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I. INTRODUCTION 

This paper presents a simple theoretical modei of the spot and futures 
markets for a storable commodity. We focus our attention in particular on 
the classical futures markets, those for harvested storable commodities. For 
these commodities which include grains such as wheat, corn, and soybeans, 
while there is active trading on the spot and futures markets at each instant, 
the output of the production process does not occur continuously in time but 
appears rather at the end of each crop year (production period) at harvest 
time. For this class of commodities we present a simple partial equilibrium 
model for which the predicted relations between the spot and futures prices 
are broadly consistent with those familiar from empirical data. 

The analysis is divided into two parts. We first introduce spot markets 2nd 

establish the existence of a spot market equilibrium (Sections 3-6). We then 
introduce futures markets and by an arbitrage argument determine 
equilibrium futures prices (Section 6). This subdivision of the probiem of 
determining a simultaneous spot and futures market equilibrium is clearly 
artificial in a more general analysis but is the appropriate first approx- 
imation under the assumptions of this paper. 

Section 3 sets up the model of intertemporal equilibrium on the spot 
market. A single representative firm produces, sells, and stores the 
commodity. An important component in the description of the firm’s profit 
maximising activity is summarised in a slack-out cosl fzmcfion. This function 
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measures the expected costs incurred by the firm when it fails to meet 
demand on certain related markets, the demand on these markets being 
subject to continual random fluctuations. These expected costs are a 
decreasing function of the level of working stocks held (Assumption 1). The 
activity of consumers at each instant is summarised in an aggregate demand 
function (Assumption 3). A spot market equilibrium is then a pair consisting 
of a spot price and a current rate of sale of inventory at each instant 
t E [0, co) such that the firm maximises (expected) discounted profit and the 
spot market is cleared at each instant t E [0, co) (Definition 1). 

The problem of establishing the existence of a spot market equilibrium is 
reduced to the problem of showing that a certain maximum problem (9) has 
a solution which can be supported by a system of prices. This problem is in 
turn decomposed into two subproblems: first, a sequence of problems of 
allocating a given amount of inventory within a crop year (%f, t = 0, I,...) 
and second, the problem of allocating the inventory across the crop years, 
the so-called carry-over problem (9). Sections 4 and 5 establish the 
existence of a solution and a system of prices for these two subproblems. The 
analysis of these two sections draws extensively on some recent results of 
Rockafellar [ 14, 151 and Magi11 [ 121 on convex variational problems as well 
as more traditional results from the theory of differential equations (differen- 
tiable dependence of a solution on initial conditions [3]) and difference 
equations (the stable manifold theorem [7]). 

In Section 6 after establishing a preliminary result (Proposition 5), we use 
the results of Sections 4 and 5 to establish the existence of a spot market 
equilibrium (Corollary). We then introduce futures markets and the basic 
assumption concerning the pricing of futures contracts’: trading on the 
futures market leads the price of each futures contract into equality with the 
(expected) future spot price at the time of its maturity (Assumption 4). Our 
objective, in the language of futures markets, is to determine the behaviour of 
basis, that is, the spread between spot and futures prices. In Proposition 6 we 
show how basis depends on the level of initial inventory: if there is deficient 
(surplus) inventory at date zero, then the futures market has an inverted 
(carrying charge) structure. We also show that if initial inventory is at its 
average long-run level, then basis exhibits a regular seasonal cycle (see 
Figs. 2 and 3). The profile of spot-futures price spreads reflects two basic 
arbitrage conditions: those arising from profit opportunities connecting 
adjoining instants within a crop year and those that arise from profit oppor- 
tunities connecting adjoining crop years. The stock-dependent structure of 
the spot-futures price spreads predicted by our equilibrium model conforms 

’ The problem of bias in futures prices is discussed in Section 2. This is a long standing 
controversy for which the reader is also referred to the papers of Cootner, Telser, Gray, 
Houthakker, and Rockwell [ 13, pp. 41-100, 155-1891. 
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well with the empirical evidence [ 19, Chaps. III, IX; 20; 2: ]‘, provided the 
spot-futures price spreads over an interval of time are interpreted as the 
average spreads over many such intervals, each interval starting with tbe 
same level of inventory. These results are a natural generalisation to an 
explicit model of intertemporal equilibrium of the earlier results of Kaldor 
/ S] and Working [22, pp. 3-3 11. They reveal, within the admittedly idealised 
framework of this model, the role that futures prices play in inducing a 
(Pareto) optimal allocation of inventory over time. 

2. EXTENSIONS AND EARLIER WORK 

An early attempt to develop a theory of price formation on futures 
markets was presented by Keynes 191”. He viewed futures markets as 
insurance markets in which speculators insure hedgers against the risk of 
price changes. As compensation for this role, hedgers pay speculators a risk 
premium. The price of a futures contract maturing in a given future period 
hes below the expected spot price of that period by the amount of this risk 
premium. His theory of normal backwardation then asserts that under 
normal conditions, under which today’s spot price coincides with the 
expected spot price of the future period, the futures price will lie below 
today’s spot price by the amount of the risk premium. 

A wealth of empirical data regarding the structure of spot and futures 
prices on grain markets was published in the Report of the Federal Trade 
Commission on the Grain Trade [ 191. This was followed by the careful and 
extensive investigations of Working [20, 211. This analysis revealed that in 
the case of harvested storable commodities, the spread between spot and 
futures prices varies in a systematic way with the level of existing inventories 
of the commodity, the spread being negative (positive) when the stocks are 
relatively abundant (scarce). It is easy to see that a tbeory of price formation 
based solely on the risk premium paid to speculators leads to results that 
contradict these empirical findings if, as Keynes assumed, the risk ~rern~~~~ 
is an increasing function of the level of inventories. 

In his Treatise OIZ Money [ 10, pp. 127-1291 Keynes realised this difficulty 
and introduced at least implicitly the idea that inventories offer producers a 
convenience yield. It remained for Kaldor [8] to clarify these ideas and to 
develop a theory of price formation based on the risk premium and the 
convenience yield of inventories. Various modifications and extensions of 
this theory were subsequently studied by Working 1221, Brennan 121, Tetser 
] IS], and Samuelson [ 17]. These papers were largely confined to an intuitive 

‘See also Section 2. 
’ This is the theory of futures markets presented by Hicks 16, pp. 137-139 1. 
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analysis of the spot-futures price spread implied by a single period 
equilibrium on the spot market. 

The earlier theories fail to distinguish between the forces that determine 
futures prices within a crop year (old crop futures) and those that determine 
futures prices in a subsequent crop year (new crop futures). At any given 
time both types of futures contract are traded and the distinction is not unim- 
portant, since the Keynesian theory of normal backwardation must in 
general refer to new crop futures, while the traditional theory [ 19, Chap. IX] 
that emphasises the regular seasonal cycle in the spot-futures price spread 
(as an average over years) refers to old crop futures. In our framework the 
forces that lead to the pricing of old and new crop futures fall out in a simple 
and natural way. 

