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1. SHORT- AND LONG-RUN DYNAMICS 

In the “Mecanique Analytique” (1788) Lagrange proved the following 
theorem. If the potential function of a conservative dynamical system attains 
a minimum (maximum) at a position of equilibrium then the motion in a 
neighborhood of this equilibrium point is stable (unstabZe).l In 1885 Poincare 
showed that if the potential function is made a function not only of the state 
of the system but also of an exogenous parameter and if the equilibria induced 
by the potential function are considered as functions of the parameter we 
obtain an equilibrium surface in the parameter-state space for which the 
stable and unstable branches are separated by bifurcation equilibria [50, 
pp. 43-551. If we combine these two ideas for a class of dynamical systems 
that arises in economic theory we obtain the beginings of a rich and interesting 
theory of economic dynamics. 

Such a theory has two parts, a short-run dynamics and a long-run dynamics. 
For a fixed value of the exogenous parameter the short-run dynamics 
classifies the equilibria associated with this parameter value into stable and 
unstable equilibria, and shows the local nature of the motion in the neighbor- 
hood of each equilibrium point when viewed in the state space. Such an 
analysis carried out for all feasible values of the parameter leads to a classi- 
fication of the equilibrium manifold into stable and unstable submanifolds. 
A system with only stable equilibria will in general have associated with it 
a confinlrous long-run equilibrium manifold. When the exogenous parameter, 
taken as fixed in the short-run dynamics, is allowed to vary in a slow and 
systematic way, the system will trace out a trajectory along the equilibrium 

* This paper is a revision and extension of [43]. The paper was presented at the European 
Meeting of the Econometric Society, Grenoble, September 1974. I am grateful to W. H. 
Fleming and J. A. Mirrlees for helpful discussion on the original draft and to W. A. Brock, 
D. Cass, L. W. McKenzie, R. T. Rockafellar, H. E. Ryder, P. A. Samuelson, K. Shell, and 
E. C. Zeeman for subsequent helpful discussions. I owe an especial debt to William Brock 
and Lionel McKenzie. 

1 See [34, pp. 69-761. The proof of instability was completed by Liapunov [35, pp. 62, 
377-3861. It was Lagrange’s theorem and the proof of it by Dirichlet [34, pp. 4574591 
that suggested to Liapunov his general approach to the problem of stability [35, pp. 56-641. 
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manifold. When the manifold is smooth we are in essence carrying out the 
continuous-time analog of the classical problem of comparing equilibria 
[4, Chap. 10; 11; 59, Chap. 31. 

If a unique equilibrium for a given value of the parameter is normally 
stable, muitiple equilibria are normally associated with the presence of both 
stable and unstable equilibria. While in a static theory uniqueness seems to 
be essential to obtain a meaningful theory [4, Chap. 91 in the dynamical theory 
the presence of multiple equilibria is likely in some cases to lead to a much 
richer theory. 

The reason is as follows. Since the short-run dynamics ensures that in the 
long run the system moves along the stable submanifolds, we are led to 
remove the unstable submanifolds. Thus a system with unstable equilibria 
will normally have associated with it a discontinuous long-run equilibrium 
manifold. When the parameter changes and leads the system along the equi- 
librium manifold to a bifurcation equilibrium the system essential1.v jumps 
across the unstable submanifold to the next stable submanifold, thereby inducing 
a major change in the long-run dynamical behavior of the system. In the Thom- 
Zeeman terminology [66, 681 crossing a bifurcation equilibrium produces a 
catastrophe. In Section 5 we will show that such phenomena may arise quite 
naturally in economic dynamics. 

The equilibria we will consider in this paper are the simplest type of 
dynamical equilibria-the point equilibria. Equilibria consisting of periodic 
orbits such as those that appear in the paper of Ryder and Heal [56] will 
call for a more sophisticated analysis. 

Section 2 outlines the basic class of dynamical models, while Section 3 
presents some preliminary results for the classification of equilibria. Except 
when n = 1 the results are far from complete and involve exclusively 
suficient conditions for characterizing stable equilibria. These stability con- 
ditions are given a geometric and economic interpretation in Section 4. 
Some preliminary results on long-run dynamics are presented in Section 5, 
while Section 6 illustrates the theory with some examples. 

2. COMPETITIVE PATHS 

Consider the following famiIy of extremum problem? 

i 

T  

sup “Wt, k, u; p) dt, k = +(k, 1~; p), k 2 0, k(O) = ko , Vi) 
I2 0 

where p = (pl ,..., p,) E RS is a vector of exogenous parameters (taken as 

2 The analysis of a family of dynamical systems depending on a parameter has a long 
and established tradition in celestial mechanics where the parameters are given by the 
maszs (see [51, p. 3251). 
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fixed in Sections 2 through 4), k = (k, ,..., k,J E Rn denotes the state of the 
system (typically the vector of capital stocks), v = (vl ,..., v,) E R” is piece- 
wise continuous and denotes the vector of controls (typically consumption 
and investment), % E RI, 9% E V and denotes the objective (utility) function, 
q4 = (@ ,..., @)eRn, q96’Z3, i = I,..., n and characterize the technology. 
In the present paper we will consider the special case where p = (6, p) with 

%(t, k, v; p) = e-%(k, v; /3), +(k, 0; P) = fk vi PI>, -co<s<cn. (1) 

To simpltyy the notation we will normaly write u(k, v) and f (k, v) omitting the 
parameter /? in (1). 

DEFINITION. (FJ and (1) are called the control problem. In the special 
case where k = f(k, v) = v we write u(k, v) = L(k, k) and refer to (9J and 
(1) as the variational problem. 

ASSUMPTION (Strict Concavity). u(k, v) is strictly concave and 
f’(k, v),..., f”(k, v) are concave functions on Rn+ x R*, where Rn+ denotes 
the nonnegative orthant. 

DEFINITION. A path (k, v) is feasible if k(t) > 0, k(0) = k,, , and 
k = f(k, v) for all t E [0, T]. 

We are interested in the class of problems for which T--f co. To this end 
we introduce the following criterion due to Gale [25]. 

DEFINITION. A path (I?, 6) catches up to the path (k, v) if for any E > 0 
there exists T, such that 

I 
T  

e-87(u(k, 6) - u(k, v)) d7 > --f for all T > T, . 
0 

This is equivalent to the condition 

s T  

lim 
zz 0 

e-*7(u(k, 6) - u(k, v)) dT 2 0. 

DEFINITION. A feasible path (k, 5) is optimal if it catches up to all other 
feasible paths. 

The following definition is basic to all of the analysis that follows. 

DEFINITION. A feasible path (I;, fi) is competitive if there exists an 
absolutely continuous path of prices ($ - 6F, j?) such that 

u(E, F) + jY(k, G) + (j - SF) E 3 u(k, v) + Hk, v) + ($ - 63 k (2) 

for all (k, v) E Rn+ x R”, t E [0, 00). 
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Remark. A competitive path is a path that has associated with it a dual 
path of prices under which it maximizes profit at each instant, for f - 6p 
denotes the vector of unit rental costs and (1, p) denotes the vector of unit 
output prices so that u + pk + ( f - 6p) k is the profit which is maximized 
at each instant along a competitive path. 

DEFINITION. e(k, p; v) = u(k, v) + pf (k, v) is called the pre-Hamiltonian. 
In view of the assumption of strict concavity we have the following. 

LEMMA 1. A path (k, v, p) is competitive if and only if 

&(k, p; v) + b - Sp = 0, &(k, p; v) = 0, k = &(k, P; v), 

t E P, a), (3) 

where et, e, and c;, denote the gradients of e with respect to k, v, and p, 
respectively. 

Remark. In the variational case (3) reduces to the Euler-Lagrange 
equation 

L& + L&R - (Lk. + 6L,&) = 0. (4) 

DEFINITION. G(k, p) = max, c(k, p; v) is called the Hamiltonian. 

Remark. In terms of the Hamiltonian, the equations (3) reduce to the 
canonical equations 

$ = -Gdk P) + SP, k = G,k P). (5) 

LEMMA 2. Under the assumption of strict concavity a competitive path 
(k, i!, j?) which satisjes the transversality conditions 

li;;; e-stp(t) f?(t) = R < co, 
*+a 

for constants R, K (6) 
lim e-stj$t) k(t) = K > ~-co, 
t-cu 

for any feasible path k(t), is optimal. 

Proof. We will present a continuous-time version of McKenzie’s proof 
[41, p. 2741. Introduce the profit-loss (value-loss) function 

(7) 

which evaluates thepro@loss of any feasible path (k, v) under the competitive 
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prices ($ - @, j) of the path (I;, fi, Ij>. Premultiplying by e-6t, integrating, 
and using the fact that k = f(k, v) gives 

s 

T 
e-"T(u(k, v) - u(E, 6)) di- 

’ = p(O)(k(O) - k(O)) + e-8Tj(T)(li(T) - k(T)) - JOT e--6TY(k, v) d7. (8) 

Equation (6) and the assumption of feasibility k(0) = k(O) = k, imply 

s 

T  T  

iii% T+rn o 
ecBT(u(k, v) - u(l;, 2;)) d7 < K - & - $+t 

s 
ecsT9(k, u) dr. 

