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Abstract. This paper provides a theoretical framework for studying how monetary policy can

be used to control expectations of inflation. We consider a simple production economy with a

cash-in-advance constraint in which monetary-fiscal policy is Ricardian. Agents’ expectations

are modeled as probability distributions on a finite set of possible inflation rates. The monetary

authority announces a public forecast of inflation to direct agents’ expectations, and a bond

pricing (term structure of interest rates) policy to make the forecast credible. We study

conditions under which an announced forecast is compatible with equilibrium—there must be

enough weight on inflation to be compatible with a non-negative nominal interest rate. In

a stationary setting we exhibit a rank condition on the payoff structure of the bonds which

must be satisfied if the forecast is to be the unique probability distribution compatible with

the bond pricing policy, thereby eliminating any other possible expectations of inflation for the

agents. The model thus provides a formal framework for understanding the conditions under

which the policy of inflation targeting can be successful.





1. Introduction

The objective of this paper is to study inflation targeting as a way of anchoring agents’ ex-

pectations of inflation. As a result of the adverse experience of the 1970’s with an approach

based on monetary aggregates, the focus of Central Banks has shifted away from controlling

monetary aggregates to using interest rate policies to control inflation, and in the last twenty

years, many Central Banks, notably the Bank of England (BOE), have come to adopt the

policy of inflation targeting.

In a stylized way, this approach to monetary policy may be characterized as follows. Price

stability—the central focus of monetary policy—is expressed first by an inflation target π?,

typically the annual percentage change in a consumer price index (2% in the case of BOE),

and this is viewed as the average rate around which inflation should fluctuate. It is explicitly

recognized that due to fundamentals or possibly due to agents’ expectations regarding future

inflation, the inflation rate is inevitably a random variable. Thus at any given date t the

inflation rate πt will typically differ from the target rate πt 6= π?. The second component of a

Central Bank’s inflation targeting policy consists of a periodic official announcement of its best

prediction of the probability distribution of inflation for a specified horizon T into the future,

with the property that its monetary policy should lead to a sequence of probability distributions

such that the mean (or for BOE, the mode) of this sequence of distributions reaches the target

π? in a specified horizon T̃ < T (where T̃ = 2 and T = 3 years for BOE). This periodic

announcement of its inflation forecast is an integral part of an inflation targeting policy which

is typically expressed by a so-called fan chart showing the iso-probability contours for future

inflation (see Figure 1 for the May 2009 CPI fan chart of BOE). The interest rate policy

which is to achieve this policy objective is typically viewed as being the short-term (overnight)

interest rate policy chosen and announced by the Central Bank at these regular intervals. In

the analysis that follows we will show that our model predicts that it is not sufficient to confine

monetary policy to such a short-term interest rate policy if the “announcement” of the Central

Bank is to be credible.

The model we consider is a cash-in-advance economy with a simple production technology

in which the short-term nominal interest rate influences output. Monetary-fiscal policy is

Ricardian, i.e. monetary policy is primary and fiscal policy adapts to the resulting nominal

value of the debt to ensure that the government’s liabilities are always ultimately paid off (in

present value terms). The novelty of the model is that agents’ expectations of inflation, modeled

as a sequence of probability distributions on a fixed support, are endogenous variables: the task
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Figure 1: Fan chart issued by the Bank of England in May 2009. The fan chart shows confidence
intervals around the mode of the distribution of inflation rates at each future date, the darkest
band being a 10% confidence interval around the mode and each band adding 10% probability.

of the monetary authority is to induce agents to hold a sequence of probability distributions of

its choice on this support, similar to the sequence of probability distributions in the fan chart

that the Central Bank announces to direct agents’ expectations of inflation.