Empirical evidence does not support Keynes’ contention [9; 10, 
pp. 127-1291 that futures prices for harvested storable commodities exhibit 
in an appreciable degree the property of normal backwardation. It is clear 
from empirical evidence that the convenience yield is of much greater impor- 
tance in determining price relations on these commodity markets [22, 
pp. g-101. It is thus appropriate in the first approximation developed in this 
paper to omit consideration of the risk premium in analysing the spot-futures 
price spreads. 

It will be clear from the analysis of Sections 3-6 that the inventory model 
of this paper does much to explain the basic relations between spot and 
futures prices. To proceed beyond this first approximation we need to 
introduce uncertainty explicitly. There are three basic directions in which 
extensions can be sought: random harvests, random demand, and infor- 
mation. 

If the harvest sequence of Section 3 is replaced by a random harvest 
sequence, then the spot market equilibrium becomes a random process; it 
may then be reasonable to use the Keynesian hypothesis allowing futures 
prices to be equal to the expected spot price less a risk premium. If the 
harvest sequence has a stationary probability distribution, then it may be 
possible to obtain an analogue of Proposition 6. This would amount to a 
bona fide intertemporal model of the Kaldor-Keynes theory [8]. 

Of more basic theoretical importance is the need to obtain an explicit 
model of the process that generates the stock-out cost function (convenience 
yield). One approach would be to introduce random demand and to model 
more precisely the process by which stocks are transformed into saleable 
output: holding stocks somewhat in excess of the average annual requirement 
enables the producer to meet random surges in demand. 

If speculators carry risk for hedgers (the representative firm in the present 
paper), speculators are also typically equipped with advance information 
about future random events (harvests, demand). Grossman [.5], Danthine 
[4], and Bray [ 11 have analysed the role of speculators in disseminating 
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advance information through the futures price to uninformed agents 
(hedgers) in simple two-period models. Their equilibrium, when it exists, is a 
bona fide joint equilibrium on the spot and futures markets. This is perhaps 
the most important direction in which the analysis of this paper needs to be 
generalised.4 

3. SPOT MARKET EQUILIBRBUM 

We consider the problem of generating a spot market equilibrium for a 
harvested storable commodity like wheat. There is a certain supply and 
demand activity at each instant for both flow and stock amounts of the 
commodity. We view the trading activity as taking place in continuous time. 
However, at certain discretely spaced intervals of time (the end of each crop 
year) a harvest is produced. Since the harvest arrives but once each year, the 
sequence of harvests needs to be allocated not only within each crop year; 
but also across the crop years. 

We model the activity of producers by the activity of a single represen- 
lative firm. This firm produces, stores, and sells the commodity. For 
simplicity the production is costless: the output arrives as a harvest at the 
end of each crop year. The firm can store the commodity and in so doing 
incurs interest charges arising from the foregone interest on the funds tied up 
in inventory. The firm can also sell flow amounts of the commodity at each 
instant to consumers, thereby depleting its inventory. In addition the firm is 
involved in production activities for certain related markets on which 
demand is subject to continual random fluctuations. To meet these ffuc- 
tuations the firm needs to keep on hand working stocks of the commodity. 
Since the failure to meet demand on these markets incurs costs (the lost 
revenue) and since the probability of such a failure decreases as the level of 
working stocks is increased, we assume that the (expected) stock-out costs 
incurred in this way are a decreasing function of the level of working stocks. 
For simplicity we do not distinguish between these working stocks and the 
stocks held as inventory for direct subsequent sale to consumers. 

This description of production, storage, and sales activity of the firm thus 
combines within a single firm activities which, in the case of a commodity 
like wheat, would be undertaken by separate agents, namely farmers 
(producers), millers (holders of working stocks), and elevator operators 
(storers and sellers of inventory). The firm seeks to al!ocare its production, 
storage, and sales activity over time so as to maximise its (expected) 
discounted profits. 

The activity of consumers is modelled in a highly simplified way. Their 

4 The Grossman-Danthine-Bray informational arguments cannot be used to expiaiz the 
observed spot-futures price spreads that are, however, expiained by the model of this paper. 

.409/91/%18 
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aggregate demand for flow amounts of the commodity at each instant 
depends only on the current spot price and is a strictly decreasing function of 
this price. 

Let Y’h) denote the (expected) stock-out costs at any instant when the 
firm holds an amount of inventory x 2 0. Let W’(D) denote the collection of 
real-valued functions defined on D c R”, n 2 1, which are twice continuously 
differentiable on D and let Y’k) = (d/&) Yk). 

ASSUMPTION 1 (Properties of stock-out cost function). 

(i) Yh): [0, co+ [0, co], YE @(O, 00) 

(ii) there exists s”E (0, a~) Such that 

qL> > 0, Y’o1) < 0, Y”O1) > 0, x E (O,s3, YcjofO, XE [i, w) 

(iii) there exists FYE (0, s^>, a 2 1 such that 

x-” 5 Y(x) < w, x E (O,Q 

(ii) implies that t k- t s oc ou s are not expected when stocks are at or above 
the level s^. (iii) implies that the firm must hold some positive level of working 
stocks if it is to stay in business: this condition is used to ensure that the 
steady state level of carryover is positive. 

Let h, denote the output (harvest) produced by the firm during the 
production period [t - 1, t] (the (t - l)th crop year): the output h, appears 
at the instant t = 0, 1, 2 ,.... Let x(t) denote the level of stocks (inventory) 
held by the firm at time r E [0, w) and let a(r) = (d/&)(x(r)), r E [0, w). 
The sale of inventory -i(r) at (almost every) instant t E [0, w) in 
conjunction with the sequence of outputs (h,, h, ,...) and the initial carryover 
(a, > 0) determine the path of the stocks x(r), r E [0, w). Thus if we let 

x(t + ) = lilj x(s), x(t-) = liE x(t) 

denote the right- (left-) hand limits of x(r) at time t for t = 0, l,..., then 

x(z) = x(t + ) + JT i(v) dv, zE(t,t+l) (1) 
f 

x(t+) = x(t-) + h,, t = 0, l,.... (2) 

Thus x(t-) denotes the carryover of stocks from the production period 
It - 1, t] into the period [t, t + 11, with x(0-) = co, while x(t’) denotes the 
initial inventory at the beginning of period [t, t + 11. The points of discon- 
tinuity of x(r), r E [0, w) are thus the instants at the end of each production 
period where h, arrives. 
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To avoid awkward problems of existence we assume that there is a 
maximal physical rate m > 0 (independent of r) at which the firm can unload 
and hence sell its inventory at each instant r E [O, co). Since we do not wish 
m to play a crucial economic role in the analysis that follows, we take m to 
be large relative to s^ + h. 