0 

Without loss of generality we may suppose there is a constant 4 such that 

so that 
s 

T 
C<Eii T-m o e-“‘(u(k, v) - u(k, 6)) dr 

s 

T 
lim CF.2 o e-67-E”(k, v) dr < K - g i G 

which implies e-6t9(k, u) ---) 0 as t -+ 00. The assumption of strict concavity 
implies 8(k, v) > 0 for all t > 0 and e-““p(t)&(t) - k(t)) -+ 0 as t -+ co, 
from which the result follows. n 

ASSUMPTION (Utility Saturation). For 6 < 0, u(k, u) < u(k, 5) = 0 for 
all (k, v) # (k, 6) for some (k, 15) E An+ x Rn and f(k, 5) = 0, where fi+ 
denotes the interior of the nonnegative orthant. 

Remark. This is the familiar Ramsey assumption [53]. For a careful 
analysis of the problems that can arise when 6 < 0, see Koopmans’ original 
paper [32]. 

DEFINITION. A competitive path (k*, v*, p*) which is stationary 
(k* = $* = 0 for all t E [0, co)) is called an optimal stationary state (OSS). 

ASSUMPTION (OSS). (k*, p*) E l@+- x I@+ for 6 > 0, k* E J%+ and 
p* = 0 for 6 < 0. 

The following definition is central to our analysis. 

DEFINITION. Let p = (6, p) d enote the vector of exogenous parameters. 
The manifolds 

’ = [h k*, P*) [ 
Q* - Wk*, P*; PI = “1 c Rs x fin+ >(. fin-, 

G,(k*, p”; /j) = 0 

(9) 
8, :1 {(p, k*) 1 &(k*, 0; /3) + 6Lk(k*, 0; 8) = O> c R” x gn+, 
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are called the equilibrium manifolds for the family of control and variational 
problems (5) and (1). 

ASSUMPTION. d # a(&, # m). 

Remark. See Peleg and Ryder [49] and Cass and Shell [21]. 
As is usual in the analysis of problems of stability, it is useful to make the 

equilibrium point (0%) the origin for the analysis. 

DEFINITION. The local coordinates around an OSS (k*, LI*, p*) = 
(k*(p), v*(p), p*(p)) are defined by the transformation 

(‘x, y, 7) = (k - k*, D - D*, p* -p). (10) 

DEFINITION. The profit-loss function induced by the competitive prices 
of an OSS (k*, v*, p*) is defined by 

dip’yx, y) = LE’(k* + x, v* + y) = e(k*,p*; v*) 

- e(k* + x, P*; LJ* + y) + APEX. (11) 

DEFINITION. An OSS is accessible if there exists a local control 7 and an 
associated feasible local path (f,?) such that sr e-*TZo(2, f) dT < 00. 

LEMMA 3 (Brock). If an OSS (k*, v*,p*) is accessible and if a feasible 
local path (a, 7) minimizes profit-loss jr e-6TLZo(x, y) dr then the path 
(k* + 2, v* + 7) is optimal. 

Proof. We give a continuous-time version of Brock’s proof [IO, p. 2791 
omitting details. Let (2, ji) be a feasible local path that minimizes profit-loss 
and let (x, y) denote a second feasible local path, then using (8) 

1 
T  

e-“‘(u(k* + 2, v* $- 7) - u(k* + x, P* + y)) d7 
.” 

= epGTp*(x(T) - R(T)) -b Ior e--6TZo(x, y) d7 - LT e-6TFQ, 7) &. 

Since the OSS is accessible sr e-8rJZ’o(x, 7) dr < co, and hence by the strict 
concavity of p”(x, y), e-“‘p*f( T) - 0 as T + co. Ifs: e-ST-SPo(x, r) d7 = co, 
(2,~) is clearly a better path. But if Jr e-6TJZo(x, y) d7 < 00, e-“‘p*x(T) -+ 0 
as T--f co and the fact that (~7) minimizes profit-loss gives the result. n 

COROLLARY. Under the assumptions of the lemma if8 < 0, (x, 7) + (0, 0) 
as t--t co. 

Remark. When 6 < 0 once strict concavity is assumed convergence 
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depends only upon accessibility. It is not evident however, that an OSS is 
always accessible. In the next section we give local conditions at an OSS 
that ensure accessibility. 

For a market description of the process of capital accumulation the 
following definition and theorem are of central importance. 

DEFINITION. A time-invariant linear system [i] = A[:], A a 2n x 2n 
constant matrix, has the saddle-point property if n eigenvalues have negative 
real parts and the remaining n eigenvalues have positive real parts. 

A proof of the following theorem may be found in [30, pp. 57-60,242-2441. 

THEOREM 1 (Existence of Stable Manifold). 

(i) Linear manifold (Jr/-). Let $1 = A[:] be a 2n-dimensional time- 
invariant linear system with the saddle-point property, then there exists a 
real n-dimensional linear stable manifold N E R” x R” such that (f 
CdO), y(0)) E Jlr then (x(t), y(t)) E N for t E P, ~0) and (x(t), y(O) - (0, 0) 
ast-t ‘;c. 

(ii) Nonlinear manifold (Jlr*). Let [i] = A[:] + h(x, y), where 
h(x, y) E V, h(0, 0) = 0, h,(O, 0) = 0, if the afsociated linear system [s] = 
A[:] has the saddle-point property, then there exists a real n-dimensional %‘I 
stable manifold M* E R” x Rn containing the origin and an E > 0 such 
that if 11 x(O), y(O)11 < E and if (x(O), y(0)) EN* then (x(t), y(t)) EN* for 
t E [0, 00) and (x(t), y(t)) ---f (0, O), as t ---f co, where 11 (/ is the standard 
Euclidean metric. Furthermore Jlr* is tangent to Jlr at the origin. 

3. SHORT-RUN DYNAMICS 

We address ourselves to the following problem. 

PROBLEM (Characterizing Stable Submanifolds of d and eSk). 

I. Control problem [(k, p) space]. Find sufficient conditions on the 
utility function u(k, v) and the technology f(k, v) such that if (ri(t),p(t)) is 
an optimal competitive path then there exist a real n-dimensional GP manifold 
A%‘+ E Rn x R”+ containing (k*(p), p*(p)) [where (p, k*, p*) E a] and an 
E > 0 such that if Ii( p(0)) - (k*(p), p*(p))11 < E and (k(O), P(O)) E.&K* 
then (k(t), p(t)) EJ%‘* for t E [0, co) and (g(t), j(t)) - (k*(p), p*(p)) as t + co. 
Furthermore if (k(t), p(t)) EJZ* then (k(t) - k*)( p(t) -p*) < 0 for 
g(t) # k*. 

II. Variational problem [k space]. Find sufficient conditions on the 
utility function L(k, fr) such that if k(t) is an optimal solution of the variational 
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problem then there exists an E > 0 such that if I/ E(O) - k*(p)11 < E [where 
(p, k*) ES,] then E(t) + k*(p) as t - co. 

Remark. (I) is the conditional asymptotic stability of a saddle-point. (II) is 
standard asymptotic stability. 

Let (k*, v*, p*) = (k*(p), v*(p),p*(p)) be an OSS. We are interested in 
the qualitative stability properties of the paths generated by (To) and (1) 
in the case where T---f co. Brock’s Lemma assures us that paths which are 
solutions to the problem 

s 
m 

inf e-*‘6P”(x, y) d7, 
y  0 

2 =f(k* + x, c* + y), 

k*+ >O Xl ) k* + x(O) = kc, (-v> 

are solutions to (FJ and (1) as T --f 00, where the dependence of ~O(,Y, y) 
and f(k* + X, v* + y) on fi has been omitted to simplifv the notation. In 
view of the assumption of strict concavity we will find that the stability 
properties of the paths generated by (TDo) are the same as the stability 
properties of the paths generated by the problem 

I 

cc 

inf 
y 0 

ecaTLo(x, y) dr, f = Fx + Gy, 

k* +x 20, k* + x(O) = k, , 
@,o) 

where 

and 

F = fk(k*, v*), G = f,,(k*, v*). (12) 

Note that by (1 l), =.!YO(O, 0) = 0, 2Xx0(0, 0) = 0, $RyO(O, 0) = 0 and from (11) 
and the definition of the pre-Hamiltonian 

*, v*) f; (k* P*) 
+ f  pi* [;f$, t,*) f((k* ,*,I1 

i=l 12) > 

which in the variational case reduces to the simpler matrix 

(13) 

(14) 
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AN the stability conditions that we shall give will reduce to conditions on the 
matrices (12)-(14). 

Remark. (Loo) is the accessory variational problem for (Y:), familiar in 
the analysis of conjugate points, and generates the linearized equations for 
(9:) at the OSS. 

Approach to stability analysis. The Hamilton-Jacobi theory is concerned 
with the relationship between the trajectories of the system (the solutions of 
the canonical equations) and certain transversal surfaces (the surfaces W(x) = 
constant, where W is a solution of the Hamilton-Jacobi equation).3 But 
how does this help in a stability analysis ? 