The model is close to the model of Nakajima-Polemarchakis (2005)1 who showed that

if monetary policy consists solely of fixing the short-run interest rate, and fiscal policy is

Ricardian, then the equilibrium is indeterminate: their objective was to study in a simplified

model the indeterminacy which is present in the New-Keynesian models which follows from a

monetary policy based on a short-term interest rate and a fiscal policy which is Ricardian. In

such a setting, at each date, the only attribute of the probability distribution of inflation at

the next period which is determined in equilibrium is the mean of the distribution which is tied

down by the Fisher equation relating the short-term nominal interest rate to the real interest

1See also Bloise-Drèze-Polemarchakis (2005) for an example of indeterminate equilibrium when the govern-
ment policy is specified in part in real terms, in part in nominal terms.
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rate and the mean of next period’s inflation. Macroeconomists use the “Taylor Principle”—

increasing the interest rate more than proportionately to the deviation of the current inflation

from target inflation—to focus on the unique trajectory which stays close to the steady state

when the interest rate is chosen to satisfy such a Taylor rule (King (2000), Woodford (2003)).

Whether or not it is appropriate to exclude all other equilibria from consideration is open to

discussion (Benhabib-Schmitt-Grohe-Uribe(2002), Cochrane (2007)).

We propose an alternative approach to solving the indeterminacy of equilibrium which

consists in using more instruments than just the short-term interest rate to control agents’

expectations of inflation. Assuming that the support of the inflation rates that agents deem

possible is discretized by a finite number of values—say S—we show that by appropriately con-

trolling the prices of S bonds, or equivalently the yields (interest rates) of bonds of maturities

1 to S, the monetary authority can induce a unique probability distribution for inflation which

is compatible with these announced prices. Thus to resolve the problem of indeterminacy we

replace the interest rate rule on the short-term bond by a term-structure rule on a spectrum

of bonds of S maturities.

Although the monetary authority has considerable flexibility in its choice of expectations

to communicate to the private sector in the form of a forecast and to make it credible with a

term-structure policy, there are limits to this flexibility. First, expectations of inflation must be

compatible with non-negative nominal interest rates: this eliminates expectations which put

too much weight on deflation. Under a Markov assumption, we characterize the expectations

matrices which are compatible with an equilibrium with a non-negative nominal interest rate

(Proposition 8). Second, in order to eliminate other possible beliefs of the agents, the expec-

tations of inflation must be uniquely associated with a term-structure rule—a property which

we call controllability of expectations. We derive the conditions which an expectations matrix

must satisfy to be controllable (Proposition 11). The main characteristic of such matrices is

that the expected future path of inflation rates must be different for different current levels

of inflation. Thus a mean-reverting process to a target inflation rate is controllable with a

term-structure rule, but not an immediate return to the target.

The plan of the paper is as follows. In Section 2 we present the model and show how the in-

finite horizon equilibrium can be transformed into a much simpler “reduced-form ” equilibrium

with a minimum number of endogenously determined variables: from these variables the com-

plete “extensive-form” equilibrium can always be recovered, greatly enhancing the tractability

of the analysis. In Section 3 we study expectations matrices that a monetary authority can
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control with a term-structure rule in the Markov representative agent case without real shocks

to productivity.

2. Monetary Economy

Consider a monetary economy in discrete time over an infinite horizon with a finite number

of agents, in which money serves not only as a unit of account but also as the medium of

exchange. The objects of trade are goods and securities and the purchase (payment) for either

must be made using money. There are two sets of agents: H, the finite set of households in the

private sector and a government, the monetary-fiscal authority. The monetary authority issues

money and nominal (government) bonds of different maturities and seeks to control agents’

expectations of inflation by announcing an inflation forecast and a bond pricing (interest rate)

policy which makes the forecast credible. The fiscal authority imposes taxes on the agents

commensurate with the monetary policy so that the government’s debt does not grow too fast:

in short the monetary-fiscal policy is Ricardian.

There are two sources of uncertainty in the economy: the first is nominal, the second real.