AssUh4~~10N 2. (i) h, = h > 0, t = 0, l,... . (ii) s^ + h < m. 

Let ~7 denote the space of real-valued Lebesgue measurable functions 
defined on [0, co). We are interested in the two subsets of ~~~ defined by 

Y;[O,m)= qEdf /mlq(;l)~dr< Cc 
i I JO 

Let ;F denote the set of feasible paths for the firm’s disposition 
inventory. We take .F to be a subset of Ya[O, co), 

(2(t), x(t)) E [-VI, 01 X [0, cm) a.e. j 
(l)and(2)hold,x(O-)=u, 1’ 

(sale) of 

Let q(r) denote the price at date zero for one unit of the commodity 
deliverable at time r E [0, cys). If q E pi [0, co), then the Grm’s (expected) 
discounted profit is well defined for each R E Z and is given by’ 

n(i) = tgo I:’ ’ (q(z)(--l(z)) - Y+(r)> e P8z) 629, 
i 

where 6 > 0 denotes the instantaneous interest rate. 
It only remains to specify the aggregate demand behaviour of consumers. 

Let $(c(r)) denote the spot price that consumers are prepared to pay at time r 
for the aggregate flow amount c(r) deliverable at time r f [O, co). 

P~WJMPTION 3 (Properties of demand function). 

6) 0: (0, ml --f (0, a) 

(ii) #(r)- co as 5-O 

(iii) 4 E g”(O, ml, f(t) < 0, tE (0, ml 
(iv) -m < G(r) = jt, 4(s) ds, l E (0, rn]~ 

’ A proportional storage cost can also be included, hr is omitted here IO simplify .nc 
analysis. 
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DEFINITION 1. Let q*(t) = p*(z) IT” a.e. A spot market equilibrium is 
a pair (q”, -?*) E Pi[O, co) X Y’,[O, co) satisfying 

(i) 1* E R and +C*) 2 n(i) Vi E St 

(ii) --i*(t) = #-‘(p*(z)) if P*(T) 2 4(m) a.e. 
=m if P*(T) < i(m) 

(i) is the standard profit maximisation condition. (ii) requires that the spot 
market clear at almost every instant r E [0, a) with the proviso that 
whenever the spot price falls below i(m) the amount traded be equal to m, 
the maximum flow amount that can be delivered at each instant. 

Our objective is not only to establish the existence of a spot market 
equilibrium, but also to show that this equilibrium has an important 
convergence property. In Section 6 we introduce futures prices and show that 
this convergence property leads to certain basic relations between spot and 
futures prices which conform closely with the known empirical relations 
between spot and futures prices on markets for harvested storable com- 
modities. 

The existence of a spot market equilibrium will be established by showing 
that the problem 

3 go Jl” l (@(-i(z)) - Y(x(t))) e-” dz 

has a solution and that this solution can be supported by (is value 
maximised by) a system of prices. As it stands the problem (9) is rather 
complex. The analysis is made much simpler if it is decomposed as follows: 
Let 

x(t-) = s,, x(t+)=s,+h, t = 0, l,..., 

so that {s~}~=~ denotes the sequence of carryovers of inventory from period t 
to period t + 1 and {st + h, st+ i}zO denotes the sequence of initial and 
terminal inventory levels for the tth crop year for t = 0, l,... . Introduce the 
feasible sets 

9 = {(so, s, )... )~Sg=~.O,O~~~,O~~f+h-~t+,~m,t=O,l ,... } (3) 

and for a E (0, m), t = 0, l,..., 

.f+ 1 
&(a) = u E .LFff[t, t + l] / U(f) E [-m, 0] a.e., 

I 
Iv(z)1 dz=a . (3’) I 

I 

For a function y(.) defined on [0, co) let y,(.) denote the restriction of y(.) to 
the interval [t, t + 1 ] 

Y,(T) = Y(@> zE [t, t+ l], t=o, l).... 
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With this notation establishing the existence of a solution and a system of 
Prices for (9) is equivalent to establishing the existence of a solution and d 
system of prices for the carryover problem 

(where /I = e-“) and the sequence of crop year problems 

i 

If1 
= sup (@(-it(r)) - Y(x,(r))) e-s(z-t) dr, t = 0, I,..., 422,; 

-fSJi t 

where -3; = T(s, + h - So+ J, x[(r) = s, + h i 1; if(u) dv, z E (t, 1 + “i ). in 
(9) the function v(., .) is defined by (-ZJ, and in Particular by (5?,,) since it 
is independent of time. In (3,) the endpoints (st + h, sI+ i) are obtained from 
the solution of (9). 

In the next section we establish the existence of a solution and a system of 
Prices for each crop year problem (L?,), and in Section 5 a similar result is 
established for the carryover problem (9). In the latter case the result is 
obtained by establishing an important convergence Property for the solution 
of the problem (5%‘). 

4. CROP YEAR PROBLEM 

In this section we establish the existence of a solution and a system of 
prices for the typical crop year problem (-Fil). It suffices to consider the 
problem (9,) on the interval [0, 11. To further simplify notation we let 
(s, + h, Sl) = (x0, Xl>. 

DEFINITION 2. We say that the pair of inventory endpoints (xo3 x1) is 
attainable if (x0, x1) EM= {(x0, xi) / 0 < x,, 0 ( x0 -xi ( m}. 

This requires that the crop year begin and end with a Positive level of 
inventory and that a positive amount be allocated to consumption within the 
Period, this amount being less than the maximal amount m that can 
physically be delivered over a unit interval of time. 

PROPOSITION 1. if Assumptions 1 and 3 are satis$ed and the pair $f 
inventory endpoints (x0, xl) is attainable, then the crop year problem (A,) 
has a unique solution. 

ProoJ We embed the problem (2,) into the framework of agill [ I Z Jo 
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Let F’(i) = J”: (@(-z?(t)) - Y(x, + fk J?(Z) dr)) e-” dt and recall the 
definition of X0(x,-x,) in (3’). There exist constants -co < _a ( E < co 
such that 

@(-i(t))- Y kO+lii(i)dr) sa a.e. YaE&(x,-xX1), 

a 5 @(--g(t)) - Y (x0 + ($(r) dr) a.e. for some -- 2 E FO(x,, - x,). 
0 

Since it follows from Assumptions 1 and 3 that -!Fk) 5 0, x E [0, co), 
Q(r) 5 0, r E [0, m], we may set a= 0. Consider the path -g(t) = 
x0 -x1 > 0, t E [0, 11. Since x(t) 2 x1 > 0, t E [0, I] by Assumptions l(iii) 
and 3(iv), Y(xJ < co, -co < @(x0-x,) so that we may set _a = 
@(x0 - x,) - Y(x,). By [ 12, Proposition 7.1(i)] with I = [O, l] it follows that 
F(i) is upper semicontinuous on X0(x0 - xl) in the ~(9~) 9r) topology. It 
follows from [ 12, Proposition 7.5(i)] that Fo(xo - x1) is 0(9~, ik;) compact. 
Thus a solution to (-2,) exists. By a standard argument the strict concavity 
of the integrand @(.) - Y(.) implies that the solution is unique. 1 

PROPOSITION 2. Let Assumptions 1 and 3 be satisfied, and let the pair of 
inventory endpoints (x0, x,) be attainable. If li-* E Fo(xo - xl) is the optimal 
solution to (To), then there exists an absolutely continuous function p*(a) on 
[0, 1 ] such that 

b*(t) = 6p*(t) + Y/(x*(t)) a.e. (9 

i*(t) = -4-‘(p*(t)) if p*(t) 2 4(m) a.e. w> 
(ii) 

m if p*(t) < 4(m) a.e. 

