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1. INTRODUCTION 

This paper continues the earlier studies [ 17, 181 whose object was to 
develop an abstract framework for the analysis of problems of resource 
allocation in continuous time over an infinite horizon. These papers gave 
conditions on the preferences and technology sufficient to guarantee the 
existence of an optimal program. In this paper I shall provide an answer to 
the following question. What strengthening of these conditions guarantees the 
existence of supporting prices? 

I pose the problem of resource allocation as a convex programming 
problem in a suitable infinite dimensional space (Section 2). A convex 
programming problem is characterised by a family of preferred sets induced 
by a utility function U and a technologically feasible set 3. Such a 
framework is not confined to the analysis of an economy with a single 
representative agent. If the economy consists of a finite number of 
consumers, with preference orderings representable by concave increasing 
utility functions (Cr, ,..., cl,), and a finite number of producers, with 
technology sets (-5 ,..., 3,), then we may let CT = Et=, a, Vi, where aj 2 0, 
xi"=, aj= 1, and F= Cy!, .-T. Suppose now that the existence of an 
optimal program and an associated supporting price is established for each 
parameter value a in the simplex. Under certain conditions (see e.g., 
Section 5, Theorem 5.15) such a pair leads to an equilibrium with transfer 
payments. A fixed point argument involving the parameter a and the transfer 
payments can then be added to ensure the existence of a competitive 
equilibrium [6, 16, 201. In this way an equilibrium (allocation-price) emerges 
as an optimal program and an associated supporting price for a particular 
parameter value in a family of convex programming problems. 

When the problem of resource allocation ceases to be finite dimensional, 
an essential step in the analysis is the choice of an appropriate program 
(commodity) space. In [ 171 I considered a weighted version of the space of 

* This research was supported by a grant from the National Science Foundation SOC 79. 
25960. 

398 
0022.247X,'82/080398-24$02.00/O 
Copyright 0 1982 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



PRICING INFINITE HORIZON PROGRAMS 399 

rLebesgue integrable functions (L?:,~) where the weight v is determined by the 
rate at which technologically feasible programs can grow over the infinite 
horizon. In this paper I shall consider the subspace W:,*” c Y’“f.*” of 
absolutely continuous functions x for which both x and its derivative 1 lie in 
PL*“. If LP::,” denotes a weighted version of the space of bounded 
measurable functions, then prices will be chosen from the subspace Wz*: 
consisting of the absolutely continuous functions p for which both p and its 
derivative b lie in 92:. Such a choice of price-quantity spaces allows one to 
both price programs over an infinite horizon and cope with the special 
relation (absolute continuity) that exists between stocks and flows in a 
continuous time analysis. These two spaces have the further important 
property that a certain adjoint relation (integration by parts and the 
transversality condition) is valid (Section 3). 

In the classical theorem of welfare economics of Arrow and Debreu 
[S, Theorem 21, if the technologically feasible set has a nonempty interior, 
then the existence of prices follows directly from a separation theorem. The 
feasible set .F for the convex programming problem of Section 2 has 
however a more complex structure. Thus, while a separation theorem can be 
applied to obtain the existence of prices, a direct application of such a 
theorem by failing to take into account the linear operations involved in the 
construction of the feasible set fails to reveal the important induced adjoint 
relation between the prices. These linear operator relations between the quan- 
tities and the induced adjoint operator relations between the prices are basic 
to the content of the true support price relation, the Euler-Lagrange 
inclusion (8 in Section 4). Thus, a different approach is required. 

When the sets that characterise the utility function U and the technology 
set .F are closed convex sets, a useful general framework has emerged from 
the work of Rockafellar [lo, Chapter III]. The approach involves the 
analysis of a famit’y of perturbations of the original problem. A certain 
marginal function is introduced whose superdifferentiability at the origin is 
equivalent to the existence of supporting prices (Theorem 4.7). The standard 
criterion for the superdifferentiability of the marginal function is the SZater 
condition [ 10, Eq. 5.241. In Section 4 I give a natural generalisation of this 
condition applicable to the convex programming problem of Section 2 
(Theorem 4.10). This leads to the basic criterion for the existence of prices, 
that the feasible set be nonempty under a family of perturbations 
(Theorem 4.1 I). It is easy to see that this criterion includes the usual 
constraint qualification condition in the standard Kuhn-Tucker theorem [ 10. 
Theorem 5.21. 

In Section 5 the results of Sections 2-4 are applied to establish the 
existence of supporting prices for a continuous time infinite horizon 
economy. The technology and preferences are assumed to be representable 
by integral functionals along the lines of [ 171. I show that if the technology 
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and preferences are regular and satisfy compatible growth conditions, then 
there exists an optimal program (Theorem 5.12(i)). If in addition the 
technology has a property of separability and if consumption and investment 
are bounded below on an optimal path, then there exists a supporting price 
(Theorem 5.12(ii)). The existence of an equilibrium with transfer payments, 
in an economy with a finite number of agents, is established in 
Theorem 5.15. As noted in Remark 5.18, by supplementing this result with 
an appropriate fixed point argument we obtain the existence of a competitive 
equilibrium. It then follows from Theorem 5.12(iii) that the resulting 
equilibrium (allocation-price) may be characterised as a solution of the local 
Hamiltonian inclusions (H, 7). An objective sought by Cass and Shell [7] of 
writing the equilibrium of a competitive dynamical system as the solution of 
a system of Hamiltonian equations is thus attained. 

The paper concludes in Section 6 with two simple applications of the 
results of Section 5. In the first example feasible programs are bounded; in 
the second example feasible programs are unbounded and capable of growth 
at a positive exponential rate. 

Existence and duality in infinite dimensional spaces have been treated 
extensively in the literature. A useful background is provided by Chap- 
ters I-III of Ekeland and Teman [lo]. In Section 4, I assume that the reader 
is familiar with two important results: first, the way in which a family of 
perturbations of the problem (9) leads via the theory of conjugate convex 
functions to the associated dual problem (9*); second, the way in which the 
Fenchel conjugacy relation (X) between (9’) and (9*) leads via the 
marginal function (4.5) to the basic criterion for the existence of supporting 
prices (Theorem 4.7). These results are given in [ 10, Chapter III]. 