The nominal uncertainty arises from the beliefs of the agents regarding the possible future

course of inflation. The standard approach to modeling such beliefs in general equilibrium

theory is to assume that there is an exogenously given “randomizing device” (sunspots) de-

fined on a known state space with fixed probabilities, which serves to “co-ordinate” agents’

expectations (Cass-Shell (1983)). The defect of this approach is that such randomizing devices

are difficult (if not impossible) to identify in practice, thus severely curtailing the applicability

of the approach. In this paper we suggest an alternative way of modeling “sunspot equilibria”

which retains the basic idea that beliefs can be self-fulfilling and influence the equilibrium.

The exogenous randomizing device is replaced by the probability distribution over future in-

flation adopted by the agents as their expectations, the co-ordination of beliefs being obtained

through a publicly announced forecast of inflation made by the monetary authority.

Uncertainty and Event-Tree. The primitive assumption regarding agents’ expectations is

that there is a compact subset of the real line which serves as the support for the agents’ beliefs

regarding inflation at every date. To keep the analysis tractable this subset is discretized to a

finite set Π, consisting of the inflation rates which agents view as possible. The real uncertainty

arises from the fluctuations in the productivities of the agents in their production activities. To
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simultaneously model the nominal and real uncertainties, let S be an index set with S elements

so that Π = {πs, s ∈ S} denotes the possible inflation rates, and let G = {1, . . . , G} denote the

index set for the possible real shocks. Unlike the probabilities of the inflation rates which are

endogenously determined, the probabilities of the real shocks are taken as exogenously given.

A partial history of inflation shocks (s0, . . . , st) and real shocks (g0, . . . , gt) up to date t leads

to a typical date-event or node ξt = ((s0, g0), . . . , (st, gt)) ∈ St × Gt = |Dt where |Dt is the set

of all possible nodes at date t. The union of all the partial histories defines the event-tree

|D =
∞⋃

t=0

|Dt

consisting of all possible date-events ξ into the indefinite future. Any date-event ξ has a date

t(ξ), a unique predecessor ξ− at date t(ξ) − 1 and a set of immediate successors ξ+ at date

t(ξ) + 1. If ξ = ((s0, g0), . . . , (st, gt)) then

ξ− = ((s0, g0), . . . , (st−1, gt−1)), ξ+ = {((s0, g0), . . . , (st, gt), (s, g)) | (s, g) ∈ S × G}

For any node ξ ∈ |D, let |D(ξ) denote the sub-tree originating at ξ and let |DT (ξ) denote the

nodes of the subtree |D(ξ) at date T .

Agents’ characteristics and actions. Each agent (household) h ∈ H has beliefs over

the event-tree:2 let Bh
ξ denote the probability that agent h assigns to passing through node

ξ. Then
∑

ξ∈|Dt

Bh
ξ = 1 and Bh

ξ =
∑

ξ′∈ξ+

Bh
ξ′ for all ξ ∈ |Dt. The basic object of interest for an

agent is his consumption stream of the (single) commodity over the event-tree. However to

earn the right to such a stream the agent will need to work over his lifetime, i.e. to offer labor

services over the event-tree to firms who convert them into output and pay the agent for the

labor services. To incorporate production into the model in the simplest way which at the

same time captures the idea that production is influenced by the nominal interest rate set by

the monetary authorities, we use the device introduced by Lucas-Stokey (1985) and also used

by Polemarchakis-Nakajima (2005). At each date-event ξ ∈ |D an agent has an endowment

eh of ‘time’ which can be used either for leisure (`h
ξ ) or to produce labor services (Lh

ξ ) with

eh = `h
ξ + Lh

ξ , ξ ∈ |D. The agent sells the labor services Lh
ξ to a firm which uses them to

produce yξ = ah
ξ Lh

ξ units of output, the productivity of the agent’s labor services depending

2We first present the model with possibly different expectations for the agents to highlight the co-ordinating
role of the forecast announced by the monetary authority.
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on the real and not on the inflation shock.3 If ch
ξ is the agent’s consumption of the good at

node ξ, then the bundle xh
ξ = (ch

ξ , `
h
ξ ) generates the flow utility uh(ch

ξ , `
h
ξ ) where the functions

uh, h ∈ H, satisfy the following conditions:

Assumption U . For each h ∈ H the function uh : |R+×[0, eh] → |R has the following properties

1. increasing and differentiably strictly concave (ucc < 0, u`` < 0, uh
ccu

h
`` − (uh

c`)
2 > 0)

2. supermodular (uh
c` ≥ 0)

3. Inada conditions:
uh

c (c, `) → ∞ as c → 0, ∀ ` ∈ (0.eh)

uh
` (c, `) → ∞ as ` → 0, ∀ c > 0

4. asymptotic satiation:
uh

c (c, `) → 0 as c → ∞, ∀ ` ∈ (0.eh)
uh

` (c, `) → 0 as ` → eh, ∀ c > 0

The consumption-leisure choice4 xh = (ch
ξ , `h

ξ )ξ∈|D generates the lifetime expected utility

Uh(xh) =
∑

ξ∈|D

δt(ξ)Bh
ξ uh(xh

ξ ), 0 < δ < 1 (1)

In addition to the consumption-leisure decision xh
ξ the agent needs to make a portfolio decision

at each date-event which enables him to finance this consumption stream. But now an addi-

tional element in the story needs to be made clear: if money is to be modeled using Clower’s

idea that only money will buy goods or securities then we need to specify how the transactions

take place. The simplest device is to think of the timing of the trades of securities, goods and

labor as taking place in three distinct subperiods of each node. In the first subperiod securi-

ties are traded and taxes are paid to the government: in the second subperiod the available

money balances are used to purchase the consumption good at its current price pξ: in the final

subperiod firms pay agents for their labor services.

In addition to deciding how much money m̃h
ξ to hold at each node to finance his purchase

of consumption pξc
h
ξ , the agent also decides on his holdings of the securities. These consist of

zero-coupon nominal (government) bonds of maturities τ = 1, . . . , T and a collection of private

sector short-lived securities in zero net supply indexed by j = T +1, . . . , J, with payoffs V j
ξ′ (in

units of money) at the immediate successors ξ′ ∈ ξ+. Let Jg denote the set of T government

3The formal assumptions will be made in section 4 where we assume a Markov structure for the shocks: if
at date t(ξ) the current shock is (πs, g) then ah

ξ = ah
g .

4Throughout the paper we use boldface to denote a vector defined over the whole event-tree |D (e.g. xh =
(xh

ξ )
ξ∈|D) or a vector defined over the set of agents (e.g. xξ = (xh

ξ )h∈H).
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bonds, let Jp denote the set of private-sector securities and let J = Jg ∪ Jp be the set of all

securities. We assume that the combined set of securities is sufficiently rich to assure complete

markets (full spanning at each node ξ of the event-tree |D). Let q
ξ

= (qj
ξ
)

j∈J denote the vector

of (money) prices of the securities and let zh
ξ = (zhj

ξ )
j∈J

denote the agent’s portfolio at node

ξ, the first T components consisting of the agent’s holdings of the government bonds. Since

a τ -period bond purchased at node ξ becomes a τ − 1 period bond at each of the successors

ξ′ ∈ ξ+ and since the 1-period bond at node ξ pays 1 (dollar) at each successor, the payoffs at

ξ′ ∈ ξ+ of the T bonds purchased at node ξ are given by the vector (1, q1
ξ′
, . . . , qT−1