ProoJ: Since i*(t) 5 0 a.e., x*(t) 2 xi, t E [0, 11. Thus we may, without 
altering the optimal solution, redefine Y(e) as 

u’ow = u101> if x2x, 

= Wl) + Y’cdol -x1> if x<x,. 

Let d,( .) and f( .) be defined by 

d,(r) = 0 if t E l-m, 01, Ax, 5, t) = (@C-t) + d,(t) - ‘u,ti)> ems’ 

=-a if c& [-m, 01, 

and let B = [0, x0] x [x1, 00); then the problem (3,) is equivalent to finding 
an absolutely continuous function x(.) on [0, l] such that (x(O), x(1)) E B 
and ji f(x(t), i(t), t) dt is maximised. This is equivalent to [ 16, p. 3, 
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Problem (l~i)]. We note that since the pair of endpoints (x,,~ xl) is 
attainable, int(Mn B) f 0. Furthermore, since --oo < !P&), Vx E R, 
condition D, of Rockafellar [16, p. 51 is satisfied. It follows from 116, p. 7: 
Corollary I] and [ 14, p. 208, Eq. (9.3)] that there exists an absoluteiy 
continuous function q*(. ) on [0, 1 ] such that 

-(4*(t), q*(t)) E a-(x*(t), i;.“(t); t> 

= (-Y;(x*(t), -@‘(-i*(t)) + 2A,(i*l(t))) e-” a.e. (4) 

where 2f(z *; r) denotes the superdifferential of f(. ; t) at z*. Let q*(t) = 
p*(t) e-” a.e.; then 4*(t) = (b*(t) - &*(t)) e-*” a.e. It then follows from 
the definition of a supergradient that (4) is equivaknt to 

p”(t) i*(t) + (pyt) - 6p”(t)) x”(t) + @(-i;-*(t)) - YJxx”(t)) 

2 p”(t)5 + (b*(t) - JP”(f))X 

+ @(-0 - u1,w V(y,<)ER X [-m,O] a.e. (5) 

Since q” is absolutely continuous on [0, 11, P*(t) = q*(t) est < co, t E [0, I]. 
Since by Assumption 3(ii) Q’(l) + co as <+ 0, it follows from (5) that 
-i*(t) > 0 a.e. But then we may replace the region R x l-m, 0] in (5) by 
R X [-m, co). In view of the concavity of CD(.) - Y(s) and the fact that 
x*(f) 2 x,, t E [0, I], (5) is then equivalent to the conditions 

p”(t) - @‘(-i”(t)) = 0 if p*(t) 2 Q(m) a.e. 

i*(t) = -m if p*(t) < a’(m) a.e, 

g*(t) - ;Sp*(t) - Y’(x*(t)) = 0 a.e. 

which is precisely (R). @ 

Propositions 1 and 2 allow us to deduce the following result which is basic 
for the analysis of Section 5. 

LEM~V~A 1. If Assumptions 1 and 3 are satisfied, thea the function v(.: .) 
defined by (TO) is strictly concave and v(. , .) E SF ’ (J’^).’ 

’ Let S(z; t): R” x R + R; then the superdifferential of S(. ; I) at r* E R” is defined as the 
subset of the dual space R” 

af(z*;t)= (r-E R”/f(z;t)-j”(z+;r)s r(z-z*),VzER”} 

r E ayyz “; !) is called a supergradient of f(. ; t) at z*. When S(. ; I) is differentiable at z’+. 
i3f(z*; t) consists of a single element, the gradient of f(. ; t) at z*. See [15 ] for a fuli 
discussion. 

‘If x0 -x1 = M and x1 > $ since Y’(x*(t)) = 0, t E [O, 11, the price paths p(t) = ~,,e*‘. 
I E (U, I], for p0 E (0, $(m) e-“) and 2*(r) = --m, f E 10. I il satisfy (3). In this case, c(., .) 
is not differentiable. 
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ProoJ: It is straightforward to show that v(., .) is strictly concave. By 
[ 16, p. 35, Theorem 4(b)8 1, to show that v(., .) is differentiable on JF, it 
suffices to show that if (x0, x,) E M and if x* denotes the optimal solution 
of (9,) satisfying (x*(O), x*(l)) = ( x,,, xi), then there is at most one 
absolutely continuous function p*(.) on [O, I] such that (‘*,x*) satisfies 
(2). Since (x,, , x,) E JY implies x, - x, < m, there is a subset A c [0, l] 
such that -a*(t) < m and hence p*(t) = #(--a*(f)) for t EA. Since 
--a*(t) > 0, t E [0, 11, it follows from the properties of ul’(.) that A must be 
an interval k, F] for some _z < t. Since p* is continuous, 1” is continuous on 
Lr, F]. Since a!* is unique, any absolutely continuous function p satisfying 
(3) must coincide with p* on the interval Lr, ~1. Since there is at most one 
solution of d(t) = dp(t) + Y’(x*(t)) on the interval [0, _z] satisfying p@) = 
p*@) and on the interval [Z; l] satisfying p(F) = p*(f), p(t) = p*(t), t E 
[0, I]. But then (p(O), p(1)) = (p*(O), p*(l)) so that v(., a) is differentiable 
at (x0,x,). Since v(. , .) is concave and differentiable on an open convex set 
JF, it follows by a standard result [15, p. 246, Corollary 25.5.11 that v(., .) 
is continuously differentiable onJ’“. 1 

5. CARRYOVER PROBLEM 

Consider the carryover problem (9) stated at the end of Section 3. The 
object of this section is to establish the existence of a sequence 

( $0 9 s, ,**a ) E 9 satisfying the first order conditions 

%(S, + 4 s,+A +P~,(st+l + 4 st+J = 03 t = 0, I,... (8) 

the transversality condition 

and the positivity and interiority conditions 

0 < s,, O<s,+h-s,,, <m, 0 < Ul(SI + h, St+ I>, t = 0, I,... (6) 

provided a certain condition is imposed on the initial carryover uo. Our 
method consists of establishing the existence of a solution to (a), (T), and 
(6) which also has an important convergence property. 

