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1. INTRODUCTION 

In several recent contributions [2, 3,4] Merton has shown that the 
continuous time formulation of portfolio theory provides a powerful 
analytical framework for extending the standard results of one-period 
mean-variance portfolio theory to the dynamical case. As is by now 
familiar the simplifications introduced by the continuous time theory have 
their origin in Samuelson’s basic Approximation Theorem [Sj, for the 
mean-variance solution provides the exact solution in the limit of infini- 
tesimal time peri0ds.l Thus when security prices are lognormally distri- 
buted the Tobin-Cass-Stiglitz Separation Theorem as well as the Sharpe- 
Lintner-Mossin capital market equilibrium theory can be extended in a 
natural manner to the dynamical case .2 The simplicity with which the 
earlier mean-variance results can be extended to the dynamical case is 
certainly a strong point in favor of the continuous time analysis. 

The most important empirical justification for the use of continuous 
time analysis arises from a structural property common to most well- 

*This paper reports results of our joint work, some of which also appears in 
Constantinides’ dissertation [l]. We are grateful to Robert C. Merton and John F. 
Muth for valuable discussion. Needless to say we remain responsible for all remaining 
errors. 

1 In all the lengthy discussion of the applicability of mean-variance theory the 
Approximation Theorem provides by far the most fundamental justification for the 
use of mean-variance theory. For it leads naturally to an analysis of continuous time 
diffusion processes-processes which are completely characterized by their instantaneous 
mean and variance, see [6, Chap. 81. 

* See [3,4]. 
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developed capital markets: trading opportunities in securities are available 
continuously in time. Rational investors will then wish to avail themselves 
of the opportunity of trading at every instant of time. But herein lies the 
principal weakness of Merton’s formulation of the continuous time 
theory.3 For by combining the assumption that trading opportunities 
are available continuously with the assumption that the trading oppor- 
tunities are available costlessly the investor is led to a quite unrealistic 
type of portfolio behavior. In the absence of any transactions costs the 
continuous time theory predicts that an investor faced with continually 
varying security prices will indulge in a completely unrealistic amount 
of security trading. Indeed it is for this reason that the discrete time theory4 
is often adhered to as a more reasonable and realistic explanation for 
observed investor behavior since the investor trades only at suitably spaced 
discrete intervals of time. 

It is the object of this paper to show, however, that this weakness of 
Merton’s continuous time theory is readily overcome by explicitly intro- 
ducing into the analysis the impact of transactions costs. For when such 
transactions costs are introduced it will be found that the investor only 
seeks to make use of the available trading opportunities at randomly 
spaced instants of time-a behavior pattern which accords much more 
readily with observed investor behavior. Indeed since the discrete theory5 
only allows the investor the option of trading at preassigned intervals 
of time while in well-developed capital markets trading opportunities 
are available continuously, there are strong grounds for believing that 
the continuous time theory more accurately reflects both the trading 
opportunities available and the associated investor behavior that is 
observed on well-developed capital markets. Thus while there has been a 
tendency to focus more attention on the discrete time theory on the 
grounds that the continuous time theory is unnecessarily complex, we 
would argue that with the introduction of transactions costs the continuous 
time theory provides both on theoretical and empirical grounds the most 
realistic image of investor behavior that has been available so far. 

In the formal solution which emerges it is found that the investor 

3 It should be pointed out that Merton was very well aware of this weakness of the 
continuous time theory, see 14, p. 8691. 

4 For an analysis in discrete time see 171. 
5 The use of the discrete time theory as opposed to the continuous time theory can 

really only be justified when the trading interval h is not taken to be very “small” 
(Merton suggests h = l/270 of a year [4, p. 8691). For if the discrete theory is defined 
for every h and if the discrete theory converges to a well defined continuous time 
process as h -+ 0 then on theoretical grounds (the Approximation Theorem) and on 
empirical grounds (continuous trading opportunities) the continuous time theory is 
likely to be preferred. 
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trades in securities when the variation in the underlying security prices 
forces his portfolio proportions outside a certain region about the optimal 
proportions in the absence of transactions costs. The solution is related 
in an interesting way to the classic Arrow-Harris-Marschak [8] and 
Bellman-Glicksberg-Gross [9] analyses of the commodity inventory 
problem.6 Indeed some of the earlier papers examining the impact of 
transactions costs have relied heavily on this analogy between the portfolio 
and the inventory problem. The classic analysis of Baumol [lo] can be 
viewed as a translation of earlier results in deterministic inventory theory 
[ll] into corresponding results on the demand for money. The extension 
of this analysis to an environment of uncertainty by Miller and Orr [12] 
in the case of fixed transactions costs and by Eppen and Fama [13] for the 
case of proportional costs similarly depended strongly on the earlier 
results [8, 91 in inventory theory. Zabel [14] who considered a discrete 
two-period two-asset (cash, security) model where the consumer maxi- 
mizes the expected utility of his consumption explicitly considers the 
attitude toward risk of the investor as well as the cash-security composition 
of his portfolio, rather than just the stock of cash as in [lo, 12, 131. In 
this respect the present analysis is similar to that of Zabel. The method of 
analysis developed in this paper is, however, quite different from that of 
Zabel and enables us to obtain an exact characterization of the individual’s 
portfolio behavior for an arbitrary number of securities and for an 
arbitrary time horizon. 