Consider the value-loss function induced by the problem (L,o)4 

W(x) = i;f JOE e@7Lo(~, y) d7. (15) 

Since L”(x, y) is a positive convex function which attains a unique minimum at 
the 0% (LO(0, 0) = 0), W(x) is a positive convex function which attains a 
unique minimum at the OSS (W(0) = 0). Thus the surfaces W(x) = constant 
will form concentric contours around the OSS (see [61, p. 5451). Will the 
attempt to minimize value-loss, ,from Brock’s Lemma, lead the trajectories 
to cut across the surfaces W(x) = constant, towards the OSS? Not necessarily. 
But if we ask that this be so, we are led directly to a natural stability con- 
dition. 

THEOREM 2 (Hamilton-Jacobi equation). Zf y minimizes si eeGTLo(x, r) dr 
subject to 2 = Fx + Gy then 

(i) the value-loss function W(x, t) = inf, $ e-ac7-t)Lo(x, y) dr is a 
solution of the Hamilton-Jacobi equation 

W,-6W+G”(x, W,) =O (16) 

with transversality condition eeaTW(x, T) = 0; 

(ii) the control y minimizes 

e”(x, rl; Y) = L”(x, Y) + rl’(Fx + GY), 

G”(xt d = m;1n GO(x, 77; Y) 

3 For a full development of these ideas see my monograph “On a General Economic 
Theory of Motion” [45, Chap. V]. 

4 As Lionel McKenzie has pointed out to me, this approach to the problem of stability 
may be viewed as a natural continuous-time generalization of the value-loss method 
originally introduced by Radner [52] and subsequently extensively developed by McKenzie 
[38-42]. In the analysis that follows if we replace Lo&, y) by 9(x. y) then we obtain 
global stability theorems, provided the value-loss function which replaces (15) is a W 
function. The ideas that follow are thus not restricted to a local analysis. 
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Proof. [23, p. 841. 
The necessary conditions for y to minimize e”(x, 7; y) are5 

(;‘,” = x’N + y’B + $G = 0, z’C?;,z = z’Bz 2 0 

for all z # 0, z E R”” (17) 

If we assume j B 1 # 0 then (17) implies B is positive definite. Thus 

y = -B-l(G’7 + N’x) 

so that the Hamiltonian becomes 

The solution of (16) is given by 

W(x, t) = 3x’QO) x, (18) 

where Q(t) is the solution of the matrix-Riccati equation 

s + QG,o, + CC:,, - 80 Q + QG:,Q + G,“x = 0, Q(T) = 0. (19) 

Equation (18) implies y = -B-‘(G/Q(t) + N’) x. 

LEMMA 4. Let Q(t, T) be the solution of (19). Zf L”(x, y) is positive dejnite 
and if for each x(O) E R”, II x(O)11 < co there exists a control yO(t) with asso- 
ciated trajectory x”(t) for the system 2 = Fx 4 Gy, and constants a > 0, 
b > 0, a: < 6 such that 

/I y”(t)11 < ae(+jt, // x”(t)11 < becD1i2jt for all t > 0 (20) 

then lim,,, Q(t, T) = Q* where Q* ispositive definite. 

Proof. Let W(x, t, T; y) = s: e-*(+)LO(x, y) &. Let A* > 0 denote the 
maximum eigenvalue of the quadratic form L”(x, y), then 

x’Q(t, T> x < Wx’, t, T; ~‘1 G 
h*(a2 + b”) 

s _ e”‘(l _ e-(S-awt)) 
a 

Since S - 01 > 0, lim,,, x’Q(t, 7’) x < co. Since L”(x, y) is positive definite, 
x’Q(t, T) x is positive definite for all t < T and x’Q(t, T + h) x > x’Q(t, T) x 
for h > 0 from which the result follows. A 

5 When matrices enter into the equations we use primes to denote the transpose. 
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COROLLARY. Under the assumptions of Lemma 4 

YW - y* _ -&l(G’Q* + N’) x = P*x as T-t a. (21) 

Remark. The fact that finite horizon control policies converge to the 
infinite horizon policy is a result of great economic importance. For if under 
y* the process 2 = Fx + Gy* converges to the OSS then the corollary 
implies that if the horizon is sufJiciently far in the future, y(t) can be set equal 
to y* for most of the planning horizon, except, that is, for a transient terminal 
interval during which Q(t) goes from Q * to its terminal value Q(T) = 0. 
The corollary thus leads to the standard finite horizon Turnpike Theorems 
of Radner, Samuelson, and McKenzie [38-42, 52, 57, 581. 

Accessibility. We will now consider two types of local accessibility some 
variant of which plays a basic role in both the Radner-Samuelson-McKenzie 
finite horizon Turnpike Theorems and the Furuya-Inada-Gale asymptotic 
Turnpike Theorems [24, 251. Some variant of the first definition is necessary 
for the finite horizon Turnpike results, while some variant of the second is 
necessary to obtain asymptotic results. 

DEFINITION. If for each x(O) E R”, 11 x(O)11 < co there exists a control 
ye(t) and associated trajectory x”(t) for the system 2 = Fx + Gy for which 

(1) there is a time To such that // x”(t)11 -+ 0 as t + To, then the OSS 
will be called locallyfinitely accessible? If, on the other hand, 

(2) there are constants a > 0, b > 0, 01 < 0 such that 

II r”(t)ll < aeat, II x”(t>ll < bemt for all t > 0 (22) 

then the OSS will be called locally asymptotically accessible of degree 01. It 
will sometimes be convenient to say more briefly that (F, G) is locally finitely 
accessible under (1) and locally asymptotically accessible of degree 01 
under (2). 

In the following proposition (i) and (ii) are well known [26, 311. (iii) 
strengthens the result of Gal’perin and Krasovskii [26] and provides a 
convenient test for local asymptotic accessibility of degree 01 when the simplest 
test (i) fails. 

6 The assumption of localfini~e accessibility is closely related to the concept ofprimitivity 
which implies that a positive amount of every good can be produced within a finite number 
of periods (discrete case) given any nonzero, nonnegative initial endowment. See [24, 
Assumption 6, p. 991 and [52, Remark 3, p. 1041. Local finite accessibility was first intro- 
duced and characterized in the important paper of Kalman [31, p. 1071. He called this 
property cotnplete controllability. For our purposes in view of the new definition (2), the 
term local finite accessibilitv seems preferable. 
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PROPOSITION 1. (i) The collection of initial states x(O) from which the 
OSS is locally Jinitely accessible is the subspace of R” spanned by the I < n 
linearly independent columns of the matrix 

S = [G, FG ,..., Fn-lG]. (23) 

The OSS is locally Jinitely accessible tf and onIy if r = n. 

(ii) Let (sl ,..., s,) be r linearly independent columns of S and let 
(0 T+l >...2 c,) be (n - r) vectors which span the remainder of Rn. Let y = U-lx, 
where U = [sl ,..., s, , z’,.+~ ,..., v,], then j = Fy + Gy where 

F,, is r i< r, (F,, , G,) is locally finitely accessible and the eigenvalues of F,, 
are independent of the choice of (v,+1 ,..., v,).’ 

(iii) If r < n and zf the eigenvalues of F,, satisfy Re(h,) < 01 < 0, 
i = I,.... n - r then the OSS is locally asymptotically accessible of degree DL. 

Proof of (iii). Let y = U-lx = (z, w), z E R’, w E Rn-?, then 3 = Fy + cy 
becomes 

- - - 
* = F,,z + F,,w + Gy, (24) 

ZiJ = F,,w. (25) 

Consider the problem of finding y associated with the system 2 = F,,z + G,y 
which minimizes sr e-2a7(z’Cz + y’Dy) dr for some C, D positive definite. 
Let y* = P*z denote the associated control given by (21). Since (F,, , G,) 
is locally finitely accessible y* exists and by Theorem 3 there exist constants 
a, > 0, b > 0 such that the solution Z(t) of the homogeneous system 

% = F,,z + cly* = (F,, + G,P*) z = vz 

satisfies j u”(t)]1 < aleat, jl y*(t)/1 < beat for all t >, 0. 
No generality is lost in the argument that follows if we assume hi # Aj , 

i # j, i,,j = l,..., n - r so that (25) implies w(t) = CyII’ vieAct, v. E R”-‘. 
Since Re(h,) < a, I/ w(t)\] < a2eat for some a2 > 0. Let Z denote a pkticular 
solution of 

n-r 
5 = FllZ + t?,y* --t F,,w = vz + F,, 

c 1 
zl viehit , 

then I/ Z(t)il < u3eat for some a3 > 0. Thus the general solution z = f + Z 

’ Recall that F - XI I = !  U-lF(/ - AI 1 = I RI1 - AZ 1 I Fz2 - XI; implies that the 
eigenvalues of (E’,, , F2??) are the same as the eigenvalues of F. 



186 MICHAEL J. P. MAGILL 

of (24) under y* satisfies /I z(t)]1 < uqeoit for some a4 > 0. Thus for some a > 0 

II xO)ll = II Wt)ll < II W 4Qll + II WI) < aeat for all t > 0. 

Since (22) is satisfied under y*, the proof is complete. n 

In the proof of (iii) we also established the following 

COROLLARY. If (F, G) is locully finitely accessible then (F, G) is locally 
asymptotically accessible of any degree 01, --co < cx < 0. 

