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Notes, Comments, and Letters to the Editor 

A Local Analysis of N-Sector 

Capital Accumulation under Uncertainty* 

1. INTRODUCTION 

In a recent paper [I ] I presented some conditions under which the optimal 
trajectory arising in a class of dynamic economic models converges to a 
stationary state. The analysis was confined to the deterministic case. In this 
note I shall indicate how some of these results may be generalized to the 
stochastic case. I will also show how these results may be applied to obtain 
some new insights into the nature of business cycles by introducing the 
remarkable ideas of Slutsky [2] concerning the summation of random causes 
as the source of cyclic processes. 

2. CONVERGENCE TO STATIONARY PROCESS 

Consider the extremum problem 

f 

I) 
SUP &co> e-%(k(t), u(t)) dt, 6 > 0, 

v 0 

dk = f(k, u) dt + u(k) dz, k(O) = ko , 

(1) 

(2) 

where ucR1,f = (f’,..., f*)ER”, 

k E R”, v E Rq, and z(t) E Rm is a Brownian motion process. 

ASSUMPTION (Concavity). u(k, v) is strictly concave and f l(k. u),...,f”(k, v) 
are concave functions in (k, u). 

* This research was supported in part by a grant from the National Science Foundation. 
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Consider the pre-Hamiltonian [ 1] 

In the deterministic case, where a(k) = 0, the solution of (1). (2) is reduced 
to an analysis of the equations 

i;,(k, p; ~1) + ~5 - Sp = 0, i;,(k, p; z+ - k = 0, c,,(k, p; u) = 0. (3) 

I assume that the equations (3) have a stationary solution (k*, v*, p*).l As in 
[1] let 

(x, y, ~1 = ik - k*, v - v*,P* -P); 

then (2) becomes 

dx = f(k* + x, v* + y) dt -/- u(k* + x) dz. (4) 

In order to apply the method of Fleming [3] by which the maximization of (1) 
subject to (2) is reduced to a simpIer quadratic problem in (x, r) around the 
stationary solution (k*, v*, p*), we need to make two additional 
assumptions.2 The first is that the process starts sufficiently close to k* so 
that x,, = li, - k* is close to zero. The second is that each element of the 
matrix a(k* + x) in (4) is sufficiently small and does not change appreciably 
in a small neighborhood of k*. In this case we may use the linearizations 

f(k* + x, v* + y) = f(k*, v*) +jXk*, D*) x +.f?.Ck*, a*) y, (5) 

a(k* + x) = a(k*) + cqJk*) x. (6) 

In (5), f(k*, v*) = 0. In (6) o(k*) # 0 and by assumption aJk*) x is 
insignificant relative to o(k*) so that (4) becomes 

dx = Mk*, v*) x +fu(k*, v*) y] dt + o(k*) dz. (7) 

By the procedure outlined in [ 1. 31, (1) is replaced by the problem 

s 33 iyf J%(~) cStLo(x, y) dt, (8) 
0 

1 See [l, Sect. 21, where a competitive path (k*, LI*, p*), a solution of (3), which is station- 
ary is called an optimal starionary State (OS). 

z Fleming also requires that in the limiting deterministic case, o(k) = 0, the extremals 
in a neighborhood of k* be unique given the initial conditions, and contain no conjugute 
points. As is well known, the concavity assumption on zz(k, U) and f(k, v) ensures that 
these two properties hold. 
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where 

We also let 

F =f&*, v*), G =f,(k*, c*). (10) 

THEOREM 1. If y minimizes Erco) J-r e--87 L”(x, y) dT subject to dx = 
[Fx + Gy] dt + a(k*) dz then 

(i) the value-loss function W(x, t) = inf, EX(t) Jr e-8(7-t)Lo(x, r) dr is a 
solution of the generalized Hamilton-Jacobi equation 

W, + GO(x, W,) - 6W + 4 tr(o(k*) o(k*)’ W,,) = 0 (11) 

with boundary condition W(x, T) = 0; 

(ii) the control y minimizes C?O(x, 7; y) = Lo&, 7) + ~‘(Fx + Gy), 
where G”(x, 7) = min, Go&, 7; r). 