A systematic treatment of existence and duality for a closely related class 
of problems in the finite horizon case has been given by Rockafellar 1221. 
This paper has been strongly influenced by the results of Aubin-Clarke [3] 
which also treats convex programming problems in which the utility function 
U is not necessarily convex. At the time that this paper was completed the 
results of Araujo-Scheinkman [ 1 ] came to my notice. They give conditions 
for a related class of problems for the existence of prices, when the program 
space is the space of bounded measurable functions, and hence provide a 
natural link with the work of Bewley [5]. 

2. ABSTRACT FORM OF RESOURCE ALLOCATION PROBLEM 

The class of resource allocation problems that I shall consider can be 
reduced to a convex programming problem in a suitable infinite dimensional 
space. Let (Z, W) denote Banach spaces, where W a dense subset of Z 
denotes the program space. I assume that choice among programs is 
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determined by a preference ordering 2 which is representable by a utility 
function CJ( a) satisfying 

ASSUMPTION 1. U(.): Z + (-a~, m) is a continuous concave function. 

To characterise the technology I introduce two additional Banach spaces 
(V, Q), two feasible subsets JXY c Z, 9 c Q, and a technology correspon- 
dence G(.): Z + V with graph 55’ = {(z, 4’) 1 y E G(z)) satisfying 

ASSUMPTION 2. ~2, 3, and 3’ are closed convex sets and 
domG={zEZIG(z)#IZI}I,loP. 

I introduce a dtJ%rential operator L and a boundary operator 1 and let 
AZ = (Lz, AZ) for z E W. Let P’(W, V) denote the continuous linear 
operators from W to V. 

ASSUMPTION 3. L E P( W, I’), A E .Y( W, Q). 

If I introduce the correspondence K(.): Z -+ V x Q defined by 

K(z) = G(z) x 58, z E z, (2.1) 

then the set of technologically feasible programs .F will be given by 

F={zEJqOEK(z)-AZ). (2.2) 

2.1 DEFINITION. I say that (U,F) are regular if Assumptions 1-3 are 
satisfied. 

2.2 DEFINITION. A program FEY that solves the problem 

will be called an optimal program. 

3. PRICE-QUANTITY SPACES AND LINEAR OPERATORS 

In this section I shall begin to reduce the abstract problem of the previous 
section to a more concrete form. I shall introduce the infinite dimensional 
spaces appropriate for the analysis of problems of resource allocation in 
continuous time over an infinite horizon. 

Let A” =J’(O, co; R”) denote the space of Lebesgue measurable 
functions defined on [0, co) with values in R”, n 2 1. I shall be concerned 
with certain linear subspaces of M”. 
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3.1 DEFINITION. A function y E J satisfying 0 < y(t) < co a.e. will be 
called a growth function. A function v E M satisfying 

0 < v(t) < co a.e., 
J 

v(t) dt < co 
0 

will be called a density function for [0, co). Let y be a growth function. I say 
that v is a density function relative to y if v is a density function satisfying 

Irn v(t) y(t) dt < co. 
.o 

Let y be a growth function (to be determined in the subsequent analysis) 
and let v be a density function relative to y. For the quantities I am led to 
consider the following weighted space of Lebesgue integrable functions 

For x E _iyt,*” we can define its distributional derivative i 127, p. 491 and we 
are led to consider the space 

It is readily shown that this space coincides with the space of absolutely 
continuous functions x E Ypf;” whose derivative 1 also lies in ipf,-” [25, 
Theorem III, p. 551. WL*” is a Banach space under the norm 

lll4ll~ = jr (IIWII + IIWII) W dt. (3.1) 

For the prices I consider the following weighted space of essentially bounded 
measurable functions 

where ess SU~~<~<~ I( p(t)11 = inf{a E R I L(t ) II p(t)11 > a) = 0}, where A(A) 
denotes the Lebesgue measure of the set A. For p E .5??,” we can define its 
distributional derivative ~5 and are thus led to consider the space 
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which is a Banach space under the norm 

III plllm = ;ytyz +) (II p(t)ll + II liO)ll)* 

W:F is just the space of absolutely continuous functions p E 92: whose 
derivative fi also lies in 92,“. For x E Pi,,” and p E 9::: I define the 
scalar product 

(P, x> = j; PO) -W df 

noting that 

The following lemma on integration by parts is basic to the analysis that 
follows. 

3.1 LEMMA. Zf x E Wb*“, p E W:,“, fhen (i) lim,,, p(t) x(t) = 0 and (ii) 
j: p(t) i(t) df + jr d(t) X(t) dt + p(0) X(o) = 0. 

Proof: Since x E Wt.-“, p E W>:, we have 

fm IpWx(Ol df 5 II PIL llxlll < 03 
-0 

(3.2) 

dtl ll~ll, ll~ll, + II PII, tl-d, < 00. (3.3) 

Equation (3.2) implies p(t) x(t) + 9 as t -+ oo for some q E R; (3.3) implies 
q = 0. Since x and p are absolutely continuous, the function Q defined by 
g(r) = p(t)x(t) a.e. is absolutely continuous. Thus by the theorem on 
absolutely continuous functions [24, Corollary 14, p. 1071 for any 0 2 t < 
n < co, 4(n) = d(t) + I: 4’(r) dt. Let #A(r) = ~t~.~,(r) 4’(r), then (i) implies 
0 = d(t) + lim,,, I,00 #A(r) dr. Since #L(t) + 4’(r) a.e. as n + co and since 

I4Wl I I4’Wl a.eev (3.3) and the dominated convergence theorem [24. 
Theorem 15, p. 881 imply lim,,, jy #L(r) dr = lp 4’(r) dr so that d(t) = 
- jy $‘(r) dr, Vt E [0, co). (ii) follows with I = 0. 1 

I am led to consider the following choice of spaces for the problem in 
Section 2. For integers n 2 1, m 2 0 

z =y;;n+m, w = wy x Y”t*“, v= yy, Q = R”. (3.4) 
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I let z = (x, c) where x is a path of stocks of n capital goods and c is a path 
denoting consumption and other flow activity for m commodities. The 
differential operator L and the boundary operator 1 are defined by 

Lz = ; (x) =-t, AZ = x(O), vz = (x, c) E w, (3.5) 

where 1 is the path of investment associated with x and x(0) is its associated 
vector of initial stocks. 