Section 2 formalizes the portfolio problem in the presence of transactions 
costs making explicit the underlying assumptions about the capital market 
and the individual investor. In Section 3 we derive the optimal portfolio 
policy which is characterized first in the case where the portfolio propor- 
tions in the absence of transactions costs are small, and subsequently for 
the general case. The paper concludes with some observations on the effect 
of transactions costs on the general theory of the capital market. 

2. THE PORTFOLIO PROBLEM WITH TRANSACTIONS COSTS 

Consider an investor who faces a capital market with the following 
properties. 

6 That the portfolio theory should be related in this way to inventory theory is really 
not surprising, for we can view the investor’s portfolio as an inventory of securities 
which instead of being continually depleted by a random demand is depleted or aug- 
mented at random as a result of the random fluctuations in the underlying security 
prices. The problem of determining when to realign the portfolio proportions is then 
equivalent to the problem of determining when to reorder stocks for the basic inventory 

642/13/z-6 
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ASUMPTION 1 (Continuous Competitive Markets). A fixed number m 
of securities can be bought and sold at current prices in unlimited amounts. 
A bank (security) is available to all investors which pays a constant interest 
rate (r > 0) on deposits and charges the same rate on borrowing, which 
is available in unlimited amount, Trading takes place continuously in time. 

ASSUMTION 2 (Securities). Each security is perfectly divisible. The 
value of the bank security is unchanged (no inflation or deflation). The 
prices of the remaining securities are lognormally distributed, all instan- 
taneous variances are positive and all instantaneous correlations are less 
than one in absolute value. 

ASSUMPTION 3 (Information). All information concerning the under- 
lying probability distribution of security prices as well as current quotations 
of security prices is perfect information that is available continuously and 
costlessly to all investors. 

ASSUMPTION 4 (Transactions Costs). Transactions costs are incurred 
in the purchase or sale of each security. The costs are proportional to the 
value of each transaction.’ Thus if vi denotes the value of the ith security 
purchased (vi > 0) or sold (ui < 0) per unit of time the transactions cost 
function T(v, ,..., a,) indicating the cost of buying or selling any combi- 
nation of the nz securities is given by 

T(v, ,..., 17,) = 5 Xv& where xvi = 
i=l I 

xi ;;; (1) 
-xi 1 

and where 0 5 xi < 1, 0 5 xi < 1, i = l,..., m. 

The following assumption is made concerning the investor. 

ASSUMPTION 5 (Income and Lifespan). The investor has an expected 
lifespan [0, T] during which he expects to earn a flow of contractual 
income y(t), where y(t) is a continuous function on the interval [O, ZJ. The 

’ Since the cost of buying or selling a given security is attributable to two separate 
costs, the broker’s commission and the bid-asked spread [15], a fully realistic trans- 
actions cost function should be the sum of a concave brokerage cost with a discontinuity 
at the origin depending on the number of securities transacted and a proportional 
spread cost as in (1). Assumption 4 considers the special case where transactions costs 
are generated solely by the spread cost. In the analysis which follows it is not necessary 
or adviseable however to impute such a narrow or specific interpretation to the trans- 
actions costs-for they can be any costs that are associated with the purchase and sale 
of securities and can be interpreted to include a much more general class of costs such 
as information costs, taxes, and the like. 
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investor acts as if both T and v(t) were known with certainty in advance 
at t = 0. 

If pi(t) denotes the price of the ith security and xi(t) the number of its 
securities held by the investor at time t, i -= 0, l,..., m, then si(t) = q(t)p,(t) 
is the value of his holdings of this security at time t. By Assumption 2 
the value of the bank security pO(t) is constant for all t, while at each 
instant t the security prices pi(t),..., pm(t) satisfy the joint diffusion process 

dpi(t) = wit t) dt + pi(t) dzi(t) i = l,..., m, (2) 

where dz(t) = (dz,(t),..., dz,(t)) is the increment of a Brownian motion 
process, so that for any partition 0 = t, < tl < .‘. < tE = T of the 
interval [0, T] the random variables 

z(t1) - &L.., -a - z(tk-1) 