ξ′
). Given

that we focus on the bond market, we let q̂
ξ

= (1, q1
ξ
, . . . , qT−1

ξ
, V j

ξ , j = T + 1, . . . , J) denote

the payoff at node ξ of all the securities traded at node ξ−. The SG × J matrix of payoffs of

the securities traded at node ξ at the successors ξ+ is denoted by

[
q̂

ξ+

]
≡
[
q̂j

ξ′

]
j∈J

ξ′∈ξ+

The condition that markets are complete is equivalent to the property that rank[ q̂
ξ+

] = SG,

or that [ q̂
ξ+

] is invertible for all ξ ∈ |D. We consider only price processes q which do not

offer arbitrage opportunities, so that each agent has a solution to the problem of choosing

an optimal portfolio. For any no-arbitrage q there exists a process P = (Pξ)ξ∈|D, where

Pξ/Pξ0 is the present value at date 0 of a promise to deliver one unit of money at node ξ,

such that Pξq
j
ξ =

∑

ξ′∈ξ+

Pξ′ q̂
j
ξ′ . Given the assumption of complete markets, P is unique up to

normalization.

Let mh
ξ− denote the money balances brought into node ξ; since the agent receives the

payoff (q̂
ξ
, Vξ)z

h
ξ−

on the portfolio zh
ξ−

purchased at the preceding node, he has the wealth

wh
ξ = mh

ξ−
+ (q̂

ξ
, Vξ)z

h
ξ−

available in the first subperiod of node ξ to buy a new portfolio zh
ξ

of the securities and to pay the taxes θh
ξ which are due. The agent lays aside enough money

balances m̃h
ξ ≥ pξc

h
ξ to purchase the planned consumption ch

ξ on the goods market of the second

subperiod. Thus the agent chooses (m̃h
ξ , zh

ξ ) so that

m̃h
ξ + θh

ξ + q
ξ
zh
ξ = mh

ξ− + q̂
ξ
zh
ξ− , ξ ∈ |D (2)

m̃h
ξ ≥ p

ξ
ch
ξ , ξ ∈ |D (3)

Let ω
ξ

denote the wage at node ξ. In the last subperiod of node ξ, the firm pays the agent

ω
ξ
ah

ξ
Lh

ξ
for the labor services rendered at node ξ: this money and the unspent balances

mh
ξ = ω

ξ
ah

ξ
Lh

ξ
+ (m̃h

ξ − p
ξ
ch
ξ ) , ξ ∈ |D (4)
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are transferred to each of the successors ξ′ ∈ ξ+ of node ξ.

Since the agent is not willing to lend to any other agent or the government “at infinity”,

and since no agent is willing to lend to him “at infinity”, he is obliged to confine his portfolio

strategies to those for which the transversality condition

lim
T→∞

∑

ξ∈|DT (ξ̃)

P
ξ
q

ξ
zh
ξ = 0 , ξ̃ ∈ |D (5)

is satisfied, where P = (Pξ)ξ∈|D is the valuation of income compatible with the price process q

(see Magill-Quinzii (1994)).

Monetary and Fiscal Policy. Monetary policy is dominant and fiscal policy adapts itself

to ensure that the government’s budget is balanced. The goal of monetary policy is to control

the inflation process. To this end the monetary authority announces a probabilistic forecast

B = (Bξ)ξ∈|D for inflation/real shocks with the goal of “anchoring agents’ expectations” i.e.

of inducing the agents to adopt Bh = B, h ∈ H as their expectations. To make the forecast

credible the monetary authority simultaneously announces a bond pricing policy (qτ
ξ )ξ∈|D for

bonds of maturity τ = 1, . . . , T . We will discuss later the conditions under which it is reasonable

to expect agents to adopt B as their expectations—namely when B is in fact credible given

the bond price policy q. To fix the bond prices the government must accommodate the private

sector demand for money and bonds through open markets operations (M, Z) = (Mξ, Zξ)ξ∈|D

where Zξ = (Z1
ξ , . . . , ZT

ξ ) is the government’s issue of τ -period bond at node ξ, for τ = 1, . . . , T .