We need to find a pair of linear operators suitable for characterising a 
dual problem from which supporting prices will emerge. To this end we 
recall that the domain of the adjoint of a differential operator depends 
crucially on the choice of the domain for the differential operator 
[9, p. 12231. With this in mind we are led to consider the subspace of W 
defined by 

W,,= (zE W]Az=O}=kerA, 

namely, the kernel of 1. Noting that W,, is dense in Z, we form the adjoint 
L,f of the restriction of L to W,, L,z = Lz. Vz E W,. By definition 

(Pv L,z) = (GP, z>, VZE w,, 

where L,* is well defined since W,, is dense in Z [9, p. 11881. It is easy to 
check that 

GP = (-A O), L,* E 2?( w:y, Qqy’“). 

3.2 DEFINITION. Let L E 4p( W, V), II E 4p( W, Q), and let W be dense in 
Z. We say that the spaces (Z, W, V, Q) and the linear operators (L, A) 
satisfy the adjoint relation (2) if there exists a unique linear operator 
7c E JP(Y, Q*) such that 

(P, Lz) + (-L,*P, z> + (TP, AZ> = 0, vz E w, vp E Y, w  

where L,* E -P(Y, Z*) is the adjoint of the restriction of L to the kernel of A 
and Y=(pE V*IL,*pEZ*). 

3.3 Remark. Lemma 3.1 implies that the spaces (3.4) and the linear 
operators (3.5) satisfy the adjoint relation (9) with 

XP = P(O), 7c E ip( Y, R”), Y = WFP. 

(-L,*, rr) is the pair of linear operators in terms of which the dual problem 
(.F’*) will be formulated, just as (L, A) is the pair of linear operators used to 
formulate problem (.y). 
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It is convenient to let (( , )) denote the natural scalar product on 
(Z* x V* x Q*) x (Z x I/ x Q). If we define 

P(z) = (z, Lz, AZ), m = ( -L:P, P, n~rp), (3.6) 

then the adjoint relation (9’) may be written as 

MPj,P(Z))) = 0, VZE w, VpE Y. (~~1 

This is the basic scalar product between prices and quantities in the analysis 
that follows. 

3.4 Remark. The adjoint relation (37) can be established for more 
general linear operators and spaces. For example if A is surjective and ker A 
is dense in Z (the so-called trace property) and if the spaces (Z, W, V, Q) are 
appropriate Hilbert (Sobolev) spaces, then (9) is satisfied [ 14, Theorem 2.1, 
p. 114; 2, Theorem 1, p. 4841. The adjoint relation (9’) forms the key to the 
abstract approach to partial differential equations developed by Lions and 
others [ 14, 15 ]. 

4. EXISTENCE OF SUPPORTING PRICE 

In this section I assume that the spaces (Z, W, I’, Q) and the linear 
operators (L, A) satisfy the adjoint relation (9). To establish the existence of 
a supporting price I shall use the theory of pricing based on the concept of 
conjugafe convex functions. To this end I reduce the convex programming 
problem (9) to an unconstrained maximum problem in terms of a single 
function F. Let the function 

F(.):Zx ?‘X Q- [--a~, co) 

be defined by 

F(Y) = F(Y,, yz. Y,) = WY,) + !J’~-(Y,,Y,) + ul,(v,) + &(Y,>, 
if y,E W 

=-co, if y,@ W, (4.1) 

where Y = ((y,, yJ 1 yz E G(y,)j denotes the graph of G(e), and Y’d.), 
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K44 and KA-) are the indicator functions of F, &, and 9 respectively, 
the indicator function of a subset S of a space X being defined by 

ul,(x) = 0, if xES 

=-co. if ?r&S. 

If we use the notation (3.6), then (4.1) implies that F@(z)) is defined on Z 
and ,F is an optimal program if and only if 

ww) = OJ = ;:: f-W)) = ;,up F(P(z))* VI 

The existence of a supporting price will be obtained by introducing a dual 
function defined as follows. 

4.1 DEFINITION. The function F*(e): Z* X V” X Q* + [--a, co) 
defined by 

F*(s) = ,,Ezi$-xQ [CC -a~)) -F(y)1 

will be called the concave dual of F(.). 

4.2 DEFINITION. If YE dom F, then the subset 

aF(y)=(qEZ*x ~*xQ*~F(~)-F(~)~((~,~-~)),VJ’EZX VxQ) 

is called the superdifferential of F at j? F is said to be superdlfirentiable at ~7 
if aF(y) # 0. 

4.3 Remark. It follows from Definitions 4.1 and 4.2 that 

-4 E aF( J) if and only if 7 maximises F(y) + ((q, y)); 

furthermore. 

-4 E aF( J) if and onfy if F*(q) + F(y) = ((-q, r)). (4.2) 

Since F*(e) is defined on Z* x V* x Q *. the function F*(y(p)) is defined 
on Y = (p E V* 1 L,p* E Z*}. Consider the problem of finding FE Y such 
that 

F*W)) = w* = ;j~ F*(Y(P)). (.Y”*) 

By the definition of F*(.), 

F*(~(P)) + W(z)) 5 G-Y(P),P(z))~ VZE w, VpE Y. (. 4 ‘) 
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(..,I), (S’), (,a), and (.?*) imply 

o*+w_Io. 