DEFINITION 3. A sequence s, = u > 0, t = 0, I,... satisfying (Z) and 
~,(a + h, a) > 0 will be called a steady state sequence for the carryover 
problem (9). 

* See also the remarks in [ 16, Sec. 5, p. 361. 
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PRQPQS~TI~N 3. If Assumptions l-3 are satis$ed, therz there exists % 
unique steady state sequence for the carryover problem (.@) 

s, = 0, t = 0, l,..., 0 < s^ 

ProoJ The attainable set M induces the following set of attainable pairs 
of initial inventory and consumption: 

By Lemma 1 the function u(. , .) defined by 

U(Y, c> = V(Y, y - c9, (Y3 cl E D 

is continuously differentiable on D. Thus the function 

r(s) = u,(s + h, h) - ,au2(s + h, h), s E (0, oo>, 8= l/(1 3-p) 

is continuous on (0, co). Our object is to show that there exist 0 < _s < P such 
that r&) > 0 > r(f). By the intermediate value theorem, there then exists 
_S < u < s^ such that Y(G) = 0. In view of (7), CJ satisfies (g). 

Let (x0, xi) E ,H with s^ 2 x, ; then the solution x*(a) of (5?J satisfies 
x*(t) 2 $ t E [O, l] so that Y(x*(t)) = 0, t G 10, 1] by Assumption l(n). 
Thus u,(sI + h, h) = 0. If we let 

w(h) = u(s^ + h, h) = s;$,, 1; @(-,2(t)) e-” dr 

then w’(h) > 0 since by Assumption 3(i) @‘(<j = #(<) > 0, 5 E (0, m], and 
0 < h < m by Assumption 2. Thus w’(h) = uI(f -t h, h) + u,(f + h, h) = 
tl,(s^+ h: h) > 0 so that @) = -pu,(s”+ h, h) < 0. 

Consider the crop year problem (9,) with (x0, xi) = (c, 0), 0 < c < m. 
Since -k(t) 2 m a.e. for any i E 6(c>, there exists B > 0 such that on the 
terminal segment, x(t) 5 m(1 - t), t E [ 1 - 0, l]. By Assumption l(iii) since 
a2 1, 

Since Q,(5) 5 0, t E lo, ml, u(c, c) = -a. Thus iim, ?y u(y, c: = 
lim,,, u(y, c) = -co. Let f(y) = u(y, h), y E (i2, co). For any y^ > h, f(j~) = 
f(y”) + J$ f’(s) ds, y E (h, oo), where -co < f(y”) 5 0. §incef(*) is concave, 
S’(e) is monotone, and sincef(y) +-co asyih,thereexistsh<z (y^such 
that 
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Let g(c) = u(y, c), c E (0, v). For any c” E (0, v), g(c) = g(6) + J”: g’(s) ds, 
c E (0, y), where -co < g(c”) 2 0. Since g(a) is concave, g’(.) is monotone 
and since g(c) -+ -CC as c 1‘ y, there exists ,c E (0, y) such that g’(c) < 0, c E 
I_c, y]. In particlar if y = h, there exists ,c E (0, h) such that z.Q(/z,s) < 0. 
Since uz(. ,_c) is continuous, there exists S > 0 such that z.+(h + s,_c) < 0, 
s E [0, $1. But then z.# + s, c) < 0, c E I,c, h + s), s E [0,5]. In view of (8) 
there exists _s > 0 such that f’(h +_s) = ~r(h +_s, h) > 0, a2(h +_s, h) < 0, so 
that r(s) > 0. Thus there exists s < CT < s^ such that r(a) = 0. Since 
u,(s + h, h) > 0, s E (0, $1, v,(u + h, a) = ((1 +p>/p> u,@ + h, h) > 0. 
Uniqueness of the steady state sequence follows from Lemmas 2 and 3 below 
which imply that r’(o) = u,,(o $ h, h) -p~u,,(a t h, h) < 0 for any steady 
state sequence st = 0. I 

Foru>O,zER”,letN,(z)={~ERn]]]<-z]]<a}andlet 

i, j= 1,2. 

The following two lemmas are crucial to the analysis of this section. 

LEMMA 2. Let Assumptions l-3 be satisfied, and let v(.) denote the 
function defined by (9,); then there exists y > 0 such that 
u E g*(NY(o t h, a)). Furthermore, 

u,~((T t h, a) = u2,(a t h, o) > 0 (9) 

ProoJ: We make use of the following result.’ If &,, Xl) E J’“, then 
(P,, -p’,) = Vu@,,, Zl) if and only if there exists a solution (p, x) of (X) 
satisfying (pO, x,) = (PO, X0) and (pl, x,) = (p, , Xl). Since (o + h, o) E J”, 
by Propositions 1 and 2 there exists a solution (p*, x*) of (2) with 

(xl?, xf) = (u + h, a). Let 

p = ul(u + h, a) 

then pz = p = - (l//3) zi2(o + h, o) = pf. The solution (p*, x*) is shown as 
the curve E’E in Fig. 1. The proof will be based on the following result 13, 
p. 22, Theorem 7.1; p. 25, Theorem 7.21: Let H: UC R” + R”, HE ST’(U), U 
an open connected set. If z*(t) E U, t E [a, b], is a known solution of the 
differential equation 

i(t) = HW)), t E [a, bl (10) 
then there exists cr: > 0 such that for all z, E N,(z*(r)) for some z E (a, b) 

’ See Rockafellar [ 14, p. 209, Theorem 5; p. 212, Theorem 6; 16, p. 35, Theorem 41. 
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there is a unique solution z(t, zr) of (10) satisfying z(r, zr) = z, ; furthermore 
z(t, .) E FZ’(N,(z*(z))), t E (a, b). Let y1= 2, z = (p, x), U = (0, co) X 
(0, co), and let H = (H’, HZ) denote the right-hand side of (R). Then by 
Assumptions 1 (i) and 3(iii), H E V1 (U). Let z * = (p”, x*) denote the 
known solution of (A?). It is easy to see that this solution can be continued 
to an interval [a, b] = [--E, 1 + E] containing the interval [0, l], for some 
F > 0. This allows us to set z = 1, t = 0 and to conclude that there exist o > 0 
and a function F(s) such that 

x0 - -q&P, 5 Xl> = 0, (Pl? Xl) E N&5 0) (i I) 

where FE V’(N,(p, a)). If F,(p, o) = 0, then if we let the terminal price be 
increased pi + p + dp,, while X, remains unchanged at xi = 0, then we must 
have Ax, = 0. Since the only point (rc, x) satisfying H’(n, x) = H’(zr, x) = 0 is 
(TX) = (m,Q> and since (co, 0) 6l2 U, the solution curves of (R) do not 
intersect in the domain U. Since the new solution curve (p’, x’) cannot 
intersect the curve (p*, x*) and since Ap, > 0, the curve (p’, x’) must lie 
entirely above the curve E’E in Fig. 1. But if (p’, x’) lies above the solution 
curve (p’“, xc), then at each stock level spot prices are higher, implying by 
Assumption 3(iii) that consumption and hence the rate of depletion is 
smaller, contradicting the assumption that the total depletion of stock on the 
two paths is the same (Ax, = 0, since xi =x1 = 0). Thus Ap, > 0 must imply 
Ax, < 0 so that 