Stability. We are now in a position to analyze the stability properties 
of the trajectories associated with the problem (L,O). Using (21), the equation 
i = Fx + Gy* when written in terms of the Hamiltonian GO(x, 7) becomes 

2 = (G:x + Gi’,Q*) x. (26) 

Since q = Q*x the system may also be characterized by the dual price 
equations 

vj = -(Gzn - a~+ W2*-1) 7. (27) 

DEFINITION. 

K8 = (s;$i [ W2) 1 q, I for 6 o [0, co) 

will be called the curvature matrix generated by the Hamiltonian G”(x, 7). 

DEFINITION. 

R = G;;(-GG,oJ1 + (-G;J’ G$ , 

M* = [81 - G;J (G&-l + (G;J-’ [81 - G,“,] for 6 E [0, cc) 

will be called the Liapunov matrices generated by the Hamiltonian G”(x, 7). 

THEOREM 3 (Asymptotic Stability).s (i) Zf 6 < 0, L”(x, r) is positive 

8 Equations (26) and (27) are the linearized equations for the two reduced form equations 
in x and 7, respectively, that are obtained from the canonical equations (5) associated 
with the problem (go”,“) when we make the substitutions 7 = W,(x) and x = W,*(n), 
respectively, W(x) and W*(v) being the value-loss and the dual value-loss function (the 
Fenchel conjugate of W(x)), respectively. From this observation the reader can see how to 
generalize the results below to the global case. 

9 (i) is a generalization of the theorem of Kalman [31]. A global version of Kalman’s 
theorem was established by Samuelson [60] and Rockafellar [54]. The K8 condition was 
first established in [43]. Similar results in the global case were subsequently obtained by 
Cass and Shell [21], Brock and Scheinkman [14], and Rockafellar [55]. The R condition 
was first established in [15] and is here given an alternative proof. The Ms condition is 
proved here for the first time. 
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definite and the OSS is locally asymptotically accessible of degree 42, OL < 6, 
or if’ 

(ii) 6 > 0 and (a) IP is negative definite or (b) K” is negative definite 
and R is nonpositive definite or (c) K” is negative definite and M6 is nonpositive 
dejnite. then the trajectories of (26) and (27) are asymptotically stable. Further- 
more IY (i) or (ii) are satisfied then there exist constants a > 0, b > 0, c > 0, 
8 < 0, 0 c 6 such that 

t E [0, co). (28) 

Proof. The proof is in two steps. We first show that (i) and (ii) imply that 
the assumptions of Lemma 4 are satisfied, we then exhibit an appropriate 
Liapunov function for each case. Consider therefore the quadratic form 
z’[$ ij f, where z = (x, r). Let z = Uz” = [-B&, “,I z”, then U’[$ g] U = 

;;:;!:I:# ,“I. Since U is nonsingular, [$ c ] is positive definite if and only if 
’ ,“I is positive definite. IP, 6 3 0 negative definite implies 

A -Oh’&lllr’ and GB-lG’ positive definite. The latter implies rank (G) = n 
and B positive definite. Thus K6, 6 > 0 negative definite implies that LO(x, r) 
is positive definite. Since KS, 6 3 0 negative definite implies rank (G) = n, 
by (23) (F, G) is locally finitely accessible and hence by the corollary to 
Proposition 1 is locally asymptotically accessible of any degree cy < 0. 
Thus if (i) or (ii) hold then the assumptions of Lemma 4 are satisfied and 
lb-,, Q(t, T) = Q*, Q* positive definite. 

To prove (i) and (ii)(a) we consider the value-loss function ( 15) 

W(x) = 4x’Q*x, 

W(0) == 0. W(x) > 0, x # 0, W(x) E g2. As the system moves along the 
trajectories (26) 

wx) = tw,)’ li = +(X/Q* + XV*‘)(G:, + ~tl,Q*) x 

= +xW*G:, + GQ* + ~Q*GRQ*) X. 

Since Q* is the solution of (19) with Q* = 0, 

Q*G,“, + G;,,Q* = -Q*G;,,Q* - G,o, + SQ* 

so that 

l@(x) = &‘(Q*G;,Q* - G,o, + SQ*) x. (29) 

Suppose 6 < 0. L”(x, y) positive definite implies A - NB-lN’ and B positive 
definite. Thus GO,,, = -GB-lG’ and hence Q*Gz,Q* is nonpositive definite 
and -GzX = -(A - NB-lN’) is negative definite. Since 6 < 0 and since 
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Q* is positive definite, SQ* is nonpositive definite. Thus I@(x) < 0, x # 0. 
Suppose 6 > 0. Since q = Q*x, I@(x) in (29) can be written as 

(30) 

so that K6 negative definite implies I@(x) -C 0, x # 0. Thus if (i) or (ii)(a) 
are satisfied by the Liapunov stability theorem [30, p. 391 the trajectories of 
(26) are asymptotically stable. Since 7 = Q*x a similar result for the trajec- 
tories of (27) is immediate. 

If (29)(i) and (30(ii)(a) are satisfied, there exists 0 < 0 such that 

qw < 8, e < 8. 

Let 0 < X0 < h* denote the minimum and maximum eigenvalues of Q*, 
then 

AOx’ x(t) < x’(t) Q*x(t) = W(t) < W(0) eet G h*x’(O) x(O) est 

so that jl x(t)11 d II x(O)11 (h*/h0)1/2 e@/*it, II rU)ll = II P*Xo)ll < II p* /I II XU~II, 
11 q(t)11 = jl Q*x(f)\\ < 1) Q* 11 jl x(t)11 and (28) follows for (i) and (ii)(a) with 
a = 11 x(O)11 (A*/.~“)‘/“, b = 11 P* II a, c = II Q* II a. 

To prove (ii)(b) we consider the Liapunov function V(x) = x’( -G$)-l x 
and note that r(x) = x’(-2Q* + R) x so that R nonpositive definite 
implies P(x) -C 0, x f: 0, since Q* is positive definite. Similarly, to prove 
(ii)(c) we consider the Liapunov function U(v) = q’(Gzo,)-l~ and note that 
along the trajectories (27) C?(v) = q’(-2Q*-’ + M6) 7 so that M6 non- 
positive definite implies o(q) -=z 0, 71 # 0. For an appropriate 0 < 0 in 
each case v/V < 0, o/U < 8. The rest is immediate. a 

Geometric interpretation. The KS conditions implies (W,)’ 2 < 0 for 
x # 0. Whenever the system is not at the OSS, the angle between the tangent 
vector 2 of the trajectory and the gradient W, of the surface of constant 
value-loss is an obtuse angle. Thus the trajectories of (26) cut across the 
surfaces W(x) = constant, towards the OSS. A similar interpretation follows 
for the R and MS conditions (see Fig. 1). 

THEOREM 4 (Stable Submanifolds of G and gk). Let (p, k*, p*) E d 
and (p, k*) E b,< . Under the conditions of Theorem 3 there exists an E-neighbor- 
hood 

(1) qf(k*,p*) such that (YJ and (1) h as a unique optimal solution which 
is stable in the sense of Problem I for 6 3 0, 

(2) of k* such that (9,) and (1) has a unique optimal solution which is 
stable in the sense of Problem II. 
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W(x) = constant 

“: 

* 

k 
1 

FIG. I. Under the K6 condition the tangent vector 2 leads the trajectory across the 
surfaces W(x) = constant, towards the OSS. 

Proof. Since 77 = Q*x (26) and (27) are equivalent to the canonical 
equations 

[I [ k = G:x Gi 7i -G:x -(Gix - 61)’ I[ I 1; * (31) 

The asymptotic stability of Theorem 3 implies that the system has it eigen- 
values with negative real parts. By the theorem of Kurz [33] the eigenvalues 
of (31) are symmetric about (a/2) in the complex plane. Since 8 3 0, (31) 
has the saddle-point property. By Theorem 1 there exists a linear stable 
manifold JV. It is clear that A’- = {(x, +j) I q = Q*x}. Equations (31) are 
the linearized canonical equations of the problem (Zoo). Hence by Theorem 
l(ii) there exists a nonlinear stable manifold N* which is tangent to JV 
at the OSS. Thus there exists an E > 0 such that +j’x > 0 whenever 
(x, 3) E JV*, j/(2, j)lj < E, 2 # 0, since Q* is positive definite. The canonical 
equations (5) characterizing competitive prices (k(t), p(t)) are equivalent to 
the canonical equations of (Zoo) under the transformation (10) [55, p. 801 
and hence lead under (10) to a manifold A’* generated by JV* with the 
properties of Problem I. Since (6) is satisfied along the manifold A?* the 
competitive paths along A* are optimal. To establish (2) we need only note 
that (28) ensures that (6) is satisfied when 8 < 0 for some E > 0. a 
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4. INTERPRETATION OF STABILITY CONDITIONS 

Geometry of Hamiltonian. It was the original paper of Shell and Stiglitz 
[63,64] that first brought to light the rich economic interpretation that under- 
lies the saddIe-point property for a competitive market system. Translated into 
the present framework the stable manifold leading to the OSS carries the 
one and only infinite sequence of market clearings that is optimal over all 
future time. Cass and Shell [21] have shown that under certain conditions 
a Hamiltonian and equations akin to (5) may provide a useful framework for 
analyzing competitive dynamical systems. Although the Hamiltonian is not 
the economic entity that is of real interest in a theory of resource allocation, 
since it represents revenue rather than proJit, its curvature properties may 
provide a useful analytical tool for analyzing stability, since the Hamiltonian 
is the function by means of which the simultaneous evolution of prices and 
quantities is described. We will consider therefore the curvature properties 
of the Hamiltonian implied by the basic condition in Theorem 3, the KS 
condition. 