are independent and normally distributed with mean 

E[z(tJ - Z(f&,)] = 0, i = I,..., k 

and covariance matrix 

E[(z(t,) - z&,))(z(t,) - z(t&)‘] = Z(ti - ti-1) i=l ,..., k, 

where Z is positive definite .8 On all those subintervals of [0, T] where 
xi(t), &(t) = dxi(t)/dt are continuous, i = l,..., m, Ito’s Lemma9 can be 
applied to si(t) = xi(t)pi(t) so that 

ds,(t) = (n&t) + of(t)) dt + si(t) dq(t) i = I,..., m, (3) 

where ui(t) = ki(t)pi(t) denotes the transaction rate for the ith security 
at time t. If c(t) denotes the investor’s flow of consumption expenditure 
at time t, since income is paid in cash and since both consumption expen- 
diture and transactions costs must be financed from his stock of cash 
while the purchase (sale) of securities reduces (adds to) his stock of cash, 
Assumptions 1, 4, and 5 imply 

4,(t) = rs,(t) i- v(t) - c(t) - -f (1 + xv> vi(t) 1 dt. (4) 
i=l 

Let s = (so ,..., sm) and let the investor choose a transaction-con- 
sumption policy of the form (v, c) = (~(3, t), c(s, t)), t E: [0, T] where 

* (2) is equivalent to the m stochastic integral equations 

pi(t) = P,(O) + ai t~iW~ + 
s s 

tM9&(Q) i=l ,..., m, 
0 0 

where the second integral is the Iro stochastic integral of pz(t) see [6, Chap. 81. 
9 For a statement and proof of Ito’s Lemma see [6, pp. 386-3911. 
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u = (01 )...) u,). Then (3) and (4) lead to an associated conditional pro- 
bability density function #(“,c)(c, t 1 c(0)) for the path of consumption.1° 
We make the following crucial assumption about the investor’s preferences. 

ASSUMPTION 6 (Preferences). The investor has a preference ordering 
U(#(“,C)) among the probability distributions #(v*c). Furthermore there 
exists a utility function u(c, 7) such that the preference ordering can be 
representedlr as follows 

u(i)(~+~)) = joT Jrn u(c, T) #v,c)(~, T 1 c(O)) dc d7. (5) -02 

Under Assumption 6 a rational investor will choose his transaction- 
consumption policy over his lifespan [0, T] so as to maximize (5). This is 
equivalent to maximizing 

-@I$ o I 
T  

u(c, T)  dT 

subject to (3), (4), and the initial condition (s, 0) where c(s, 0) = c(0) 
and where ,?I?:“$,’ denotes the conditional expectation given the transaction- 
consumption ;olicy (v, c) over the time interval [0, T] and that his holdings 
of securities are s at time t. 

We will now introduce a procedure which makes it possible to solve 
the above problem using the stochastic theory of controLl We shall 
consider (3) as the limit of the following equations as E ---t Of (implying E 
converges to zero through positive values)13 

dsi(t) = (w(t) + vi(t)) dt + (si(t> + M)) dz,(t) i = I,..., m. (7) 

Then we have the following result 

lo Given (u, c) = (u(s, r), c(s, t)) (3) and (4) lead to a well-defined diffusion process 
for ds. Applying Ito’s Lemma we tind the diffusion process dc, &v*cJ(c, t 1 c(0)) is then 
the solution of the forward Kolmogorov (Fokker-Planck) equation associated with the 
diffusion process dc, see [6, Chap. 81. 

llSufficient conditions for such a representation have not yet been given. For a 
discussion of the static case where the Von-Neumann-Morgenstern Axioms are sufficient 
see [16, Chap. III]. Note that (5) is time-additive and implies no bequest motive. 

I2 The limiting procedure which is introduced here is useful and interesting in its 
own right as a general method of solving stochastic controlproblems in which the controls 
enter linearly but do not directly affect the disturbance terms. The method has not 
appeared before in either the economic or the stochastic control theory literature and 
should prove useful in solving problems of this kind. 

ISIt can be shown that the optimal transaction policy u* defined by (17) has the 
following properties: EV<* is finite and bounded as E --f 0+ and EQ* + 0 as I tends to the 
boundary of Sa, . For the limiting operations employed in the proof of Proposition 1, 
(7) is thus a valid representation of the process (3). 
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THEOREM 1.14 Zf u(c, T) = e-%(c), if the maximum in (6) exists and 
if (u, c) maximizes (6) subject to (4) and (7) then the value function 

satisfies 

W(s, t) = y~xxy Z$;,c,’ .T,r e-P(T-f)u(c) d7 

py u(c) + $ Wdw, + vi> + W. 
’ 1 t 

rso + y - c - 2 (1 f xr,> ui 
i=l i=l 1 

$ 4 f W&i f EUi)(Sj + ECj) 0ij-f3pW-t Wt = 0, (8) 
i,j=l 

W(s, T) = 0, where 

Jf the maximum in (8) is br’ell defined then the maximizing (II*, c*) must 
satiFfy u,(c*) - W, = 0, 

wj - wO(l + Xv,) f 5 WijuijE(Si + cri*) = 0 j = I,..., m 
i=l 

implying 

where 

v* = (l/Nl/~) Q-W’o(n + xv) - W,> - s> 

c* = u,‘(W,), u,, f 0, 
(9 

.** WlnPlrn 

. . . : 1 
11 = (l,..., l), xu = (xnl >..‘> XUJ 

w- nm~7nm 
’ ws = (W, )...) W,), s = (Sl )...) s,). 