Let

Wξ = Mξ− + q̂ξZξ− , ξ ∈ |D

denote the government liabilities at the beginning of node ξ, inherited from the preceding

node. These liabilities need to be covered by taxes θξ, and open market operations (Mξ, Zξ)

satisfying

Mξ + θξ + qξZξ = Mξ− + q̂ξZξ− , ξ ∈ |D (6)

The tax-reimbursement policy of the fiscal authority is characterized by a triple (α, β, γ) ∈

|R
|D
++ × |R

|D×S×G
++ × ∆H , where α determines the reimbursement policy, β determines the com-

position of the debt, and γ in the simplex ∆H of |RH determines the share of the taxes con-

tributed by each agent. At each node ξ ∈ |D the tax θξ is chosen so that in conjunction with

the seignorage revenue
(

r1
ξ

1+r1
ξ

)
Mξ, where r1

ξ is the short-term interest rate, a share αξ of the
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government’s current liabilities Wξ is paid off

r1
ξ

1 + r1
ξ

Mξ + θξ = αξWξ, ξ ∈ |D (7)

Assumption RC (Ricardian condition) There exists α such that 1 > αξ ≥ α > 0, ξ ∈ |D.

This is the simplest (if not the most realistic) way of ensuring that the debt is paid off and

that the transversality condition is automatically satisfied.5 For each ξ ∈ |D the vector βξ � 0

indirectly determines the maturity distribution of the bonds financing the debt by specifying

the relative magnitude of the next period liabilities Wξ′ among the successor nodes ξ′ of ξ. We

require that there exists a scalar dξ > 0 such that

(
Wξ′

)
ξ′∈ξ+ = dξβξ (8)

As shown in the proof of Proposition 1, without specifying β there is an indeterminacy in the

equilibrium portfolios. To avoid having to specify that the vector β is in the span of the bonds’

payoffs, we assume that the government can trade on the other securities if the bonds do not

complete the markets to satisfy condition (35). Most of the situations considered in the paper

are such that the bonds of different maturities complete the markets so that this assumption

is innocuous. Thus we extend the government portfolio Zξ to be in |RJ . Finally the vector

γ ∈ ∆H specifies how the tax burden is shared by the agents.

θh
ξ = γhθξ, ξ ∈ |D, h ∈ H (9)

Agents should not be required to pay more taxes than they can possibly pay with their in-

come, since this would lead to nonexistence of equilibrium: in Proposition (14) below, which

establishes existence of an equilibrium, we give an assumption which ensures that each agent’s

after tax income is positive.

Given the government’s initial liabilities (M−1, Z−1) and the tax reimbursement policy

(α, β, γ), a monetary fiscal plan (q, θ, M , Z) = (qξ, θξ, Mξ, Zξ)ξ∈|D consisting of bond prices,

taxes, money supply and bond issues over the event-tree is feasible if (6)–(9) are satisfied,

where r1
ξ is the short-term interest rate implied by the bond price q1

ξ .

The economy is characterized by the agents’ characteristics, their initial holdings of bonds

and assets, and the fiscal policy of the government. Thus we let

E(u, δ, e, a, m−1, z−1, α, β, γ)

5This is essentially the class of Ricardian policies introduced by Benhabib, Schmitt-Grohe and Uribe
(2001,2002), and also used in Schmitt-Grohe and Uribe (2000).
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(often shortened to E) denote an economy in which agents’ preferences and endowments

are given by (u, δ, e, a) = (uh, δ, eh, ah)h∈H, initial money holdings and bond holdings are

(m−1, z−1) = (mh
−1, z

h
−1)h∈H, the initial liabilities of the government being (M−1, Z−1) =

∑
h∈H(mh

−1, z
h
−1). The vector (α, β, γ) characterize the government fiscal policy. We take as

given the root node ξ0 = (s0, g0) so that the initial inflation and real shock are well defined.