DEFINITION. Let f(x) E e2 be defined on a convex domain D C R”, let 
01 >, 0, c1 E R, and let B be an n x n positive definite matrix. f(x) will be 
called a-convex in the metric of B if w’f&x) w  3 olw’Bw for all x ED, 
w  E R”. If B = I, f(x) will be called a-convex. f(x) is a-concave if -f(x) 
is a-convex. 

DEFINITION. Let A, B be n x n matrices, B positive definite, symmetric. 
vi is an eigenvalue of A in the metric of B if there exists xi # 0 such that 
Axi = viBxi. It is well known that tf in addition A is positive definite, sym- 
metric, then A has n real, positive eigenvalues in the metric of B [27, pp. 310- 
3191. Let v1 ,..., v, denote the real, positive eigenvalues of GzX in the metric 
of (-G&)-l and let 

v’(G,o, ; (J$‘,)-~) = pn (vi}. \. 
PROPOSITION 2. The following statements are equivalent: 

(i) KS is negative definite, 

(ii) v”(GzX ; (-G&-l) > (6/2)2, 

(iii) Go&, 7) is O-convex in x in the metric of (-G&)-1 for some 
e > (6/2)2. 

Proof. The transformation 

[I [ XE R r (8,2)(!G&)-’ ; fj I[ 1 implies x ’ -G:x @/2) I 
[I [ 

x < o 
T I[ 1 @/2) 1 G:, rl 
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for all (x, 7) # 0 is equivalent to the two conditions 

x’P% - (6/2)2 (-G;,,)-‘1 x > 0 for all x f 0, 
(32) 

?j’G,o,ij < 0 for all +j f 0 

Note that since Go&, 7) is quadratic in x and 7, GzX and G$ are independent 
of (x, rl). 

(i) 3 (ii). Since (32) implies x’(-G,“,)-l x > 0, x # 0, (32) also implies 
[x’G,O,x/x’(-G&)-l x] > (6/2)2 for all x # 0 so that minX+&‘G!&x/ 
x’(-G,o,)-l x] > (6/2)2. But 

[22, pp. 37-391. 

(ii) 3 (iii). Since v” = min,,,[x’G~,x/x’(--G~,)-l xl, [x’G’xx/ 
x’( -Gi,)-l x] 3 v” for all x # 0 so that x’G&x > 6x’( -G&-l x for all 
x E Rn with 0 = v” > (6/2)2. 

(iii) 2 (i). If G”(x, 7) is &convex in x in the metric of (-G&)-l with 
6 > (6/2)2, then w’G$w 2 &v’(-G&-l w > (S/2)2 w’( -Gz,)-l w for all 
w # 0 and v’G~,,v < 0 for all v # 0, which implies (32). a 

The following proposition and corollary relate Rockafellar’s [55] 01 con- 
vexity, B-concavity for GO(x, q), to the more general condition of Propo- 
sition 2(iii). 

PROPOSITION 3. If Go&, 7) is ol-convex in x and /l-concave in 77 with /3 > 0 
then G”(x, 7) is $-convex in x in the metric of (-G&)-l. 

Proof. w’GzXw 3 olw’w for all w E R” implies (~‘G$~w/w’w) > 01 for all 
w # 0 so that p”(G&) = min,,,(w’G!j,w/w’w) > cy. Similarly X0(-G”,,) = 
minWfo[w’(-Gt,,) w/w’w] >, /3. Thus 

~$3 < /L’(G;‘) A’(- G,O,) = p”(Gxox) 
minUzo [L~‘G~~c/~‘v] 

X*(.-Gin)-1 = max,+,, [ y’( - GtV)-l .Y/.v’J*] 

,( min 
v’G,Oxv 

< 
v’G~,v 

v+o v’(-G,~)-~ v v’( - G&-l ~1 

for all v # 0. Since h”(-G&J >, p > 0, v’( -Gz,)-l v > 0 for v # 0 so that 
v’G~p > @v’(-G~,)-~ v for all v E Rn. a 

COROLLARY. (9 rf P~(G$J ~“(--GkJ = [P~~G~,)/~*(-G~,,-*I > @/2)2 
then vO(G& ; (-G,“,)-l) >1(6/2)~. 

642,'15/1-13 
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(ii) lf G”(x, 7) IS ol-convex in x and p-concave in 7 with c& > (6/2)2 
then KS is negative definite. 

Benefit-cost calculation. The transformation [;][-,!I,, y]@ reduces (L,,O) 
to the equivalent problem 

inf 4 
Y i r e-“[x’(A - NB-lN’) x + y’Bjj] dT, 

0 (33) 
2 = (F - GB-lN’) x + Gy, k* + x >O, k* i x(O) = k, 

DEFINITION. A - NB-lN’, F - GB-IN’, and (GB-lG’)-l will be called 
the effective state-loss matrix, the underlying system matrix, and the eflective 
control-cost matrix, respectively. 

Remark. $(A - NB-lN’) x measures the value-loss induced by a given 
deviation x of the state from the OSS when the interaction between x and 
the control y, measured by N, is taken into account: It is a measure of the 
benefit generated by the OSS. F - GB-IN’ determines the nature of the 
motion of the underlying uncontrolled system (7 = 0). (GB-lG’-l measures 
control costs when allowance is made for the effectiveness of control, as 
measured by G: It is a measure of the cost of reaching the OSS. These three 

matrices are precisely the information revealed by the curvature properties 
of the Hamiltonian, since Gz! = A - NB-IN’. Ga, = F - GB-IN’, 
(--G&-l = (GB-lG’)-‘. 

Proposition 2(ii) leads to the bene$t-cost ratio 

0 v = min [x’G~,x/x’(-G%-~ xl = x,~-~i~In~l x’G~x. 
x+0 lln 

Adjusting the dimensions of v” so that it coincides with that of the interest 
rate 6, leads us to the condition 

2(,0)1/2 > 6. (34) 

An OSS for which the bene$t-cost ratio 2(v”)l12 exceeds the interest rate 6 is 
locally asymptotically stable, independent of the underlying system matrix 
Gi, for the economy. 

Remark. The strength of the KS condition lies in the fact that it is invariant 
with respect to G& . It requires in return, however, a minimum benefit-cost 
ratio relative to the interest rate, for the OSS. If more is known about the 
underlying system matrix Gz, then the R condition or the M6 condition may 
be appropriate. The condition R nonpositive definite implies by the Liapunozl 
theoremlO that the underlying system 2 = (Gz,) x must be stable. The eigen- 

lo If there exists a positive definite matrix P such that F’P + PF is nonpositive then the 
solutions of 2 = Fx are stable. To prove the result use the Liapunov function V(x) = x’P.x 
and the basic Liapunov stability theorem [30, p. 391. 
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values of (G$) must thus satisfy Re(hJ d 0, i = I,..., n so that Gi, is a quasi- 
stable matrixI The condition M6 nonpositive dejnite implies that the under- 
lying system for the dual 4 = (SZ - G’&) 7 must be stable. The eigenvalues 
of G;, = Gii must thus satisfy Re(h,) > 6 > 0, i = l,..., n so that G& is 
unstable of degree 6. 

Remark. I originally conjectured that if G& is a stable matrix the 0% 
would be locally asymptotically stable. Brock [9, Appendix] subsequently 
showed that this is not the case. A closely related result however, in the 
variational case, is the following. 

PROPOSITION 4. Zf L,Jk*, 0), Lkk(k*, 0) are negative dejnite and if 
L,L(k*, 0) + LkJk*, 0) is nonpositive definite then the OSS is locally! asymp- 
totically stable. 

Proof Set F = 0, G = Z in Theorem 3($(a). n 

DEFINITION. The utility function L(k, h) is additively separable if L(k, k) = 
u(k) + w(k). 

COROLLARY. Zf Lkk.(k*, 0), Lk,$k*, 0) are negative deJinite and if the utility 
function is additively separable then the OSS is locally asymptotically stable. 

Remark. This result is closely related to the theorem of Lagrange 
mentioned at the start of the paper. In classical physics the Lagrangean 
L(k, h) = T(h) - V(k) is additively separable, T(h) being kinetic energy’ 
(a positive definite function) and V(k) being the potential function. 

Remark. Thus we see that in the variational case if the gyroscopic terms 
L,k(k*, 0) are either absent or such that L,k(k*, 0) + Li,(k*, 0) is quasi- 
stable then instability does not arise. 