This theorem is the stochastic counterpart of [l, Theorem 21, the proof of 
which may be found in [4, p. 5691. The minimizing y in (ii) satisfies 

Gt = x’N + y’B + 7’G = 0 or y = -B-l(G’r] + N’x), (12) 

assuming B is positive definite, so that B-l is well defined. Equation (12) 
implies that the local Hamiltonian GO(x, 7) becomes 

Since GO(x, 7) is quadratic, the solution of (11) is given by 

W(X, t) = &Cx’QCt> x + W3 (13) 

where Q(t) is the solution of the matrix Riccati equation 

0 + QG,“, + (G$, - 81) Q + QG&Q + G& = 0, Q(T) = 0 (14) 
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and r(t) = J: e-6(T-t) tr(a(k*) a(!~*)’ Q(T)) d7 is the solution of 

i - 6r + tr(o(k*) a@*)’ Q) = 0, r(T) = 0. 

Equations (12) and (13) imply 

y(t) = -B-‘(G’Q(t) + N’)x. (15) 

LEMMA. Let Q(t, T) be the solution of (14). If the rank of the matrix G in 
(10) is n, then lim,,, Q(t, T) = Q* where Q* is positive definite. 

Since the solution to (14) is unaffected by o(k*), we may assume o(k*) = 0. 
The proof of the Lemma then follows from [ 1, Lemma 41. Thus as in [l] 

y(t) -+ y* = -II-‘(G’Q* + N’) x as T-t co. (16) 

We are now in a position to examine the stability properties of the trajec- 
tories that result from the problem (8). Using (16), the process 

dx = [Fx + Gy*] dt + a(k*) dz 

may be written in terms of the local Hamiltonian GO(x, 7) as 

dx = (G& + G&Q*) x dt + a(k*) dz. (17) 

If we let Y = Gz, + Gi,Q* then the solution of (17) is given by 

x(t) = eYtx(0) + jot ey(t-T)u(k*) dz(T) (18) 

which is the normally distributed process with mean and covariance matrix 

x(0 = eYtx(0), &f(t) = jot eY’t-du(k*) u(k*)’ eY’(t-~) dT. 

If all the eigenvalues of Y have negative real parts then3 

I/ x(t>li - 0, II R,(t) - Rx* II - 0 as t-m, 

R:= j= eYBu(k*) a@*)’ ey’e de. (19) 
0 

If we let #(x, t; x(O)) and (b(q, t; q(O)), where 7 = Q*x, denote the conditional 
density functions for the process (17) and the associated process for T(t), then 
we obtain the following generalization of [l, Theorem 31. 

s For A E Rnm, )I A II2 = tr(AA’). 
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THEOREM 2 (Asymptotic Convergence to Stationary Process). Let 

” Gm 1 K6 = [(6/2cj; G;? 1 for 6 E [O, ax). 
47” 

(a) K6 is negative definite or 
(b) K” is negative dejinite and 

R = G:;(-G;J’ + (-G;J’ G,o, 

is non-positive definite or 
(c) K” is negative definite and 

M” = [SI - G&l (G;,)-’ + (G;J-’ [61 - G;,J 

is non-positive definite, then for all (x, x(O)) and (7, 7(O)) 

I #(x2 t; x(O)) - #*(x)1 - 0 and I 547, t; r)(O)) - 4*Cdl --f 0 as t -+ 03, 

where #*(x) and $*(7) are the normal density functions with mean and co- 
variance matrices (0, R,*) and (0, Q*R,*Q*), where R,* is given by (19). 

EXAMPLE 1. Let K = (K, , . . ,, K,), C = (C, , . . ., C,), and (Ml , . . ., M,) 
denote vectors of capital stocks, consumption, and gross investment (see 
[l, Example 21). We assume that the rate of growth of the labor force L and 
the effective rate of capital accumulation of each capital good Kj are subject 
to random disturbances 

dL = VL dt + ooLdzo , v 2 0, go > 0, 

dKj = (Mj -pjKj) dt + OiKjdzj ) /Lj > 0, CT~ > 0, j = I,..., n. 

Let k = (KJL ,..., KJL), c = (Cl/L ,..., CJL), m = (Ml/L ,..., M,JL) and for 
any x E R” let f = (xz ,..., x,J, then the vector of controls is the consumption- 
investment policy v = (c, T?z). Applying Ito’s Lemma to k gives 

f‘(k, v) = m - (A - ao21) k, 

where 

ml = F(c  ̂+ A; k) - c, , 
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F( E + fi; k) denoting the society’s production frontier. In this case 

u(k, u) = u(c). 

The K6 condition may now be evaluated precisely as in [I]. 