3. THE OPTIMAL PORTFOLIO POLICY 

We will use Theorem 1 to determine the nature of the investor’s portfolio 
and consumption policies under the additional assumption that the utility 

I4 For a proof of Theorem 1 see [17]. A heuristic proof is easily established by applying 
Bellman’s Principle to the definition of the value function W(s, t) and then using Ito’s 
Lemma. The assumption u(c, t) = e-p: u(c) is introduced here so as to reduce equation 
(8) to a form that is simpler to solve in Section 3. It may be considered as part of 
Assumption 7. 
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function is a member of the following family characterizing an investor 
with decreasing absolute risk aversion.15 

ASSUMPTION 7 (Utility ficnction). 

= e-“f(l - 7#-” $ (c - e(~))n, c 3 e(7), (10) 

where 

t(T) = -y(+-p, -03 <7/l < 1, P > 0, 
---a3 < y(r) < 00, p 2 0. 

Equations (S), (9), and (10) imply that the value function W(S, t) 
satisfies the equation 

(1 - $2 Jy, n/(n-1) 
rl ( 1 B + 5 WiNiSi + W&s, + y - c^) - p W 

i=l 

+ K + Wo(n + xw) - w,>‘; 

- & (W&z $ xv) - WJ’ Q-I( W&z + xv) - Wf) = 0 (11) 

with boundary condition W(s, T) = 0. Equation (11) has a solution of the 
form 

W(S, t) = ‘@f 
t 
SO + 2 bisi + A(t) 

1 
: (12) 

i=l 

Equation (12) implies that 

rso + Y - f + X=1 s,[aibi + (l/6)(1 + xvi - &)I + A(t) 

so + Czl his, + A(t) 

must be constant, so that 

1 + xvi 
bi = 1 - e(ai - r) i = l,..., m, A(t) = Y(t) - C(t), (13) 

where 

Y(t) = JiT y(7) e-‘+l) dr, e(t) = St7 C”(T) e-r(T-+ dr. 

I5 The Arrow-Pratt [18, 191 measure of absolute risk aversion -uJu, is positive 
and decreasing. When v  > 1 absolute risk aversion is increasing: this however seems 
to be an unlikely attitude toward risk (see [18, pp. 90-981) and furthermore would 
give rise to perverse behavior in the analysis that follows. For a complete analysis of the 
properties of this family see [3,20]. 



PORTFOLIO SELECTION 253 

Y(t) and e(t) are just the present value of his future income stream and 
his future minimum required consumption stream (when C!(T) > 0) 
respectively. Noting that 

if we let 01 = (aI ,..., a~,), 4 = (U - m)’ Z-l(o1 - 1x)/(2( 1 - q)), then (11) 
reduces to the familiar Bernouilli equation 

6 + [r)(r + q) - pla + (1 - 7)” i;)“““” = 0, U(T) = 0. (14) 

Equations (13) and (14) imply 

which is well defined for all 77 < 1 provided that 

P > r)(r + 4) (16) 

and where the dependence of xri on s remains to be determined. Note that 
(15) coincides with Merton’s solution [21] when xri = E = 0. (9) and 
(15) imply 

1 p* zzz - 
E AL 1 - 1 ~(ar + 0 xv1 - r) **. 1 - 1 ~(a, + 0 - r) 

xv, 

x 2-1(a - rn) 
( 

m (1 + xv,) si 
1-v so f c 5=1 1 - 4ai - r) + Y(t) - C(t) 

) 
- s 
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Equation (17) is a remarkably compact set of linear equations, which 
contains the basic information used to characterize the individual’s 
transaction policy. The analysis of (17) is simplified if we divide through by 

w(t) = E s&) + Y(r) - C(t), 
i=O 

which may be called the eflective wealth of the individual.16 Let ti = SJW, 
i = O,..., m, iT = & ,..., L>, &I = (Y - a w so that CL,& + 4, = 1. 
Provided w  f 0 we can write (17) as v*/w = (I/E) v*@, xv, e). Jf we 
define 

since E(Cdj - r) -+ 0 as E -+ Of, 

%*(L xv 3 4 [ 
1 + xrj 

1 - l (OIj - r) 1 + vj*(t, Xv) as E + O+, 

where 

vj*(5, xc> = [xu,(tjo - 1) - 13 & + 6”( 1 + izl x&i) j = L..., tn. 
i#j (19) 