4.4 DEFINITION. p E Y satisfying (i) F*(y@)) = o* and (ii) w* + o = 0 
will be called a supporting price. 

If we define F*(y(p)) = -co for p E V*\Y, then (.?*) becomes 

4.5 Remark. It follows from (4.2) that I is an optimal program and p is 
a supporting price tf and only if 

-Y(P) E WP(3). m 

I shall now imbed problem (,9) into a family of perturbed problems along 
the lines of Rockafellar’s approach to duality theory [ 10, Chapter III]. The 
key step is the introduction of the following function. 

4.6 DEFINITION. The function a(.): V x Q --+ [--a, co] defined by 

a(() = sup F(z, AZ + <), 
:EZ 

where AZ = (Lz, AZ) is called the marginal function. 

The principal result of Rockafellar’s abstract approach to the problem of 
pricing is the following equivalence criterion. The proof given by Ekeland 
and Temam [ 10, Proposition 2.2, p. 5 l] is readily adapted to the present 
context. A related result was obtained by Gale [ 11, Theorem 2, p. 231. 

4.7 THEOREM. Let the spaces (Z, W, V, Q) and the linear operators 
(L, A) satisfy the adjoint relation (2). If F(.): Z x V x Q + [-co, 00) is a 
concave, upper semicontinuous function, then there exists a supporting price 
of and only tf the marginal function is superdtflerentiable at c = 0. 

I shall derive a sufficient condition for the superdifferentiability of the 
marginal function by forming a perturbation of the feasible set ,F in (2.2). 

4.8 DEFINITION. For < E V x Q let 

~j7;={ZEdI<EK(z)-Az}. 

I shall say that the feasible set 3 is nonempty under perturbations if there 
exists a sphere S,(O) of radius r7 > 0 about the origin in V x Q such that 

.qz0, vt E S,(O). (,Y ) 
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The following condition for the lower semicontinuity of a correspondence is 
of basic importance. The result is due to Ursescu [26] and Robinson [21; 2, 
Theorem 1, p. 5461. 

4.9 THEOREM. Let X and Y be Banach spaces, R: X+ Y a correspon- 
dence whose graph is a closed-convex subset of X x Y. If Int dom R -I # 0, 
then R - ‘(y) is lower semicontinuous for all y E Int dom R -I. 

This result leads directly to the following condition for the superdifferen- 
tiability of the marginal function. 

4.10 THEOREM. If (17, F) are regular and 3 is nonempty under pertur- 
bations, then the marginal function is superdtflerentiable at c = 0. 

Proof Consider the correspondence R(.): W -+ V x Q defined by 

R(z) =K(z)-AZ, if z E& 

= 0. if z&d, 

Clearly, 4 = R -l(c). By Assumptions 2 and 3 the graph of R is a closed 
convex subset of W x V x Q. Since W, V, and Q are Banach spaces and 
since (Y) holds, by Theorem 4.9 R-‘(r) is lower semicontinuous for all 
C E S,(O). Since a(<) = ~uP,,~-~~~~ u(z) and since by Assumption 1 V(m) is 
continuous, by the maximum theorem [4, Theorem 1, p. 1151 a(<) is lower 
semicontinuous for all c E S,(O). Since by Assumption I r/(e) is concave and 
since R has a convex graph, o(r) is concave. It follows that a(r) is 
continuous for all <E S,(O). Thus by a standard result on superdifferen- 
tiability [ 10, Proposition 5.2, p. 221 &z(O) # 0. a 

Combining Theorems 4.7, 4.10, and Remark 4.5 yields the following. 

4.11 THEOREM. Let the spaces (Z, W, V, Q) and the linear operators 
(L, A) satisfy the adjoint relation (3). If (U,F) are regular and F is 
nonempty under perturbations, then there exists a supporting price p E Y. If 
FE W is an optimal program, then the pair (F, p) satisfies the global 
Euler-Lagrange inclusion 

--Y(P) E wP(~)>~ (a 

4.12 Remark. (a) is the infinite dimensional version of the familiar 
Euler-Lagrange inclusion, which reduces to (E) in Section 5 when the spaces 
and linear operators are given by (3.4) and (3.5). (8) can be expressed in a 
variety of equivalent ways. A form that is useful for the qualitative analysis 
of the equilibrium pair (F, p) is the Hamiltonian form. A variant of this form 
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that reveals the role of the functions and sets that underlie (3) is obtained as 
follows. We introduce the return function CD: Z x Y+ [-co. a) defined by 

(4.3) 

@ is concave in z and convex in p. Since the superdifferential of the indicator 
function ul,(?c): X+ [-oo,O] of a convex subset S of a Banach space X is 
the normal cone to S at x, 

MS(X) = N,(x) = (q E X” 1 (q, C-x) 2 0, vy E S} 

and since -(r, p) E c?Y,(z, v) if and only if r E -3; @(z,p), v E &),@(z, p), 
where & @(z, p) denotes the subdifferential of @ with respect to p, applying 
the theorem for the superdifferential of a sum of functions [ 10, 
Proposition 5.6, p. 261 yields the following. 

4.13 PROPOSITION. if the pair (Z; p) E W X Y satisfies the global 
Euler-Lagrange inclusion (a), then it satisfies the global Hamiltonian 
inclusions 

5. PRICING PROGRAMS OVER AN INFINITE HORIZON 

I shall now consider the abstract problem of resource allocation in the 
framework of continuous time over an infinite horizon. The technology and 
preferences will be characterised by integral functionals along the lines 
developed in [ 17, 181. I shall show that the resulting problem can be posed 
as a special case of the convex programming problem studied in Sections 2 
and 4, the basic Banach spaces and linear operators being those studied in 
Section 3. 