Remark. The idea that stability should depend upon the curvature 
properties of the utility function at the OSS is an old one: it is implicit in 
Lagrange’s theorem and is explicitly used by Liapunov to study gradient 
processes [35, p. 611. More complex gradient processes were extensively 
analyzed in the classical investigations of Arrow and Hurwicz [3, 5, 61. 
Their Theorem 2, [6, p. 1251 is closely related to the KS condition, although 
it should be recalled that gradient processes are a much simpler class of 
processes than those that arise from the control problem. 

Mirage variables. An interesting economic interpretation may be given 
of those cases where a sufficient increase in the rate of interest 6 leads to 
instability. 

I1 Let h, ,..., X, denote the eigenvalues of an n x II matrix A. We say A is (i) stab/e if 
Re(h,) c 0, (ii) quasi-stable if Re(XJ < 0, (iii) unstable if Re(X,) > 0, for i = I,..., n. 
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DEFINITION. The variables Q(t), P(t), q(t)) = e-‘*‘z)t(x(t), y(t), 7(t)) will 
be called the mirage variables. 

Remark. The variables (i(r), P(t), q(f)) are taken to be the Planners’ 
(society’s) distorted or miraged view of the actual future variables (x(r), 
r(r), q(r)). If the Planners view the future path of capital accumulation in 
terms of the mirage variables then the future path always appears to lie 
closer to the OSS than is actually the case. If, furthermore, the Planners do 
not discount future losses, then the effect is the same as if they correctly 
assessed the actual future path but applied a systematic discounting to future 
losses. 

In the mirage variables (33) reduces to the equivalent problem 

j = (F - GB-lN - (a/2) Z) 9 + GjT, 

k* + 9 20, k* -+ i(O) = k, , 

(35) 

where -(a/2) Zg is the factor by which the actual growth rate is distorted in 
the mirage variables. The equations (26) and (27) now become 

4 = (G,", - (a/2) I+ G&Q*) f, (36) 

9 zz -(Go xn - (a/2) Z + G,“,Q*-‘) 3. (37) 

Since the KS condition applied to the original system (33) implies A - NBVN’ 
and B are positive definite and rank (G) = n, Proposition l(i), its corollary 
and Theorem 3(i) imply that (36) and (37) are asymptotically stable. In the 
mirage variables the oprimal path of capital accumulation and the associated 
competitive prices converge .for all values of 6, in some +neighborhood of 
the OSS. 

The Planners conscientiously outline the future path of capital accumu- 
lation following closely the advice of Ramsey, assigning equal importance 
to present and future losses [53]. Viewing the economy in terms of the mirage 
variables the Planners are convinced the economy will converge to rhe OSS. 
And yet if rhe degree of distortion qf the actual path passes above a critical 
level, the actual path which the economy will,follow will nor converge ro the OSS. 
This is the great social fraud thrown upon the society by the mirage variables. 
The deception they face is not unlike that of the traveler in the desert who 
is convinced he sees an oasis ahead. But in reality it does not exist. It is 
only a mirage. 

Remark. The mirage variables are of considerable interest in connection 
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with the earlier analysis of Kurz [33]. For if the capital stocks and prices 
are analyzed simultaneously (36) and (37) reduce to 

L-1 [ i = (G’x - (WI 1) GO RR (38) 
+i -Gk -(Gzx - (a/2) Z)’ 

The canonical equations in the mirage variables generate a saddle-point in 
the 2n-dimensional space (2, 4) for all values of 6. This result follows at once 
from the theorem of Poincart 12, by which if pi is an eigenvalue of the matrix 
in (38), then -pi is also an eigenvalue, furthermore Re&) > 0 by the K8 
condition so that periodic trajectories are eliminated. If we transform back 
to the actual capital stocks and prices we obtain the standard canonical 
equations (31). Assuming pi distinct for simplicity, the local optimal path 
becomes 

f(t) = ,f  aieeYit, 
n 

x(t) = 1 a,e[~~iz~-%lt, a, E C”, i = l,..., II, 
i=l i=l 

so that x(t) is asymptotically stable if and only if minIcisa Re(p,) > 6/2. 

5. LONG-RUN DYNAMICS 

Bifurcation. Consider the equilibrium manifold b, , defined by (9) for 
the variational problem in the case where p = 6 (s = 1): 

c”, = ((6, k*) J &(k*, 0) + 6Lk(k*, 0) = 0, 6 3 0, k” > 01. 

DEFINITION. k*(6,) E 8, is a btfurcation equilibrium and 6, is a bifurcation 

point for 6 if there exist two solutions k*(6), E*(S) E b, such that 
// k*(6) - E*(6)]] --) 0 as 6 3 6,. 

The following result [50, p. 431 is a direct consequence of the implicit 
function theorem. 

LEMMA 5. Zf k*(8,) is a bifurcation equilibrium then 

A = 1 L&k*, 0) + GoLbk(k*, O)I = 0. 

I2 The theorem on the characteristic exponents of periodic orbits and stationary solutions 
of the variational Hamiltonian equations is due independently to Poincard [51, p. 3401 
and Liapunov [35, pp. 75, 2041. The property follows from Liouville’s theorem by which 
the vector field in the phase space behaves like an incompressible fluid, the phase volume 
remaining constant during the motion. 
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Remark. Linearizing the Euler-Lagrange equations about an OSS 
gives 

L;i&ji + GFk - -6 - 6L;rk) 2 - (L,*, + 6Lk*,) x = 0 (39) 

so that the characteristic polynomial reduces to 

D(h) = I L&V + (L& - L,* - SLk*k) x - (Lk”k + 6L;;T,)l = 0, 

where D(h) = (A, - A) ... (A,, - A), so that at a bifurcation equilibrium 

d = (-1)” D(0) = (-I)” A, **. A,, = 0. (40) 

If all the eigenvalues are real as 6 passes through a bifurcation point 6, , 
at least one eigenvalue passes through the origin. In the standard case A 
changes sign and a single eigenvalue simultaneously changes its sign leading 
to a change in the stability properties of the equilibrium manifold.13 

LEMMA 6 (Equilibrium Potential). Zf L E 9 and if there exists a constant 
A4 > 0 such that Lk,(k, 0) is symmetric for all k E K = {k 1 0 < k, < M, 
j = l,..., n} then there exists a function 4(k, 6) such that 

4dkr 6) = L&k 0) + AL& Oh k E K. (41) 

Proof. Since L&k, 0) is symmetric for all k E K, the result follows from 
the standard theorem for the existence of a potential function [l, pp. 293- 
2971. a 

Remark. The symmetry condition on Lkk in Lemma 6 is also necessary 
for the existence of 4(k, 6). 

DEFINITION. Let O(p) = I &(k*, 6) - PZ j = 0, then pFL1 ,..., pn will be 
called the curvature coefJicients of the utility function 4. 

Remark. Since &(k*, 8) is a symmetric matrix y’&(k*, 6) y = 
CyC1pizi2 under an orthogonal transformation y = Uz. If A changes sign 
as 6 passes through a bifurcation point 6,) one of the curvature coefficients 
pi changes sign. Thus in the case where a utility function 4 satisfying (41) 

I3 The bifurcation equilibrium defined here is the one originally introduced by Poincare 
[50, p. 501. It is associated with one real eigenvalue passing through the origin. The Hopf 
bifurcation, by which a stationary solution branches into a periodic orbit, is associated 
with a complex conjugate pair of eigenvalues crossing the imaginary axis and is not con- 
sidered here. See Amol’d [2, pp. 96-981. Thorn’s transversality theorem implies that the 
families of vector Jields with bifurcation at a single zero real eigenvalue or a conjugate pair 
of purely imaginary eigenvalues form an open dense set in the space of one-parameter families 
of vector fields (see Amol’d 12, p. 941). 
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exists, a change in stability is associated with a change in the curvature 
properties of $.I4 

Consider the case n = 1. By Lemma 6 a utility function q5 satisfying (41) 
exists. The roots of D(h) are given by 

x h = 6 f (62 - 49112 
13 2 2 -) 

jj = _ Gk + =i+k*,) 
L& = &A, , 6 = h, + A,. 

Thus we have a direct analog of the theorem of Lagrange. When n = 1, if 
the utility function 4 attains a maximum, C/J& < 0, then the OSS is locally 
asymptotically stable, while if 4 attains a minimum, q5& > 0, then the 0%’ 
is unstable. 

Let r(k*) = -[Lk(k*, O)/Lk(k*, 0)] then 8, = ((6, k*) I 8 = r(k*), 6 > 0, 
k* > 0} which corresponds to the statement that at an OSS the own rate 
of return r(k*) is equal to the rate of interest 6. Two typical curves r(k*) are 
shown in Figs. 2a and b.15 Since r’(k*) = (L& + 6L&)/-Lz and since 
P * = --LX: > 0 for 6 3 0 by Assumption (OSS), sgn r’(k*) = sgn $&. 
Thus the manifold gk is stable (unstable) according as r’(k*) < 0 (>O). 

I 

k* 

FIG. 2a. In Example 1 the equilibrium manifold AB is a stable manifold. 

14Paul Samuelson has pointed out that the property associated with (40) by which the 
dynamical system changes its behavior whenever the statical part of the system changes 
its behavior, in the case where the roots are real, is closely related to the ideas that underlie 
his Correspondence Principle [59, Chap. IX]. 