F,(P, 0) < Q (121 

Equation (11) thus satisfies the conditions of the implicit function theorem 
[ll, p. 357, Theorem 61 and we can assert the existence of Q[ > 0 and a 
function f(. ) such that 

PI = “f-(x,, Xl), (x0,x,> E _V,,(a + h, 0) 
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where f E ST’(N,,(u + h, a)). But then -zi&,, x,) = f(x,, x,) E 
5?‘(N,,(a + h, us>). Furthermore by (12) 

u*1(u + h, (7) = -j-,(0 + h, 0) = l/F,(P, 0) > 0 (13) 

Similarly if we set r = 0, t = 1, we may conclude from the cited theorem that 
there exists /I > 0 and a function G(e) such that 

x, - G(P, > xo> = 0, (PO 3 x0> E qP> (7 + h) (14) 

where G E @?‘(N,(p, o + h)). An argument similar to that given above shows 
that if the initial price is increased p0 + p + dp,, while x, remains unchanged 
at x, = o + h, then we must have dx, > 0 so that 

G,(P, 0 + h) > 0 (15) 

Equation (14) thus satisfies the conditions of the implicit function theorem 
and we can assert the existence of /?, > 0 and a function g(.) such that 

PO = dxo, Xl>, (x0,x,) E J&,(0 + h, 0) 

where v,(xo,xl)= g(x,,,x,)E%Y1(ND,(u+h,~)). Let Y=min(cr,,P,); then 
v E %Y*(iV,(a + h, 0)). The conditions for the theorem on the interchange of 
order of differentiation [ 11, p. 3 18, Theorem 71 are thus satisfied. Applying 
this theorem and using (13) leads to (9), which completes the proof. I 

LEMMA 3. Under the assumptions of Lemma 2, 

(i) ~,~(a + h, 0) + ~~~(0 + h, 0) < 0 
(ii) u&u + h, u) + vz2(o + h, 0) < 0. 

Prooj Let q*(t) = ec”p*(t); then the first equation in (Z“) becomes 

Q*(t) = Y’(x*(t)) a.e., t E [O, 11. (16) 

Let x*(t; x0) denote the solution to (2,) with endpoints (x0, x1), the initial 
inventory being considered variable, and let q*(t; x,,) denote the associated 
price which satisfies (16). Integrating (16) gives 

a(xo> = q*(O; x0) - q”(1; x0) = - 1’ !P(x*(t; x0)) dt (17) 
0 

If we set x, = u and consider the two initial inventories x0 = a + h and x6 = 
x0 + E with E > 0, then we must have 

x”(t; x0 + 8) 2 x*(t; x0), t E [O, 1 I 
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with strict inequality for ,P E [0, r] for some q > 0, in view of the continuity 
of x*(. ; x,,) and x*(. ; x0 + a). For suppose not, then the two paths x*(t; x,,) 
and x”(t; x0 i s) must intersect for some r E (0, I). But this implies that 
there are two optimal paths on the interval [r, 11 joining the endpoints 
x*(f; x0) and x,, which is impossible by the strict concavity of the integrand 
in (2,). Since by Assumption l(ii) --Y’(a) is a strictly decreasing function 
on (0, Q 

-1’ Y’(x”(t; x0 + E)) dt < - f’ Y’(x*(t; x0)) dt 
0 -0 

It follows, on recalling the definition of a(+) in (17), that 

ago + E) = 21,(x0 + E, x,) + t)*(xo + 6 x,) 

is a strictly decreasing function of E. Letting (x0, xi) = (a + h, a) gives 

g (v,(a + h, a) + u&J + h, a)> < 0 
1 

which proves (i). A similar argument with the terminal inventory x1 
considered variable, x1 = CT + E, and the initial inventory held fixed, 
x0 = u + h, leads to (ii). I 

PROPOSITION 4. 0” Assumptions l-3 are satisfied, then there exist 
a E (0, a) and a sequence (a,, s,*, sz,...) satisfying (W), (T), (6), and 

Is,‘“-01-0 as ticO (18) 

whenetier u. E [u - a, u + a]. 

ProoJ Let (8) be written as G(s,, sl+ , : stt J = 0, t = 0, I,... . By 
Proposition 3, G(a, 0, a) = 0; by Lemma 2, G E CY’(Ny,(~., CI: u)) for some 
;I, > 0 and G,(a, u, u) = /?II,,(u + h, o) > 0. Thus by the implicit function 
theorem there exist y > 0 and a function g E @‘!(iV,(o, o)) such that if we iet 
bit = s,+ I) F(s,, UJ = (v,, g(s,, v,)), (s,, EJ = zl’ (a, a) = Z; then (8) reduces 
60 

zt+ 1 = m,h Z( E Ny(.q, t = 0, l,... 

where F E 9 ’ (N,(Y)). Let zy = Z + & and define 

r(5) = P(Z + 5) - F(Z) - r=,(F))5 <E ivy(O); 

then (S’) may be written as 

t-t+ 1 = ~z(35, + r(k), 4, E N,(O), t = 0, l,... 

(8 ’ ) 

(8 (‘) 
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If we let ~5 = uij(~ + h, a), i, j = 1, 2 and note by Lemma 2 that V& = u;, , 
then 

The linear part of (8”) 

&+1 =f;,m L rt E N,(O), t = 0, l,... 

thus has the characteristic equation and associated eigenvalues 

A* - 2b/Z + l//3 = 0, &J,=b+/m 

It follows from Lemmas 2 and 3 that 

so that 

Thus b > 0 and b2 - (l//I) > 0 so that the eigenvalues are real and positive. 
Since /2,1, = l//I > 1, only one eigenvalue can satisfy /z < 1. This holds if 
and only if 

an inequality that follows at once from Lemma 3, using vT2 = v$. 
We are now in a position to use the following result which is a special 

case of the stable manifold theorem [7, p. 146, Theorem 2.41. If in the 
difference equation (a”), r E G??“(N,(O)) satisfies the following condition: for 
any E > 0 there exists q E (0, y) such that 

and if the eigenvalues (A,, A,) of the matrix P,(F) satisfy Ai < 1, A2 > 1, then 
there exist (Y > 0 and a solution (to, <,*, r; ,...) of (a”) such that I/ 5:: j] --L 0 as 
t + co whenever // &, I/ < a. In our case since FE $F”(N,(Z)) implies r E 
P ’ (N,(O)), (19) is readily deduced from the mean value theorem and the fact 
that r satisfies r&O) = 0. Since (8”) is equivalent to (8’) under the transfor- 
mation zt = F + 5, and since a sequence satisfying (a’) also satisfies (a), it 
follows that there exists a sequence (or,, ST, SF,...) satisfying (8) such that 
Is:-ol+O as t-co whenever I OFhit I < a* But then 
l~l(SP+~,~~+l)-~/+O as t-ax, so O<P<l implies 
I P’VlW + A, s A 1xs;* + h)l+ 0 as t + co, which is (r). Since a can be 
chosen so that (6) is satisfied, the proof is complete. @ 
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6. EQUILIBRIUM SpoT Am Fumes PRICES 