I consider the economic activity of an economy over an infinite horizon. 
At each instant t E [0, co) a vector of stocks x(t) = (x,(t)....,x,(t)) of n 1 1 
capital goods is used to produce a flow output c(t) = (c,(t),..., c,(t)) of 
consumption and i(t) = (i,(t),,.., i,,(l)) 0 investment. It is convenient to let f 

z(t) = (x(t), c(t)), fE [O, co). 

I shall follow the ideas in [ 171 first constructing a feasible set of programs 
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and then choosing a program space W that reflects the maximum growth 
capacity of these programs. 

5.1 DEFINITION. A technology correspondence T(t): [0, co) -+ R3” is a set 
of triples 01, w, C) giving the consumption-investment flows (0, [) producible 
with the stocks x at time t. r(.) is said to be regular if it is a closed, convex 
valued measurable correspondence. 

5.2 DEFINITION. For x,ER: let .9= (xER: 1x5x,,} denote the set 
of feasible initial conditions. Let P(x,,) denote the set of paths 
(x. c, a) E. X3n, where x is absolutely continuous and 

x(0) E .9, (x(f), c(t), i(t)) E r(t) a.e. 

Let D be a closed convex subset of R: and let A(t) = D x R” a.e., J/’ = 
{z E .dP” I z(t) E A(t) a.e.}. The set of technologically feasible paths is given 
by 

.F,d(XO) = ((z, i) E 3 (x0) 1 z E .d’}. 

5.3 DEFINITION. I shall say that r satisfies a growth condition if 
(i) .%.JxO) # 0 and (ii) there exists a growth function y such that 

If I- 
density 

II W, Wll 5 r(f) a.e. V(z. i) E 3 $(X0). (5.1) 

satisfies a growth condition with growth function y and if v is a 
function relative to y, then 

.T~ 4(X0) c ,;;““. 

If we introduce the local indicator functions 

va: R*” x [O, 00) + [--co, 01, 

defined by 

w‘&, 0 = 0, if 4 E A(t), 

=-co, if <@A(t), 

and the global indicator functions 

Y-4: Yy,*2n + l-m 01, 

defined by 

I//,.: R3” x [O, co)+ [-a~, 0] 

Jy&) = ]‘IU w,(z(~), f) dt, 
-0 

yv,iu) = l.c v+(W), f) 4 
-0 

(5.2) 
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then 

.d = dom YId, .!?=dom YV. 

Thus if we choose the program space 

and let the spaces of investment and initial conditions be given by 

v = Yy.,“, Q=R”; (5.4) 

if the operator A: W + V x Q is defined by 

/lz = (Lz, AZ) = (a, x(O)), VZE w (5.5) 

then the set of technologically feasible programs ,F c W is given by 

5.4 Remark. It is clear that 9 is a closed convex subset of R”. To show 
that J#’ c Y’~,*2n and Z c LYL*~” are closed convex sets we note that if A (.) 
&id r(a) are regular, then v,(-, t) and vi-(., t) are upper semicontinuous and 
concave on R2” and R3”, respectively. A standard argument based on 
Fatou’s lemma shows that Iy,(.) and Y,(-) are upper semicontinuous (in 
the norm topology) on Pi,*‘” and P~,*3”, respectively, so that M’ and .%‘ are 
closed. The convexity of ,oP and .Y follows from the concavity of Yy,(.) and 
Y,(a). Thus Assumption 2 is satisfied. In view of the topology (3.1) on Wt.” 
it is clear that (L., A) satisfy Assumption 3. 

I shall use the following two properties to show that the feasible set .F is 
nonempty under perturbations. 

5.5 DEFINITION. The technology correspondence r is separable if there 
exists a correspondencef(.) satisfying 0 E ff~, t), V(x, t) E D x [0, oo), and 
a 5 0 such that 

r(t) = {k, w, C) I w + C E f ti, t), (~0, C) 2 (0, ax) I a.e. (5.7) 

5.6 DEFINITION. If r is separable, a feasible program z is normal if 
(c(t), 40) > (0, ax(t)) a.e. 

As in Section 2 I assume that choice among programs in W is determined 
by a preference ordering 2 which is representable by a utility function U(-). I 
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now make the additional assumption that U(.) is an integral functional 
which depends only on consumption 

.m 

U(c) = 1 u(c(t), t) dt. (5.8) 
-0 

I shall invoke the following properties for the instantaneous utility function u. 

5.7 DEFINITION. U(W, t): R” x [0, co) + (-a, co) is said to be regular if 
~(a, t) is continuous and concave, dom u(., t) = R” and U(W, .) CA?, for all 
fE [O,co) and wER”, respectively. u is said to be increasing if u(w’, t) > 
~(0, t), if w’ > w  (w: > wi, i = I ,..., n) for all t E [0, co). 

5.8 DEFINITION. u satisfies a growth condition if 

(i) there exists a density function p such that 

Il~wub t>ll 5 PO) VW E R” a.e., (5.9) 

(ii) -co < lox ~(0, t) dt < CL). (5.10) 

5.9 Remark. In Definitions 5.7 and 5.8 I assume that u(*, t) is defined 
on all of R”. The extension of u(. , t) off the non-negative orthant of R” 
allows U(.) to be defined on all of W, a property that plays an important 
role in establishing the existence of prices. The essential economic restriction 
on u is (5.9) which is a uniform bounded steepness condition of the type 
considered by Gale [ 12, p. 71. 

5.10 DEFINITION. I shall say that (u, I) satisfy compatible growth 
conditions if (i) u and I- each satisfy growth conditions, (ii) there exists /3 > 0 
such that Pp(t) 5 v(t) a.e., where v is a density function relative to y. 

5.11 Remark. Consider the correspondence g induced by r by the 
definition c E gCy, w, r) if and only if h, w, c) E r(t) a.e. To express the local 
version of the Euler-Lagrange inclusion (a) in Hamiltonian form I introduce 
the local version of function (4.3), the return function @([, q. t): R”” x 

[0, co) + [-co, a)) defined by 

5.12 THEOREM. Let the technology and preferences be represented by the 
integral functionals (5.2) and (5.8). 
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(i) If (u, IJ are regular and satisfy compatible growth conditions, 
then there exists an optimal program i E WLqn x Y”f;“. 