I5 The cases shown in Figs. 2a and b arise in Examples 1 and 4, respectively, in Section 6. 
The former is the standard Cass model [19], the latter the one-sector model with joint- 
production of Liviatan and Samuelson [36]. 
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FIG. 2b. In Example 4 the equilibrium manifold has two stable submanifolds (A’& 
B’D) and one unstable submanifold BB’, separated by bifurcation equilibria at B and B’. 

In Fig. 2a the manifold AB is stable since r’(k*) < 0, k* > 0, while in 
Fig. 2b A’B and B’D are stable submanifolds, while BB’ is an unstable 
submanifold, the stable and unstable submanifolds being separated by 
bifurcation equilibria at B and B’. At B and B’ the curvature coefficient q$ 
changes sign, signaling a simultaneous change in the curvature of (b and 
the stability properties of the equilibrium manifold. 

Long-run dynamics. Consider the economy depicted in Fig. 2a. As the 
interest rate 6 varies the economy moves smoothly along the equilibrium 
manifold AB. This is the classical case of comparing equilibria. Consider 
Fig. 2b. Suppose the system starts at A’ with a high interest rate 6 and a low 
OSS capital-labor ratio. Suppose that in a secular way the interest rate 8 
falls, approaching 6, , then the economy moves smoothly up the submanifold 
A’B toward B. Suppose 6 continues its slow monotone decrease passing below 
6,) then as 6 passes through the bifurcation point 6, , the OSS “jumps” ,fiom 
B to C. In the Thorn-Zeeman [66, 681 terminology, passing through the 
bifurcation point 6, produces a catastrophe. At a bifurcation point a small 
change in the interest rate can cause a major change in the OSS. In a similar 
way suppose the economy finds itself at D. If the interest rate rises towards 
so, then the economy moves smoothly down the stable submanifold DB’ 
towards B’. If at a0 the interest rate continues to rise, then as 6 passes through 
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the bifurcation point So, the economy, always seeking to stay on the relevant 
stable submanifold of 8 k , “jumps” from the OSS at B’ to the OSS at A.16 

Remark. In Fig. 2b, g = [So, So], the collection of 6 for which k*(6) 
is not unique, is called the bifurcation set. Whenever 6 $ a’, 4 has a unique 
maximum, corresponding to points on A’A and CD. At So and 6,) in fact 
at the points A and C, 4 develops in addition to the maximum, an inflexion 
point at B’ and B, respectively. Whenever 6 E &, 4 has two maxima separated 
by a minimum, corresponding to points on AB, B’C, and BB’. The change 
in 4 as 6 moves through the bifurcation set 3’ explains the catastrophes at B 
and B’. As 6 decreases (increases through 2, the lower (upper) maximum B 
(B’) is eliminated, causing k* to shift from the lower (upper) maximum near 
B (B’), to the upper (lower) maximum near C (A), respectively.17 

Paradoxical behavior. The presence of catastrophes at B and B’ helps 
to throw some light on the familiar paradox of neoclassical capital theory: 
Given two economies with identical technology and preferences, how can the 
economy with a lower rate of interest have a lower capital-labor ratio? When 
the presence of joint-production leads to a return curve r(k*) of the form 
shown in Fig. 2b each economy essentially has two long-run modes of 
behavior: one along the stable submanifold A’B and the second along the 
stable submanifold B’D.18 

Comparing equilibria. As Brock [l I] has suggested, the sufficient con- 
ditions of Cass and Shell [21], Brock and Scheinkman [14, 151, and Theorem 3 
are likely, in the spirit of Samuelson’s Correspondence Principle [59, 
Chap. IX], to lead to interesting theorems in comparing equilibria. Burmeister 
and Turnovsky [18] have shown that the following concept leads to many 
interesting results in capital theory. 

DEFINITION. The economy exhibits capital deepening response at an 0% 
(6, k*, p*) E 8 if R* = p*(dk*/dS) < 0. 

In Proposition 5 (i) is due to Brock and Burmeister [13], (ii) is new. 

PROPOSITION 5. If 6 3 0 and ifat an OSS (6, k*, p*) E 8 or (6, k*) E 8, 

(i) K” is nonpositive deJinite, or 

I6 The following terminology seems preferable. At regular points of the equilibrium 
manifold, changes in the interest rate cause wedc perturb&ions in the OSS. At bifurcation 
points, changes in the interest rate cause strong perturbations in the OSS. 

I7 The process of unfolding equilibrium potential functions as the parameter changes 
is the basic idea that led Thorn and Zeeman to develop catastrophe theory. 

I8 Smale [65] presents an interesting analysis of the catastrophe points of an equilibrium 
manifold closely related to I, arising in Walrasian general equilibrium, with a vector of 
endowments among agents taken as the parameter p. 
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(ii) in the variational problem, R is nonpositive definite, then the economy 
exhibits capital deepening response at the OSS. 

Proof. (i) Differentiating (5) at an OSS gives 

premultiplying by (dk*/dS, dp*/d6) an d canceling terms gives the result. 

(ii) Differentiating (4) at an OSS yields at once by the R condition 

R* = p*‘(dk*/d6) = p*‘(L& + 6L,&)-l p* < 0. n 

6. EXAMPLES 

EXAMPLE 1. (One-Sector Model of Cass, Koopmans, Samuelson, and 
Ramsey [19, 32, 53, 571). 

Let k and c denote capital and consumption per worker and let 6, v, and p 
denote the pure rate of time preference, the rate of population growth, and 
the rate of depreciation of capital, then the state and control are k and c 
and 

4% 4 = u(c), f(k v) = f(k) - (v + p) k - c, 

where u(c) and f(k) denote the utility and production function U’ > 0, 
u” -c 0, c > 0, f(0) = 0, f’ > 0, f” < 0, k 3 0, f’(k) - co as k -+ 0, 
f’(k) --f 0 as k + cg. The OSS is defined by c* = f(k*) - (v + p) k”, 
f’(k*) = v + p + 6, p* = u’(c*). Let y = 01 = c - c*, then 

LO(x, y) = -&[f”*x” + (uv*/z4’*) 21, F=f’* - (v + PL G = -1. 

The conditions of Theorem 3(ii)(c) are satisfied since -G& = f”*, G& = 
(u’*/u”*), 1 K” / = -Gz,G&, > 0 imply K” negative de$nite, while G,“, = 6 
impZies M” = 0. The local asymptotic stability of the OSS also follows 
directly from the fact that (26) reduces to 

2 = gs - (S2 + 4f”*(u’*/u”*))q x. 

EXAMPLE 2. (n-Sector Model of Magill, Samuelson, and Solow [44, 61]).ls 
Let k = (k, ,..., k& c = (cl ,..., c,), and z = (zl ,..., z,) denote per-worker 

vectors of capital stocks, consumption, and gross investment. For any vector 

I9 The reader is referred to [44] for a further analysis of this model. 
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x E Rn, let R = (x2 ,..., x,J, then the vector of controls is the consumption- 
investment policy u = (c, 2) and 

G, 4 = u(c), f(k, u) = 2 - Ak, 

where 

F(c” + i; k) denoting the society’s production frontier and p1 ,..., pL, denoting 
the depreciation rates of the n capital goods. The matrices in (12) and (13) 
becomezO 

F= 7 

6 .., 

(42) 
F,* . . . F,* F,* . . . 

. . 
0 0 . . . 0 0 . . . 

A = -F&, N = -[0 Fct F,$], 

-_____ 
(43) 

Let y = (01, [) = (c - c*, 2 - a*), then L”(x, y) reduces to 

L’(x, y> = - &Lx’ F&x + 44%& 01 

+ (a + 8’ F%L + 8 + 2(& + 5)’ G&l. (44) 

While the solution of the Riccati equation (19) can no longer be obtained in 
closed form,21 the K6 condition is readily established.22 Note first that (42) 

2o Let F,. = F, , F*. = F,* . 
21 The &lution of* the Riccati equation is readily obtained for numerical examples, 

however, even in cases with many capital goods. It is this property that makes the approach 
of this paper most valuable for econometric analysis. 

22 The R and M” conditions are not applicable for this model. 
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implies rank (G) = n. To obtain GzX and (-Gt,,)-l we need to determine the 
inverse of the matrix B defined in (43). If we make the relatively mild economic 
assumption that the utility function u(cl ,..., c,) is additively separable in the 
first good SO that Ulj = Ujl = 0, j = 2,..., n then we find that 

0 

,_-_-----/------------ 
I 

B-1 = 0 
& u& 

I (*j-l / - (*)-l . 

/---_----/------------ 

0 / - & / (3,' ; (F$)-l 

Substituting G, A, and N defined by (42) and (43) we find 

G,o, = A - NB-‘N’ 

(F&)’ (F&l Fzt I (F&)’ (F&l (F,&) 
= -Fzk f __-_-_----\----------- 

F/%G+i-’ F,:? j (F,c$)(F$)-~ (F& 1 , (45) 

(-G&-l = (GB-lG’)-l 

4 k> + (F;)’ (F&)-l F?* 1 

I---------------j----- ------ 1 -’ G (F;)’ (F&)-l 

=- 

. 