EXAMPLE 2. Quadratic criterion ( 1) and linear dynamics (2) 

4% L.) = - ; [i]’ [;, ;][‘tl], 

J(k, v) = Fk + Cc, u(k) = CJ, 

where {A, N, B; F, G, cr} are matrices with real constant coefficients. In this 
case the above procedure does not require the assumption that each element 
of c be sufficiently small; the procedure is precise for all real matrices CT. The 
P condition reduces to the condition that 

A - NB-lN’ (a/2) I 

W) I GB-‘G’ 1 
be positive definite. This requires rank (G) = II and 4 > II. 

3. CAPITAL ACCUMULATION AS A CYCLICAL PROCESS 

In his classic investigation [2] Slutsky showed that a weighted sum of 
independent identically distributed random variables with zero mean and finite 
variance leads to approximately regular cyclical motion. When any one of the 
conditions (a), (b), or (c) of Theorem 2 is satisfied, this result is directly 
relevant to the process of capital accumulation (17). Each of these conditions 
implies that the eigenvalues of Y have negative real parts, so that in (18) 

II eYtxK911 - 0 ast-tcO, 

and x(t) becomes a weighted sum of the independent identically distributed 
random disturbances dz(r). 

A precise characterization of the periodicity of the stationary process 
generated by (18) is given by its Fourier-Kolmogorov spectral decomposition 
[5, Chap. 21. Tn the simplest case n = 1, if s(w) denotes the normalized 
spectral density of the stationary stochastic process, where w denotes the 
angular frequency, then as is well known [5, p. 691 

s(w) = - Y/n-(YZ + WZ), (20) 
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so that the spectral density is completely determined by the local investment 
rate - Y. Equation (20) leads directly to the following observation. Suppose 
that the local investment rates for two economies satisfy 

I yo / < I Yl I 
If so(w) and sl(w) denote the spectral densities of their stationary processes 
(assuming one of the conditions (a), (b), or (c) to be satisfied) then 

Sl(W) < so(w), OJ E LO, w *>, 
(21) 

where 

w* = ( YoYp2. 

Thus in the Fourier-Kolmogorov decomposition, the small frequencies 
(long periods) play a less important part, while the high frequencies (short 
periods) become more important in the second economy as compared with 
the first (see Fig. 1). The greater the local rate of investment -Y, the shorter 
the t.ypical length qf the periods in the cyclical process of capital accumulation. 

A 

spectral 
density s Cd 

I c 
0 W* frequency w 

FIG. 1. Increasing the investment rate - Y shifts the spectral density about the 
frequency w *. 
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EXAMPLE. Consider Example 1 with n = 1,4 

Y = gs - (62 + 4F”(k*)(u’(c*)/u”(c*)))‘/2), 

c* = F(k*) - hk*, F’(k*) = X + 6. 
(22) 

Equations (20) and (22) show precisely how the cyclical nature of the stationary 
process of capital accumulation is determined by the preferences and the 
technology. 

The spectral shift property (21) may be generalized to the case n > 1 in 
the following way. If S?‘(T) = {adi( and 9’(w) = {Q(U)) denote the auto- 
covariance and spectral matrices of the stationary process generated by (18) 

.9(w) = (1/2~) Irn d(7) e-iw7 dr, 
--on 

then the normalized spectral densities for each component of the process are 
defined by 

Sj(0) = Sjj(W)/Ujj(O), j=l ,..., n. 

The reader may then establish the following result, by examining the expres- 
sions for sj(w), j = l,..., n. Let the eigenvalues of Y be distinct. If sj(o) and 
s;(o), j = l,..., n denote the normalized spectral densities of the stationary 
solutions of the processes dx = Yx dt + u(k*) dz and dx = CXYX dt + a(k*) 
dz, respectively, 01 > 1, then there exist frequencies wO*, ol*, 0 < w,,* < wl* 
such that forj = l,..., n 

where 

if the eigenvalues of Y are real. 
The further analysis of the cyclic properties of the process of capital 

accumulation under uncertainty is a topic of investigation in itself which I 
shall not enter into here. It is, however, an important consequence of the 
introduction of uncertainty that the short-run study of the business cycle 

4 If F”(k*) < 0, u’(c*) > 0, u”(c*) < 0 then (c) in Theorem 2 is satisfied. 
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becomes imbedded in a natural way into the long-run process of capital accumu- 
lation. When uncertainty is present, business cycles must be expected even in 
a centrally controlled economy where investment is optimally determined by 
planners. 
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