(ii) If in addition x0 E Int dom D, I’ is separable, u is increasing, and 
t is normal, then there exists a supporting price 13 E WF-*,“, p(t) 2 0 a.e. 

(iii) The pair (Z; ~5) satisfies the local Hamiltonian inclusions 

(-j(t), 0) E a,g(at), P(t), t) + a,@(~), t) + N,(W)) 

k(t) E 3, &T(t), p(t), t) 
WI 

a.e. 

and the transversality condition 

lim p(t) X(t) = 0. (T) t-m 

Proof. (i) Since u is regular, u is a normal concave integrand [23, 
Theorem 2E, p. 1761. Since u satisfies the growth conditions (5.9) and 
(5.10), and there exists d > 0 such that Ap(t) s v(t) a.e., U(a) defined by (5.8) 
is continuous on YL,” in the norm topology [23, Theorem 3L, p. 2041. Since 
the preferred sets (c ] U(c) 1 U(c’)) are convex, the weak and strong closures 
coincide [9, Theorem V.3.13, p. 4221. Thus the upper semicontinuity of U(e) 
in the norm topology on p:,+” implies the upper semicontinuity of U(e) in the 
weak cr(YL*“, 9:‘“) topology. Since r is regular and satisfies a growth 
condition, Proposition 7.5 in [ 171 implies that the set ((c, a) 1 (x, c, a) E 
YJx,,)} is weakly compact. Thus the projection g = (c 1 (x, c, i) E .% /(x0)} 
is weakly compact and (i) follows. 

(ii) Since Assumption 1, and by Remark 5.4, Assumptions 2 and 3 are 
satisfied, (U,X) are regular. Since the spaces and linear operators 
(5.3~(5.5) satisfy the adjoint relation (s), to apply Theorem 4.11 it remains 
to show that .X is nonempty under perturbations. We need to find q > 0 
such that for all 5 E S,(O) c YL.*” x R” there exists z E ,d satisfying AZ E 
K(z) - <. In view of the separability of r, if 5 = (c, e), this is equivalent to 
showing that the differential inclusion 

4t) E f(x(t), t) - c(t) - c(t) 
x(t) E D a.e., X(O) E 9 - e 

(5.12) 

has a solution x E Wt,‘” for all ([, e) E S,(O). Since Z is normal, Z is an 
optimal program for the technology set (5.7) if the lower bounds on 
consumption and investment are removed. For this modified technology set 
we may choose c E YL*” and in particular c = -c. Since x0 E Int D, there 
exists 9 > 0 such that x, - 8 E D for all t? E R” such that ]]e]] < q. By the 
separability of f, 0 E f (x, f) for all (x, I) E D x (0, co). Thus x(t) = 
x0 - 8a.e. is a solution of (5.12) for all c E S,(O). Since x E Wt.-“, .F is 

409!88./2-7 
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nonempty under perturbations. By Theorem 4.11 there exists a supporting 
price j E W,q”_;“. 

(iii) Let H(.): 9Lq” -+ [-co, 00) be a proper integral functional 

.m 

MY) = ( KY(r), I) & 
.O 

where h(.) is a normal concave integrand satisfying 

w, t) 6 PO) + b Ilt;ll v(t), V[E Rk (5.13) 

for some integrable function /3 and constant b 2 0. It follows from a 
measurable selection argument [ 10, Proposition 2.1, p. 27 1 ] that the concave 
dual of H(.) is 

where 

H*(q) = I= h*(q(t), t) dt, 
.O 

Thus H*(q) + H(y) + (q, ~1) = 0 if and only if 

(.,= (h*Mt), t) + h(y(O, t> I- q(t) v(t)) dl= 0 
‘0 

(5.14) 

which is satisfied if and only if 

h*(q(t), 1) + h( v(t), f) + q(t) y(r) = 0 ax. 

since the integrand in (5.14) is nonpositive. Thus 

--4 E afKY) if and only if -q(f) E c%( y(t), t) a.e. (5.15) 

Let h = u -I- w,. + vA. Since u, I,v,. , and ‘I/~ are normal concave integrands, h 
is a normal concave integrand. Since u satisfies a growth condition and by 
virtue of the definition of an indicator function, h satisfies (5.13). By 
Theorem 4.11 the pair (F, p) satisfies the global Euler-Lagrange inclusion 
(8) which reduces to 

-(A 0, jq E af(F, LF), -P(O) E N~Z). (5.16) 

(5.15) and (5.16) imply that the pair (Z; jj) satisfies the local 
Euler-Lagrange inclusion 

-(h(r), O,p((t)) E ~%2(Z(t), i(t), t) a.e. W 
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It follows from the separability of r and the definition of h that p(t) E 
au(F((t), t) a.e. Since u is increasing p(t) > 0 a.e. The argument used to show 
that (67) implies (m shows that (E) implies (H), substituting 4 in (5.11) for 
@ in (4.3). Since (2, p) E WLqn X W??, the transversality condition (T) 
follows at once from Lemma 3.1(i). I 

5.13 Remark. Theorems 4.11 and 5.12 can also be used to analyse the 
problem of resource allocation when the economy consists of a finite number 
of producers with technology sets (T,...,&) and a finite number of 
consumers with preference functions (U, ,..., Uk). 

Let r,(.), i = I,..., m, denote the technology correspondence of each firm, 
Di = R:, i = I,..., m. 

ASSUMPTION (a). r,(.) is regular and separable, i = l,..., m, and I-(.) = 

Ci”=l ri(‘) t f sa is res a growth condition, with growth function y. 

Let .$ denote the set of programs (zi, ai) such that zi E Wt.+” x Ye:;“, 
(zi(t), ii(t)) E ri(r), x,(t) E RI a:e., x,(O) = xp, i = I ,..., m. Then ,F = 
Cy!,zandX= (zl (z,f.z)~Y}. 