/- ( Uj+; 1 
-1 

(F$)-’ F;” 
Ul” 

+ (F&l 

(46) 

To understand the economic meaning of the benefit-cost ratio v”, consider 
first the simplest case of$xedproportions in the output space so that F2t + CO 
implying (F&l -+ 0. In this case 
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so that 

v” = min x’(-F&) x 
x+0 x’(-fiyq) x = x.(&;)x=l x’(-Fa x, 

It is evident from (44) that when FZE + co no attempt will be made to 
alter the output proportions in which goods are produced, so that Oz + $ = 0. 
This eliminates the last two terms. Local consumption 01 = c - c* (and 
hence investment) is thus the only control used. All that remains is to balance 
the benefits of investment, the first term in (44) against the costs, the second 
term in (44) both relative to the interest rate 6. 

The nature of the preferences with respect to the consumption of each 
good as embodied in the matrix (-uG/uT) determines the unit control-cost 
surface. The curvature of the utility function u(c) thus induces the metric 
in the space. The return from capital x1(--F&) x is then measured relative to 
this preference induced metric. The crucial point is that return and cost are 
considered simultaneously, the return for each profile of capital goods 
x being measured against the cost involved for that profile.23 Capital good 
endowments x for which the production return is high and the consumption 
cost low generate a high benefit-cost ratio: Endowments x for which the 
return is small and the consumption cost large, generate a low benefit-cost 
ratio. It is the worst example of the latter that YO hunts out. The resulting 
minimum benefit-cost ratio 2(~“)l/~ is then matched against the interest rate 6 
to determine whether it is worthwhile to proceed to the OSS. 

If we allow variable proportions in the output space but assume additive 
separability in the productionfunction so that F(c^ + 6; k) = g( c” + 6) + h(k), 
then F,, = 0. Tn this case Gz”, = -F& as before, but (-Gi,,-l is given by (46). 
The unit control-cost surface must now also take into consideration the cost 
qf altering the output proportions in which goods are produced. In the general 
case where F2, f 0, G& is given by (45) and the basic return from capital 
x’( -F&) x needs to be adjusted to take into account the change in the return 
induced by variations in the output proportions in which goods are produced. 
I shall leave it to the reader to work the details for particular preferences 
and technology, for example ZI(C~ ,..., c,) = CL1 bj In cj , bj > 0, j = 1,. ., n 
and F(c”: li) = E’K? + xy=, aj In kj , K negative definite, a, > 0, ,j = l,..., n. 

EXAMPLE 3. (Adjustment-Cost Model of Lucas, Mortensen, and 
Treadway [37, 48, 671). 

The instantaneous ffow of profit of a firm is given by 

L(k, ii) = h(k, k) - qk - pk, 

?a From a strictly economic point of view Rockafellar’s sfabi[ify condition of o-convexity 
in 2 and p-concavity in 7 for GO(x, 7) with ~$3 3’ (S/2jz, is thus somewhat misleading since 
return and cost are made into quite separafe considerations. 
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where the output price (embodied in h) and the rental and purchase prices 
(q,p) are taken as constants determined on competitive markets, indepen- 
dent of the actions of the firm. If S > 0 denotes the interest rate then the 
firm maximizes its present value 

s 
= eTyh(k, fi) - qk - pk) d7. 

0 

The vector of exogenous parameters p = (6, q,p) is taken as fixed in the 
short-run and an 0% is defined by 

h,(k*, 0) + shk(k*, 0) - (q + Sp) = 0. 

By Proposition 4 if h&k*, 0), h&k*, 0) are negative definite and if 
h&k*, 0) + hk,Jk*, 0) is nonpositive dejinite then the OSS is locally asymp- 
totically stable. The result of Lucas [37] where h(k, k) is additively separable 
follows as a special case. Brock [ 1 l] presents an analysis of the problem of 
comparing equilibria when the vector of exogenous market parameters 
p = (6, q, p) changes. 

EXAMPLE 4. (One-Sector Model with Joint-Production of Liviatan and 
Samuelson [36]). 

This model provides an example for the long-run dynamics developed in 
conjunction with Figs. 2a and b in Section 5. Let c, k, 8, and u(c) be the same 
as in Example 1. The production function is now given by c = T(/z, k), where 
Tk<O, T,sOfor kgh>O, T,,<O, Tik<O, T,,Tkk-(T~,)2>0, 

Lik, k) = u( T(k, k)) and r(k*) = -T,(O, k*)/Tk(O. k*), 

so that r’(k*) = (T,*, + Tz&Tf and r’(k*) $$ 0 when T,*, + Tlk 5 0. 
Liviatan and Samuelson provide a simple geometrical construction leading 
to Fig. 2b. Since in Example 1, r(k*) =f’(k*) - (V + I”), r’(k*) =f”(k*) < 0, 
Fig. 2a illustrates the return curve and hence the long-run dynamics, for 
Example 1. 

The last example gives a compZete analysis of the control problem for the 
case n = I. This provides a useful framework for analyzing the sufficient 
conditions of Theorems 3 and 4. 

EXAMPLE 5. (General Case II = I). 
Let F = A G = g, A = a, B = 6, N = n. We assume a > 0, b > 0, 

ab - n2 > 0, g # 0. The Hamiltonian becomes 

GO(X, 7) = +{[a - (n2/b)] x2 + 2[f - (ng/b)l xrl - C g2/b) q2j. 
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The Riccati equation (19) reduces to 

8 + W:x - 6) Q + G:,,Q2 + G,o, = 0, Q(r) = 0, 

the solution of which is 

Q(t) = -(1/2G,‘$(2G~, - S) - Al” tanh(id1’2(t + h - r))), 

R condition 

\ 

saddle-point 

X2<O<A1 

\K6 condition 

saddle point 

A. <o < x1 

R condition 

J 

FIG. 3. When n = 1, the precise stability and saddle-point regions can be compared 
with the stability and saddle-point regions given by Theorems 3 and 4. 
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d = (2G,o, - 6)” - 4G” Go ml xx 9 h = -(2/d”“) tanh-’ [(S 

$m Q(t, T) = Q* = -(1/2G~J{(2G,o, - 8) 

so that (26) reduces to 

+ [(2G” - 6)’ - 4G” Go ]1’2’ nx rl” xx I 

1 = $(S - [(2G1 ~ 6)’ - 4G,omG~,.]1’2) x. 

- 2G,o,)/d’ 12], 

0, 

(47) 

Since -G&Gix > 0, the region in the space (Gz, , 6) for which (47) is asymp- 
totically stable is given by 

z(-G;xG,O,) = /(Gzx, 8) ( --co 2 ’ < 7’ 
G:, < 0 

6 < G,,, - (G,,G:n/G:,), G:, > 0 I * 

Z(-G~xG$,) is the region not on, or above, the curve ABC in Fig. 3. Let 

S* = sup (8 j (G&, 
6 

6) E Z(-G,O,G$,) whenever 6 < 8, for all G&J. 

It is easy to see that S* = 2(-GixG&)1/2. However, from the K” condition 
v”(GEx ; (-G,“,)-l) = -GzxG;, so that S* = 2(~O)l/~ implying that 2(v”)l12 is 
the supremum of the interest rates 6 for which asymptotic stability of the 
process (47) is assured ,for all Gz, . If G,D, = (G;J* = (-G;xG&J1/2 > 0 
implying [f - (rig/b)] = {[a - (n2/b)](g2/b)}1/2, as soon as 6 b S* = 
2{[a - (n2/b)]( g”/b)}“” the process (47) ceases to be asymptotically stable. 

The four parts of Theorem 3 account for a major portion of the region of 
stability when n = 1. In terms of Fig. 3, (i) gives 6 < 0, (ii)(a) gives 
0 < 6 < S*, (ii)(b) gives G& < 0, (ii)(c) gives 6 < G& for Gi, > 0. The 
regions of stability generated by (ii)(b) and (ii)(c) are asymptotically tangent 
to the region of stability Z( -GzxGz,). Since the region of stability is a function 
of the benefit-cost ratio YO = -Gz,Gz, , if the benejit-cost ratio increases 
the region of stability is increased. 

The eigenvalues of the canonical equations (31) are given by 

Al 3 x2 = @/2) It p, CL = UG:x - (S/2)]” - G:xG&)1”2, 

where &p are the eigenvalues of the mirage system (38). Thus the region in 
the space (Gtx , S) f or which (31) has the saddle-point property is given by 

cY(--Ci%J = {(Gi, , 6) I s 5 G& - (G~xG~r,/G~,) for Gt, 2 01. 

.Y( -GzxG,“,) is the region below ABC and above A’B’C’ in Fig. 3. 
When 6 < 0, if we replace the nonpositive definite condition on R and 

M6 in Theorem 3, by the condition that R and M6 be nonnegative dejinite, 
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then (ii)(a), (b), and (c) give suficient conditions for the canonical equations (3 1) 
to have the saddle-point property when 6 < 0.24 When extended in this way 
to the case 6 < 0, (ii)(a), (b), and (c) account for a major portion of the 
region 9’(-G~XG~,J, in which the canonical equations have the saddle-point 
property.25 
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