The functions vi*& xv) are essentially signal functions which immediately 
signal when and how the securities are to be traded. To see how these 
signal functions work consider the simplest case, namely when trans- 
actions costs are zero. Since vi*(f, 0) = fjo - & , (17) implies that when- 
ever tj < &O, vj* should be such that [j approaches [j” at a rate dependent 
on E. As E ---f Of, vj* -+ co in such a way that & is raised to fj” instan- 
taneously. Similarly whenever [j > fjo as E -+ Of, vj* -+ --CO in such a 
way that & is lowered to tjo instantaneously. Thus by taking the limit 
as E -+ 0+ in (17) we find that Theorem 1 implies that the optimal port- 
folio policy in the absence of transactions costs consists in adjusting the 
vector of portfolio proportions 5 so that E = to at every instant. Since 
40 coincides with the optimal portfolio proportions in [2, 31, Theorem 1, 
the signal functions vj*, and (17) lead to an alternative derivation of 
Merton’s portfolio policy. Notice that the signal functions vj* bring out 

I6 Wealth can be defined in a number of ways. Merton chooses to let w(t) = C& s,(t). 
It can be argued that a natural definition should also include Y(f). I f  e(t) > 0 then 
it also seems natural to subtract the preplanned consumption e((t) from the future 
income r(t) so as to obtain the capital value of net income Y(t) - &) which is then 
added to the current value of his financial assets to obtain his wealth. Ultimately the 
definition is a matter of convenience. In this respect this definition greatly simplifies 
the subsequent analysis. 
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very clearly the massive amount of trading that takes place over time in 
the absence of transactions costs. 

When transactions costs are present the terms &” CL, x0$ in vi*@, x,,) 
make the analysis considerably more complex. However when the port- 
folio proportions &O are sufficiently small these terms become unimportant. 
This leads to 

PROPOSITION 1 .I7 If Assumptions l-7 are satisfied and if 1 &J’ / are 
suficiently small (Itjo / < 1) j = I,..., m then there exists a region 
Q, C Rm such that the investor always conjines his portfolio proportions 
to this region 

where 

if &” > 0, 

if LJjo < 0. 

Proof. By Theorem 1 the optimal transaction policy under Assump- 
tion 7 is given by (17). If &” are sufficiently small the signal functions reduce 
to Y~*(.$, xv) = &” - (1 + xv,) & . Suppose Ejo > 0, since uj* > 0 implies 

xv* = xj, Uj* > 0 whenever tj < tjo/(l + xj). Similarly since Uj* < 0 
implies xVj = -xj and since xi < 1 implies 1 - xi > 0, ai* < 0 
whenever tj > &O/(1 - xi). Suppose LJj < &O/(1 + xj) then by (17) 

* is such that fj approaches &O/(1 + xj) at a rate dependent on E. 
:S E --f 0+ vi* --j co in such a way that fj is raised instantly to .$jo/(l + xj).18 

I7 Propositions 1 and 2 determine the investor’s transaction policy under the as- 
sumption that the initial portfolio proportions lie in the region 4. It appears that 
there are conditions under which it is not optimal to transact to the boundary of Q,, 
if 5 is not initially in Q, . For example an investor with a very short lifespan facing a 
high transaction cost rate and starting with all holdings in cash may not find it worth- 
while to purchase the risky securities. If  we let -(c - ?)(u,,/u,) = 1 - 7 be a measure 
of relative risk aversion then the condition that the portfolio proportions to be suflicient- 
ly small is equivalent to the condition that the investor be sufficiently risk averse. 
Recall that the usual measure of relative risk aversion is -c(u,,/u& see [18, 191. 

I8 The limiting process involved here is the same as that involved in the definition 
of the Dirac Delta function, the integral of which is the unit step function [22, pp. 
22-261. If  sj(t-) and s&+) denote the holdings of the jth security before and after the 
transaction at time t, then 

I 
t+h 

lim vj*(T)dT = sj(t+) - s,(t-), 
h+O t--h 

so that x’(Sj(f+) - s,(t-)) is the transaction cost incurred if v,* > 0. It should be recalled 
that since [ is the solution of a diffusion process, its velocity is infinite. It is for this 
reason that transactions must be undertaken at an infinite rate whenever 5 attempts to 
penetrate the boundary of Q, . 
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For as soon as tj = &O/(1 + xi), Vj*([, xV) = &O - (1 + xj) cj = 0 
implying q* = 0. The rest is immediate. 