In this section we establish the existence of a spot market eq~iiib~inrn and 
introduce futures markets. The analysis will be based on the results of 
Sections 4 and 5 and 

PROPOSITION 5. Let {~,"(a1, x1*(~)}& b e a sequence of pairs of” 
absolutely continuous functions on [t, t + I] which satisfy the ~~rni~tol~io~ 
equations (Z) a.e. on [t, t + l] for t = 0, l,... . If in addition for t = 0, I,... 

6) &V+> = &fl(t-> 
(ii) xT(t+) =xEl(t-) + h, x*(0-) = crO 

(iii) p;“(r) > 0, x:(r) > 0 a.e. 

(iv) lim e-“>:(t) xF(t+) = 0 
(v) JFFT(r)eeszdr< c0,p*(z)=pT(z), TE jt,t+ I]$ t=O, I,... 

then (q *, -i*) = {(p:(z) e-‘“, -i*(r)), zE [t: t + I], t = 0, l,... } is a spot 
market equilibrium. 

ProoJ: (R)(ii) implies that condition (ii) in Definition 1 is satislied-the 
spot market is cleared at almost every instant t E (0, co). It remains to check 
Definition l(i). It follows from (Z’)(ii) and Assumption 3(ii) that a*(z) E 
i-m, 0] a.e. (iii) implies x*(r) > 0 a.e. The absolute continuity of x,(~) and 
(ii) imply that (1) and (2) hold. Thus 1* E Y. It remains to show that .ri* 
maximises profit 

n(sr*) = sup -s beg ,-;, j;” (q”(r)(--i(r)) - 4x(z))) e-‘* dr (,F’) 

Just as the maximum problem (9) can be decomposed into the single 
carryover problem (9) and the sequence of crop year problems (~.Y,), 
t = 0: l,..., so the profit maximising problem (a’) can be decomposed into 
the single problem of determining the profit maximising carryover sequence 

and the sequence of problems of maximising crop year pro% 
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where S; = &(s, + h - st+ J, xt(t) = s, + h + J”; &(v) dv, r E (t, t + I), and 
9 and 5 are defined by (3) and (3’). 

We start by giving sufficient conditions for a maximum for (9’) and (2;) 
in terms of a system of supporting prices. The proof is completed by showing 
that such a system of prices can be constructed from the sequence 

{Pt(*)ltoo=o* 
Let {q,, st)& be a pair of sequences satisfying 

(so, s, Y..) E 9, rr 2 0, t = 0, I,..., lim qts, = 0 
t-rm (20) 

(Yt,-~t+1)Ep’a~‘(st+h,st+,), t = 0, l,... (21) 

Consider any sequence (s;, si ,...) E jo. Using the definition of the superdif- 
ferential ant and summing the resulting inequalities over a finite number of 
periods T gives 

tie P’(G$ + 4 s;+ I> - +t + k St, 1)) 5 VAST - G> (22) 

Since Y(.) 5 0, (v) and jT c Pm [0, co) imply z(i) < 00 Vi E F, it follows 
from -rTsk 5 0, VT > 0, lim T+m ~~8, = 0, and (22) that (so, s,,...) is a 
solution of (3’). Let (qt(.), y,(a)) b e a pair of absolutely continuous 
functions defined on [t, t + 1 ] satisfying 

YtE-T4;, Yt(t+ > = 8, + h, Yt@+ l-)=%+1 (23) 

k&(r), qt(r)) = (~‘(yt(~)>, P:(T)) e-“‘-‘) a.e. (24) 

then by the standard sufficient conditions for a concave variational problem 
on a finite interval [ 14, p. 209, Theorem 51, 9, is a solution of (2:). 
Furthermore”, 

kt(t+ >, -4t(f + 1-J) E a+, + h, St+ ,>, t = 0, l,... (25) 

Consider the sequence of pairs of absolutely continuous functions on 
[t, t + I] defined by 

(q,(r), y,(r)) = (P~*(z> e-‘(‘+, %Y~>>, z E [t, t + 11, t = 0, l,... (26) 

Since 4,(r) = (@F(r) - &T(r)) e-6(T-t) a.e., it follows from (26) and (Z)(i) 
that (24) is satisfied. Let 

(rt, St> = (P%t(~‘>3 Yt(f’> - h)> t = 0, l,... 

” See footnote 9. 
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then (20) and (23) are satisfied. (i) implies vt, I = 8’ ’ ‘qt- I (t t ! T ) -- 
P’q,(t + I -). It follows from (25) that the sequence (qO, V, ,...) satisfies (21). 
Since x* = (x:(r), z E [t, t + I], t= 0, l,...) solves (9’) and (Y:), ? = 0, 
1 )...) x* is a solution of (9’) and the proof is complete. 

COROLLARY. Under Assumptions l-3 there exists a E (0, U) such that $ 
a,, E [o - a, a + a], then there exists a spot market equilibrium. 

Proof: We show that the conditions of Proposition 5 are satisfied. 
Proposition 4 there exist (y: E (O? o) and a sequence (st, SF, SF,...) satisfying 
(S), (T), (6), and (18) whenever s$ = u0 E [a - cz, (7 + cz]. In view of (6) the 
endpoints (SF + h, ST+ i) are attainable for t = 0, l;... . Thus by Propositions 1 
and 2 there exists a sequence of pairs of absolutely continuous functions 

i P,“(*), xt*(.)lEo satisfying (R) a.e. on [t, t + I] for t = 0, l,... . Since 
x,*(t+)=sF+h, x,“(t+ ll)=sT+i, and x(0-)=oO, (ii)holds, Since 
(p,*(t’), -@p$(t + 1 -)) = VV(S,” + h, SF+ I), t = 0, I,..., and (8) impIy 

-PpfLl(t-) = u2(sfY, + h, sf) = -Pu,(s: f h, ST+,> = -Pp,‘“(t+) 

(i) holds. Equation (6) implies (iii), while (7) implies (iv). In view of (18) 
p:(l+) = v,(s,* + h, ST+,) -+p, and since p:(z) is continuous, there exists 
y > 0 such that 0 < p*(z) < y a.e. so that (v) holds. The result then follows 
from Proposition 5. 1 

There is a simple geometric way of constructing the spot market 
equilibrium. Consider the value function induced by the carryover problem 

W> 

W(o, + h) = sup F P’+, + k st+ ,> 
(S~,SI,...)E~jY f2yO 

It is easy to see that the sequence (o,,, sf, sf,...) of Proposition 4 satisfies 
(20) and (21) with z’(.) replaced by v(.) and hence is the solution to (,9). 
Since the optimal sequence satisfies (6) and since by Lemma I v(.) is 
differentiable, it follows that IV(.) is differentiable and satisfies 

Let 

W’($ + h) = u,(s: + h, s;+~) = pf(t+). 