I assume that the preference ordering of each consumer can be represented 
by an integral functional 

Uj(c-g = !o”’ uj(&(t), t) dt, j = I,..., k. 

5.14 DEFINITION. A utility function u is strictly increasing if u(w’, t) > 
u(w, I) whenever w’ > w  (012 oi, i = l,..., n, UJ~ > wj for some j) for all 
t E [0, co). I say that U defined by (5.8) is (strictly) increasing if u is 
(strictly) increasing. 

ASSUMPTION (b). uj is regular, strictly increasing, and satisfies a growth 
condition compatible with v, where v is a density function relative to y, j = 
1 k. ,*.a, 

Let Ck-‘={aER~l~jk=Iai=l} denote the (k - I)-dimensional 
simplex. Consider the family of induced utility (convolution) functions Lr: 
Yf,*“-+ (--a~, cx)) defined by 

U(c) = U(c; a) = sup 
I 
,~lojuj(d) 1$,&c], aEzk-‘. (5.17) 

Ckq,.” 

For c E Ppl,n, I let c > 0 denote c(t) > 0 a.e. 

5.15 THEOREM. Let Assumptions (a) and (b) be satisfied. 

(i) For every a E Ck-’ there exists an optimal program PE Wt.*“. If 
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a > 0, Z induces a Pareto optimum (,FI ,..., Z,, I?,..., Fk) where f - CT’, Fi, 
E= c,“=* 3. 

(ii) Let x,, = CT=, xy > 0 and let (F1 ,..., Z,, Cl,..., F”) be a Pareto 
optimum. If .F is normal, f(t) > 0 a.e. and F’ > 0, j = l,..., k, then there exists 
a price system p E WZY’, p(t) > 0 a.e. such that [Z, ,..., Z,, I?,..., Fk, ~71 is an 
equilibrium with transfer payments. 

Proof (i) follows by a straightforward argument from Theorem 5.12(i). 
(ii) Let F = {c ( (x, c) E F}. S ince i is normal we may assume c E F 
implies c 2 c’ E F. Let 9 = {(cl, ,..., U,) ( Uj = Uj(c’), Cj”=, c’ E F}. By the 
free disposal and convexity of B and since Uj are concave and increasing, i’/ 
is a convex subset of Rk. By a standard separation theorem, since (Z, ,..,, F,,, , 
-1 c ,...) Ck) is a Pareto optimum there exists E E Ck-’ such that 

k k 

“ Lijujz x tijiJj, 
,r, 

V(U, ,.... U,) E P, (5.18) 
j=1 

where fij = U,(P). Thus ,F is an optimal program for the utility function 
(5.17) with a = 6. Since by Assumption (b) Uj is concave and continuous on 
5Ppf.q”, j = l,..., m, it is readily shown that U is concave and continuous on 
YE*“. By the proof of Theorem 5.12, .F is nonempty under perturbations. 
Thus by Theorem 4.11, (8) is satisfied. Since F(t) > 0 a.e., this implies 

-(ji 0, p) E (0, au(F), 0) + d!P& c, k). (5.19) 

If we let S= -i, since .Bc .‘<(x,), (5.19) and the separability of f imply 

(jw+k)-@x)2 (@,c+f)-(t&x), v (x, c, i) E .9 

and hence, since .? = Cy=, .3$, 

(P, Fi + ii) - (q, -Fi) 2 (p? Ci + ii) - (9, xi)3 V(x,, cir ai) E.5, 

i = I..... m (5.20) 

so that each firm maximises intertemporal profit, (p, ci + ii> being the 
revenue derived from flow output and (q, xi) the rental cost of capital. 

(5.19) and the separability of r imply FE X/(F). It is readily shown that 
this implies p E Cj XT,(F$ j = l,..., k. By the definition of a supergradient 

Ej(Uj(c’) - Uj(&)) 5 (p, c’ - i?), V& E YL*", j = l,..., k. (5.21) 

Since I? > 0 and Uj is strictly increasing, j = I,..., k, 6 in (5.18) satisfies 
iij > 0, j = l,..., k. It follows from (5.21) that each consumer maximises 
utility subject to the budget constraint 

()7,,-i?)~O, j = l,..., k. 
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This property combined with (5.20) and CT!, Ci = F= xi”=, c’ is the 
definition of an equilibrium with transfer payments [i, ,..., Z;, , Cl,..., F’, 81. I 

5.16 Remark. Since the equilibrium price satisfies p E W?P_ by 
Lemma 3.1 

(Pv ai) + (b, Xi j = -p(O) X,(O), vx, E wy. 

Thus if pi = (ci ( (zi, ii) E .YJ), then (5.20) implies 

(PT cij 2 (P7 ci), VC, E 5, i = l,..., m. 

Thus firms may also be viewed as purchasing new capital equipment at each 
instant at the cost P(t) ii(t) and subsequently owning the capital. The inter 
temporal profit which is maximised then reduces to (p, ci). Thus the stock- 
flow-rental economy of Theorem 5.15 which is characterised by the activities 
[xi, cir ii, d, i = l,..., m, j = l,..., k] and the price system (&p) may be 
reduced to a flow-ownership economy characterised by the activities [ci, c’, 
i = l,..., m, j = l,..., k] and the price system p, In the latter description of the 
economy capital has disappeared and only the flow activity of producers and 
consumers remains. 

5.17 Remark. Theorem 5.15(ii) is the familiar theorem of welfare 
economics [8, Theorem 2 and Remark] giving conditions under which a 
system of prices can be adjoined to a Pareto optimum to generate an 
equilibrium with transfer payments. Theorem 4.11 serves in place of the 
separation theorem, which is not applicable here, to guarantee the existence 
of a system of prices. Clearly, in the reduced form flow-economy the 
existence of PE i9rV” may be obtained via a separation theorem, by 
exploiting the lower semicontinuity of U. 

