [-m, m]a.e. Thus I satisfies a growth
condition with

y(t) = ae® ae.,  a=max{f, m)
for any & > 0, so that
v(t) =ae” " ae. e>¢€ (6.1)

is a density function relative to y. Since é > O by Assumption A, there exists
0 < ¢ < 4, and since by A(ii)

|ou(w)e %< be ¥ =u(t) ae., Yw € R (6.2)
there exists > O such that
Pu(t) < v(t) ae.

so that (u, ") satisfy compatible growth conditions. If we note that ¢ in
(5.11) reduces to é(x, w, n,t) =n(h(x) —w)a.e. with {=(x,w) and that
Np(x) = {0} if y € Int D, then Theorem 5.12 yields the following.

6.2 ProposiTION. (i) If Assumptions A and B are satisfied and v is
given by (6.1), then there exists an optimal program Z € W' x &I\,
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(ii) If in addition x,€ (0,%) and Z is normal, then there exists a
supporting price p € W', p(t) > 0 a.e. such that (H, T) are satisfied.

(iii) If (u, h) are differentiable and x(t)€ (0,x)a.e.. then (H,T)
reduce to

—p() = POYH' (), 0= pe)—u' (@) e *

6.3

X(t) = h(X(t)) — &(t) ae., }im p(e) x(¢t)=0. (63

6.3 Remark. Equations (6.3) form the basis for Koopmans’ analysis.

Assumptions A and B, x, € (0, ¥) are those of Koopmans [13, pp. 261, 275]

with three exceptions. First, I make no differentiability assumption on (u, k).

(H) are thus differential inclusions as opposed to the differential equations in

(6.3). Second, Koopmans assumes & < g(0) — A. This ensures x(¢) > 0 a.e.

and hence the validity of (6.3). Third, I am obliged to bound the marginal

utility of consumption from above so that utility functions considered by
Koopmans for which u’(w)— oo as w — 0 are excluded from my analysis.

6.4 ExaMPLE. (Unbounded case). Consider a simple extension of
Koopmans’ economy to allow for two effects in production. First, the
absence of depreciation of capital goods (A =0), f(y,t)—~ [0, ) as y —» ©
for fixed ¢, and second, the effect of technical change, f(x,t)— {0, o) as
t - oo for fixed y.

6.5 DEFINITION. A function A(-): R, — R, is said to have an asymprotic
exponent ¢ if for every a > O there exists ¥’ such that

XE<h(r)y<x®, Vx>,

where 0 =0 — a, G=0+a.
AssumpTION C. The output correspondence f in (5.7) is given by
-X
S0 =[0,e"h()] ae.  hG) = 6@ de xER.,
-0

where (1) o(x' )< o#(x) forall y’ Zx€R, , (ii)¢(x) >0 forall yER ., (ili) A
has an asymptotic exponent o € (0, 1), (iv) 8 € (0, 0).

Let D=10,0), a =0. In the proof of Theorem 10.1 in [17], I showed
that if we let p = 8/(1 — o), then for every £ > 0 there exists a; > 0 such that
every feasible path satisfies

lz(e), @) < y(t) = a;e®* P ae.
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Thus
v(t) = ae.e_“’+ ey a.e., eE>E (6-4)

is a density function relative to y. If & > p, then there exists € > 0 such that
0>p+e Thus if u is given by (6.2), there exists >0 such that
Bu(t) < v(t)a.e., so that (u,I) satisfy compatible growth conditions.
Theorem 5.12 yields the following.

6.6 ProposITION. (i) Let p=06/(1 —o). If Assumptions A and C are
satisfied, 6 > p and v is given by (6.4), then there exists an optimal program

rewyix .
(ii) If in addition x,>0 and Z is normal, then there exists a
supporting price pE€ W=, p(t) > 0 a.e. such that (H, T) are satisfied.
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