Suppose &” < 0 and suppose & < &O/(1 - xi). Since uj*([, xv) = 
55” - (1 + xj) & > 0, vj* > 0 is clearly optimal. Suppose the investor 
trades until v~*((, xv) = &O - (1 + xj) & = 0 so that tj is raised to 
(j = &O/(1 + xj). S’ mce at this point vj*(f, xv) = ljo - (1 - xi) tj ( 0, 
Uj* < 0 now becomes optimal and the investor trades until & = 
&O/(1 - xj) at which point v~*([, xv) = sjo - (1 - xj) tj = 0. But then 
it is clearly not optimal to let & exceed &O/(1 - xi) for exceeding this 
point involves a redundant transactions charge since the investor always 
finds it optimal to return to this point. Thus when & < &O/(1 - xj) the 
investor trades to fj = [j’/(l - xj). Similarly when fj > tjo/(l + xj) the 
investor trades to & = ljo/(l + xj). Since it cannot be optimal to 
repeatedly trade both ways, when tj E [Ejo/(l - xj), fj’/(l + xj)] the 
investor refrains from transacting. 1 

Proposition 1 has a straightforward economic interpretation. Since the 
prices of the securities are continually changing according to (2) the 
portfolio proportions .$ are continually changing. In Merton’s case, since 
there are no transactions costs whenever 5 # to, the benefit to be gained 
from improved diversification always induces the investor to transact 
so as to return 5 to 5”. As soon as the investor is faced with transactions 
costs, however, he must match the benefits of improved diversification against 
the associated transactions costs. Thus whenever the prices move 5 around 
but t still lies in the central region Do about to, the investor does not find 
it worthwhile to alter 5; in this region the transactions costs would exceed 
the benefits from improved diversification. But as soon as 5 pierces the 
boundary of L?, the investor finds it worthwhile to transact so as to bring 
5 back to the boundary of Q, . In this case the benefits of improved diversi- 
fication outweigh the transactions costs. 

It is interesting to note that the transaction policy of Proposition 1 is 
of exactly the same form as the Bellman-Glicksberg-Gross ordering policy 
for the infinite horizon multicommodity inventory problem with propor- 
tional ordering costs, stated as [9, Theorem 31. Indeed the portfolio policy 
of Proposition 1 also has an important simplifying independence property 
akin to the property that Bellman-Glicksberg-Gross refer to as sub- 
optimality. This independence property only holds in the present context 
however when the portfolio proportions are small, as assumed in Propo- 
sition 1. 

COROLLARY 1. The interval to which the transaction policy confines 
the portfolio proportion .$f of the jth security is independent of the proportions 
fi and the transaction cost rates xi, xi for all other securities i # j. 
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This property is of great importance on purely empirical grounds. For 
it is the essential property that is required if the portfolio policy is to have 
a reasonable and manageable form in the presence of transactions costs. 
As is shown in the proof of Proposition 2, in the general case where the 
portfolio proportions are not necessarily small the interval to which & 
is confined depends in a very complex way on ti and xi, xi, i # j. The 
complexity of the region in the general case makes it highly unlikely that 
even the most rational of investors would involve himself with such cal- 
culations. 

COROLLARY 2. The region Sz, is independent of the investor’s wealth 
and independent of the length of his remaining lifespan.ls 

Both of these properties which hold independently of the magnitude of 
the portfolio proportions, arise from the homogeneity property charac- 
teristic of the HARA (hyperbolic absolute risk aversion) family of utility 
functions [3]. These properties generalize to the case of transactions costs 
two results whose importance was first stressed by Samuelson [23]. 
The first is that contrary to the advice of much investment literature the 
fact that the businessman is more wealthy than the widow does not imply 
that their portfolios should differ with respect to the risk that they carry, 
the businessman for example accepting a higher risk portfolio for the sake 
of obtaining a better yield. Secondly the fact that the businessman has a 
longer life ahead of him than the widow does not imply that the business- 
man should be prepared to invest more heavily in the risky securities. 
For the HARA family the proportion of his wealth that an investor carries 
in the risky securities is independent of his age. This time independence 
property of the portfolio policy is one important respect in which Propo- 
sition 1 differs from the Bellman-Glicksberg-Gross Theorem 3. For in 
[9] the critical levels at which stocks are reordered depend in the case of 
a finite planning horizon on the number of years left to the end of the plan 
and are constant only when the horizon is infinite. For a more general 
family of utility functions one would expect the same result for the port- 
folio problem. Indeed one would expect the size of the region L’, about 
to to decrease as T - t increases so that the longer the remaining life- 
span of the investor the greater his propensity to transact. 