5.18 Remark. [ 161 shows in a related framework how results similar to 
(i) and (ii) in Theorem 5.15 may be supplemented by a fixed point argument 
to obtain the existence of a competitive equilibrium. 

6. APPLICATIONS 

In this section I consider two simple applications of the results of the 
previous section. In the first case feasible programs are bounded, in the 
second case feasible programs are unbounded and capable of growth at a 
positive exponential rate. In both cases I assume that the utility function U 
satisfies the following condition: 
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ASSUMPTION A. The utility function u in (5.8) is given by 

u(w, t) = u(0) e - st, O<d<cQ, 

where (i) u(o): R -+ R is regular, (ii) there exists b > 0 such that I au(o)1 5 b 
for all w  E R, (iii) u is increasing. 

6.1 EXAMPLE. (Bounded case). Consider the following reformulation 
of the ciassical one commodity economy of Koopmans [ 13 1. 

ASSUMPTION B. The output correspondence f in (5.7) is given b? 

f 01, t) = [O, &I] a.e., Wd = 1” (W) - k) &-, x E R + 3 
-0 

where (i) $k’) 5 (k) for all x’ 2 x E R + , (ii) 0 < A < 4(O), (iii) there exists 
,$ E (0, 00) such that 4(x’) < 1. 

#k) denotes the marginal product of capital and I, denotes its exponential 
depreciation rate. Assumption B implies that there exists 2 E (0, co) such 
that h(0) = he) = 0, h&) > 0, x E (0,x1). We let D = [0, 21, a E (--co, 41. 
Let m = laxI+ maxo.,,Gi hk). If x0 E [0, i], then every feasible path satisfies 
40 E [O, x^l, c(t) E 10, ml, W E I- m, m] a.e. Thus f satisfies a growth 
condition with 

y(t) = ae” a.e., a = max(i, m) 

for any E’ > 0, so that 

v(t) = ae-” a.e.. &>C (6.1) 

is a density function relative to 1’. Since 6 > 0 by Assumption A, there exists 
0 < E < 6, and since by A(ii) 

lh(o).ep6’/~ be-&‘=,u(t) a.e., VoER (6.2) 

there exists /3 > 0 such that 

/lp(t) 5 v(t) a.e. 

so that (u, r) satisfy compatible growth conditions. If we note that 4 in 
(5.11) reduces to 4(x, w, q, t) = q(hk) - w) a.e. with < = (x, o) and that 
ND(x) = (0} if x E Int D, then Theorem 5.12 yields the following. 

6.2 PROPOSITION. (i) Zf Assumptions A and B are satisfied and v is 
given by (6.1), then there exists an optimal program FE Wt..’ X 9:;‘. 
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(ii) If in addition x,, E (0,f) and i is normal, then there exists a 
supporting price J? E W:J,‘, p(t) > 0 a.e. such that (H, T) are satisfied. 

(iii) Zf (u, h) are d@rentiable and -f(t) E (O,i) a.e.. then (H, T) 
reduce to 

-j(t) = p(t) h’@(t)), 0 = P(t) - u’(F(t)) epd’ 

k(t) = h@(t)) - F(t) a.e., lim p(t) X(t) = 0. 
,-CL 

(6.3) 

6.3 Remark. Equations (6.3) form the basis for Koopmans’ analysis. 
Assumptions A and B, x0 E (0, f) are those of Koopmans [ 13, pp. 261, 2751 
with three exceptions. First, I make no differentiability assumption on (u, h). 
(H) are thus dSfferentia1 inclusions as opposed to the differential equations in 
(6.3). Second, Koopmans assumes 6 < g(0) - 1. This ensures f(t) > 0 a.e. 
and hence the validity of (6.3). Third, I am obliged to bound the marginal 
utility of consumption from above so that utility functions considered by 
Koopmans for which u’(w)+ co as o + 0 are excluded from my analysis. 

6.4 EXAMPLE. (Unbounded case). Consider a simple extension of 
Koopmans’ economy to allow for two effects in production. First, the 
absence of depreciation of capital goods (A= 0), f k, t) + [0, CO) as x --t co 
for fixed t, and second, the effect of technical change, f (,y, t) + 10, co) as 
t + 00 for fixed x. 

6.5 DEFINITION. A function h(.): R + -+ R + is said to have an asymptotic 
exponent u if for every a > 0 there exists x’ such that 

xE < hti) < x’, Qx > x’, 

where (T = r~ - a, a=cJ+a. 

ASSUMPTION C. The output correspondence f in (5.7) is giuen b> 

f (x, t) = [0, e”‘h(x)] a.e.. h@)= \%5)d<. XE R,, 
-0 

where (i) 4(x’) 2 #h) for all x’ 2 x E R + , (ii) g(x) > 0 for all x E R + , (iii) h 
has an asymptotic exponent u E (0, l), (iv) 19 E (0, co). 

Let D = [0, co), a =O. In the proof of Theorem 10.1 in [ 171, I showed 
that if we let p = 13/( 1 - cr), then for every E’> 0 there exists az > 0 such that 
every feasible path satisfies 

1) z(t), $t)lj 5 y(t) = ageCp + ” a.e. 
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Thus 
v(t) = aEemcP + “[ a.e., &>t (6.4) 

is a density function relative to y. If 6 > p, then there exists E > 0 such that 
6 > p + E. Thus if ,U is given by (6.2), there exists /? > 0 such that 
PP(~) 5 v(t) a=, so that (u,r) satisfy compatible growth conditions. 
Theorem 5.12 yields the following. 

6.6 PROPOSITION. (i) Let p = 13/( 1 - a). If Assumptions A and C are 
satisfied, 6 > p and v is given by (6.4), then there exists an optimal program 
FE wy x 2$‘. 

(ii) If in addition x,, > 0 and i is normal, then there exists a 
supporting price p E WFl’,‘, p(t) > 0 a.e. such that (H, 7’) are satisfied. 
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