~={(x,P)JP=w’@)}, .F’= {(x,p)1 (xth,p)E.Y) 

so that ? is the graph of the gradient of the value function and Fi is the 
translation of this set by h. Let K = {(x, p) / p = -y(x)/6}. j:(t) > 0 (<O) to 
the right (left) of the curve K, while i:(t) < 0 (see Fig. 2). The crop year 
inventory and spot price associated with the steady state endpoints (a + h, 0) 

409jYl/2-19 



588 MAGILL AND BENHABIB 

FIGURE 2 

is given by the curve E'E. Note that the endpoints E, E' lie on either side of 
the curve K: if this were not so, the spot price would increase (decrease) 
throughout the crop year, contradicting p;“, l(t-) = p,*(t’). Note also that 
.Y’ intersects the curve K, for otherwise there would be no initial price p,f 
such that (p,*(t+), ST) --f (p, 0). Consider two initial conditions 

t 

FIGURE 3 
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Then the curves (ala, b’b, c/c,...) and (a’a,B’/?, y’y,...) converging to tat: 
steady state path E’E trace out the spot market equilibrium of the Corollary. 
The time profile of the spot price associated with these two equihbrium paths 
is shown in Fig. 3. 

We now complete the final step of the analysis and introduce futures 
markets. The B-futures price at date r, denoted by ~(6, z), is defined as the 
price at time r for one unit of the commodity deliverable at time t + 8> for 
B 2 0, r 2 0. Since there is no explicit uncertainty, it is reasonable to assume 
that the futures market has the following property. 

PnssLhrPTroN 4 (Price formation on futures market). rbitrage on !he 
futures market forces the B-futures price at date z into equality with the 
expected spot price at time t + 0 

p(8, 7) = p”(r + 0 z>=o, 020. 

Thus the current profile of futures prices can be read off from the future 
course of spot prices. Our analysis is designed in particular ts throw iight on 
the structure of futures prices at date z = 0. ‘To this end let n(B) = 

(ala@) PC@ OYP(@> 0). 

DEFHVITI~P~ 3. At date z = 0, the futures market is said to exhibit 

(i> a furl carrying charge (carrying charge) srructure for futures 
prices on the interval [t, t f 11 if n(0) = 6 (0 < z(6) 5 6): B f it, I c I]; 

(ii) an inverted structure for futures prices on the interval [t, t + I ] if 
n(B)<O,BE[t,t+l]; 

(iii) a normal structure for futures prices on the interval ]I, f+ 11 if 
there exists t’ E (t, t i- 1) such that n(B) > 0, 6’ E [t, t’)? n(B) ( 0, B E (t’, I’ jL 

In view of the convergence property of the spot market equ~~ibri~m~ it 
follows that if crO is sufficiently close to a, then at date r = 0 the futures 
market will exhibit a normal structure for futures prices of a!1 future crop 
years. More generally we have 

PROPO§ITKON 6. Let (6, y) = K n 37, (ly, f) = x n .Y’, ami lei 
t&y-), “q(*>>, t = 0, I,... denote the spot market equilibrium of the 
CorolEary. 

(i) If there exists T 2 0 such that 

x::(t’) - 5 < 0, t5T 
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then at date z = 0 the futures market has an inverted structure for futures 
prices p(B, 0) with 8 s T. 

(ii) If there exists T’ 2 0 such that 

x,*_,(t-)-s>o (X,*-l(t-)-c’>O), tz T’ 

then at date z = 0 the futures market exhibits a full carrying charge 

(carrying charge) structure for futures prices p(0, 0) with 8 5 T’. 

ProoJ When c0 < c (a, > a) it follows from the proof of Proposition 4 
that the convergence of SF = x:-,(t-) to c is monotone, s: < s,*, , 
(s:: > s ,*,1), t=0,1,..., It follows from the phase portrait for the 
Hamiltonian system (3) that IV’(.) must be a strictly decreasing function, 
for otherwise the above monotonicity is contradicted. Thus in (i)pF(t) > 
P,*, l(t + 1). Since (x?(f), P,*(T)) 1 ies to the left of the curve K for r 5 T, 
z(8) < 0, t9E [0, T]. In (ii)pF(t) < p,“,,(t + 1) and since xTl(tP) > S: t < T’ 
implies Y’(x;“_~(z)) = 0, r 5 T’, z(8) = 6, 8 E [0, T’]. If xE,(t-) > 5’, 
t I T’, then (x:(r), p:(z)) lies to the right of the curve K for z 5 T’ so that 
02 rc(0) s 6, 0 E [0, T’] since -u/l(.) 2 0 by Assumption l(ii). 1 

Let d, = l- x:(0+) (4, = x,X( 1 -) - r’) be defined as dej?cient (surplus) 
inventory at date r = 0. Proposition 6 then leads to the following criterion: 1f 
there is deficient (surplus) inventory at date t = 0, then the futures market 
has an inverted (carrying charge) structure for futures prices p(0,O) with 
0 5 1, namely, for futures within the current crop year. When there is surplus 
inventory, the spot price is at a discount relative to futures prices, but the 
extent of the discount is limited by interest (and more generally carrying) 
charges. When there is deficient inventory, however, and the spot price is at 
a premium relative to futures prices, there is no upper bound to the extent of 
this premium (see Fig. 2), This unboundedness of the premium that spot 
prices can acquire over futures prices has its origin in the unboundedness of 
the stock-out cost function (Assumption l(iii)). The asymmetry between the 
magnitude of the discount arising in periods of surplus inventory and the 
magnitude of the premium arising in periods of deficient inventory is a 
familiar empirical property of futures markets for storable commodities. 

Futures markets are a mechanism for projecting expected spot prices into 
the present. When there is deficient (surplus) inventory an inverted (carrying 
charge) market discourages (encourages) consumption by a high (low) spot 
price, while simultaneously discouraging (encouraging) inventory holding by 
revealing through the structure of the prices on the futures market a falling 
(rising) course of expected spot prices. It is thus by projecting the future into 
the present that the futures market serves to guide the consumption and 
inventory accumulation behaviour of consumers and producers in the 
economy. 
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