Inside the region 0, the portfolio proportions f(t) = i(t)/w(t) describe 
a diffusion process the nature of which is determined by (4) and (7). Since 

I9 Corollary 2 should be carefully distinguished from the Tobin-CassStiglitz Se- 
paration Theorem [20] which in its simplest form asserts that the composition of the 
portfolio of risky assets is independent of the investor’s preferences, age, or financial 
assets. This result is the subject of a separate analysis in [24]. 
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the covariance matrix Z is positive definite and since Q, is a closed, 
bounded region about to the process c(t) will pierce the boundaries of 
Q, at random instants. Since the length of the interval K(&O) to which the 
proportion & is confined increases as xj, xj increase, it is clear that the 
average frequency per unit of time with which c(t) pierces the boundaries 
of K&O) decreases as xj, xj increase. Conversely in the limit as xj, xj + 0 
the investor trades continuously in the jth security. 

COROLLARY 3. (i) When xj, xj > 0 the investor trades in the jth 
security at randomly spaced instants of time, j = l,..., m. 

(ii) The average frequency qf trading in any security per unit of 
time decreases as the cost qf transacting the security increases.20 

The portfolio policy of Proposition 1 partitions the portfolio space R” 
into (z) 2k distinct regions 

Sz, = (5 E Rm / tj $ K(tp), k indices j} k = O,..., m, 

where each sZI, may be called a k-transaction region since whenever [ E Q, , 
k securities are transacted, the remaining (m - k) involving no trans- 
action. Rm is thus partitioned into 3” distinct regions.21 Q, is the m-dimen- 
sional rectangular solid about 4” with sides of length 2xifio, i = I,..., m 
(assuming xi = xi to be relatively small). The regions Sz, surround 
Q. and 9, n Q. are its (m - k) dimensional hyperfaces. As soon as a 
change in security prices causes [ to pierce one of the hyperfaces Sz, n Q,, , 
k securities are transacted and [ is driven back to the hyperface. As 
xi, xi -+ 0 i = I,..., m the rectangular solid L$, shrinks to the point 5” 
and we are back to Merton’s case. Figure 1 shows the regions 52, when 
rn=2,~~=x~=x,i=1,2.~~ 

20 Since the probability distribution for the frequency of trading depends crucially 
on the magnitude of the transaction cost rates relative to the return-covariance structure 
of the diffusion process (4), (7), it is clear that the empirical magnitudes of the transaction 
cost rates are of considerable importance if the resulting theory is to represent a sub- 
stantial improvement over the earlier Merton theory. The empirical evidence available 
1151 suggests, as mentioned in footnote 7, that the transactions costs must be given a 
much broader interpretation than narrowly defined brokerage fees. 

21 Since there are 2” ways of buying or selling k securities and since k securities can be 
chosen from w in (T) = (m!/k!(m - k)!) ways, there are (z)2k regions 4 . The Binomial 
Theorem then implies CL0 (:)2” = 3”. Since 3” > 10 m(0.*77) this partition can involve 
an exceedingly large number of distinct regions even for a relatively small number of 
securities. For example 315 = 14,348,907. 

aa When m = 3, the (m - k) dimensional hyperfaces Ss, n Q,, are just the 8 vertices, 
12 edges, and 6 faces of the rectangular solid. A transaction involving 3 securities ends 
at a vertex, a transaction involving 2 securities ends at an edge and a transaction 
involving 1 security ends at a face. 
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FIG. 1. Transaction regions for m = 2 (small proportions). 

PROPOSITION 2. Zf Assumptions l-7 are satisjied then there exists a 
region Sz,, C Rm such that the investor always confines his portfolio proportions 
to this region.23 

Proof. Consider the signal functions 

vj*(S2 Xc> = [Xu,(5j” - 1) - lIti + f?(l + fj xvi&) j = I,..., nl. 
i#j 

The idea is to use these functions to define general k-transaction regions 
Qk in which k securities are transacted. By calculating the regions s2,, 
8,-, and so on, the region s;Z, is arrived at recursively. In the proof that 
follows we assume implicitly that the regions do not overlap. When regions 
overlap however, which arises in particular when &O < 0 or tjo > 1 
for some indices j, we proceed as in the proof of Proposition 1 and show 
that regions in which the ith security is both bought and sold must be 
regions in which the ith security is not transacted. 

Consider the regions Sz, . Since uj* 2 0 is equivalent to vi* 2 0, the 
inequalities vi* 2 0 j = l,..., m define 2”’ regions Q!, in which all m 
securities are transacted where xuj = x’ if vi* > 0, xv, = -xj if vj* < 0. 
Next we obtain the regions JZ?,,-, . Suppose the first security is not trans- 
acted so that vl* = 0. Let all the remaining securities have definite signs 

23 The region s2, can become unbounded if / tjO j is sufficiently large. In practice such 
cases are unlikely to arise. Suppose x’ = xr = x. Then the hyperplanes Vi* = 0 intersect 
the & axis at the points A(tj’) = (&‘/(l + x(1 - 6,“))) and B(&“) = (&“/(I --x(1-I?))) 
and these points become unbounded as fro - 1 + (l/x) and [jj” + 1 - (l/x) res- 
pectively. 
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for I+*,..., vnE*, say vj* > 0, j = 2 ,..., m. Consider the region defined 
by vj* > 0 j = 2,..., m with xv, x x1: intersect this with a similar region 
obtained by setting xTI = -x1 . Subtract out the regions where zfI* > 0, 
vj* > 0 j = 2 ,,.., nz and vl* < 0, vj* > 0 j = 2 ,..., WI (namely the two 
Qn,, regions) and we are left with the region in which the first security is 
not transacted but the remaining securities are transacted in a definite 
way. Since there are 2+l ways of buying and selling the remaining (nr - 1) 
securities there are 2’+l such regions in which the first security is not 
transacted and since any of the (m - 1) securities can be chosen in place 
of the first security there are ~22+~ regions sZ,_, involving transactions 
in (IW - 1) securities. The recursive procedure should now be evident. 
Proceeding in this way we obtain all the different transactions regions in R" 

x2, ) Q-1 )...) a, )...) Q. . 

By construction IR, is then the region to which the investor confines his 
portfolio. 1 

FIG. 2. Transaction regions for M = 2 (general case). 
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Figure 2 shows the 9 regions Qz, Sz, , Go when 1~ = 2, xi = xi = x, 
.gJ > 0, i = 1, 2.24 

Theorem 1, (9), and (15) imply that the investor’s consumption policy 
becomes, as E + Of, 

This leads at once to 

where D =’ & (P - dr + 4)). 
(20) 

PROPOSITION 3. If Assumptions l-7 are satisfied the investor’s con- 
sumption policy depends (i) upon his current portfolio policy, (ii) upon his 
wealth and the length of his remaining lifespan.25 

When xL. = 0, (20) coincides with Merton’s consumption policy [2, 31; in 
this case as Samuelson observed [23], the consumption policy and the 
portfolio policy are independent financial decisions. When transactions 
costs are present, however, (20) implies that consumption varies depending 
on the region of the portfolio space in which 6 lies. The factor C,“=, xu si . 
adjusts his effective wealth in such a way that whenever the investo; is 
purchasing (selling) a security, a factor is added to (subtracted from) his 
wealth, this nominal increase (reduction) in his wealth leading to an 
increase (reduction) in his consumption. The increased (decreased) con- 
sumption must however be drawn out of (kept in) cash which leads 
to a real reduction (increase) in his wealth thereby helping to increase 
(decrease) the proportion of the security in his portfolio. (ii) is immediate - 
though the fact that the consumption policy depends upon his remaining 
lifespan marks an important qualitative difference between the portfolio 
and the consumption policies. 

24 Using the recursive procedure of the proof we obtain the following transaction 
regions. Below ABC buy 1, buy 2: to left of CDE buy 1, sell 2: to right of EFG selll, 
sell 2: below GHA sell 1, buy 2. These are the 4 Q regions. In B”CD buy 1: in DEF’ 
sell 2: in H’GH sell 1: in HAB’ buy 2. These are the 4 Q, regions. In BB”DF’FH’HB’ 
do not transact. This is the region Q,, . 

25 Condition (16) ensures c* - i? > 0 as required by (10) provided 

so + 5 (1 + x+i + Y - e > 0. 
i-1 

The economic interpretation of (16) is familiar. For when r) < 0, II --) - cc as c - 
~~O~whilewhenO<~<1,~~~Oasc-~~O+.ThuswhenO~~<1thepure 
rate of time preference p > 0 must be sufficiently large to ensure that consumption 
always exceeds the minimum level E. We may also note that if(16) is satisfied (15) and 
(20) are well defined as T -+ CO, so that the portfolio problem is well defined for the 
infinite horizon case. As T 4 00, c* converges to a time-independent consumption policy. 
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4. CONCLUSION 

This paper has shown a number of fundamental qualitative changes that 
arise in the portfolio behavior of an investor when trading opportunities 
on the capital market are no longer available costlessly. The most basic 
change is that the investor substantially modifies his concept of an optimal 
portfolio which now consists of a whole region in the portfolio space. A 
direct consequence of this is that the investor only seeks to make use of 
trading opportunities at randomly spaced instants of time. Both of these 
properties are likely to hold more generally for the class of concave utility 
and transaction cost functions. The wider economic significance of trading 
costs must now be sought in their impact on the capital market as a whole. 
As one result in this direction trading costs can be shown to be an impor- 
tant factor explaining the existence of financial intermediaries such as 
mutual funds, as is shown in [24]. The methods developed in this paper 
may also prove useful in determining the impact of trading costs on 
capital market equilibrium. 
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