Without loss of generality the price p0 = p−1(1 + πs0) is taken to be equal to 1.6

An equilibrium consists of a monetary-fiscal policy for the government—which includes a

forecast of inflation to direct agents’ expectations and an associated bond pricing policy—

consumption-labor choices by agents as well as their associated money and bond holdings,

production plans for firms, and money prices for labor, the good and the securities across the

event-tree which are mutually compatible. We focus on equilibria in which agents adopt the

announced forecast as their beliefs: later we give conditions under which such an equilibrium

can reasonably be expected to arise. Let `1(|D) denote the space of summable sequences on

the event-tree |D, `1(|D) =
{
P ∈ |R

|D
∣∣∣
∑

ξ∈|D |Pξ| < ∞
}
.

Definition 1. An (extensive-form) equilibrium of E , consists of a triple

((
(B̄, (q̄j)j∈Jg), (M̄, Z̄, θ̄)

)
,
(
(x̄, m̃, z̄), (ȳ, L̄)

)
,
(
P̄ , p̄, ω̄, (q̄j)j∈Jp

))

such that

(i) for every node ξ = ((s0, g0), . . . , (st, gt)) ∈ |D, p̄ξ = (1 + πs1) . . . (1 + πst).

(ii) P̄ξ q̄
j
ξ =

∑
ξ′∈ξ+ P̄ξ′ˆ̄q

j
ξ′ , ∀ξ ∈ |D, (P̄ξ p̄ξ)ξ∈|D ∈ `1(|D).

(iii) q̄τ ≤ 1, τ = 1, . . . , T

(iv) (x̄h, m̃
h
, z̄h) maximizes

∑
ξ∈|D δt(ξ)B̄

ξ
uh(xh

ξ ) subject to (2)–(5) with prices (P̄ , p̄, ω̄, q̄).

(v) (ȳξ, L̄ξ) maximizes p̄ξy − ω̄ξL, subject to y = L, for all ξ ∈ |D.

(vi) (M̄, Z̄, θ̄) satisfies (6)–(9) and RC.

(vii) ȳξ =
∑

h∈H c̄h
ξ , L̄ξ =

∑
h∈H ah

ξ L̄h
ξ , ȳξ = L̄ξ, ξ ∈ |D.

(viii)
∑

h∈H
˜̄mh

ξ = M̄ξ,
∑

h∈H z̄h
ξ = Z̄ξ, ξ ∈ |D.

6With an interest rate policy the price level at date 0 is not determined so we use a normalization. The
paper focuses on whether or not the inflation process is determinate.
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Reduced-Form Equilibrium. The sequential structure of an extensive-form equilibrium

makes it a complex object to analyze directly. For analytical purposes a simpler form of

equilibrium can be obtained by translating the variables to date 0, eliminating the financial

variables—money and portfolios— but retaining the present value of taxes and the bond prices

to capture the government fiscal and monetary policy. The resulting simplified concept of

equilibrium exhibits in a clear form the duality between expectations and bond prices on

one hand, and the real allocation and the present-value prices on the other. Studying the

controllability of the common expectations through a bond price policy is then equivalent to

studying the determinacy of this simplified concept of equilibrium for a fixed structure of bond

prices over the event-tree.

In view of the assumption of complete markets the opportunity set of an agent defined by

the sequence of budget constraints (2)-(4) and the transversality condition (5) can be defined

equivalently by a single budget constraint in which the money and portfolio variables no longer

appear. Eliminating these variables is the key to the simplifying the concept of equilibrium, but

these variables can be recovered from the variables in a reduced-form equilibrium defined below.

The Ricardian condition (RC) implies that when the same procedure of translating the sequence

of budget constraints to date 0 is applied to the government, the resulting present-value budget

constraint is automatically satisfied, hence it does not appear in a reduced-form equilibrium.

The variables which define this simplified concept are thus the forecast/bond pricing policy of

the monetary authority, the present value of taxes raised by the fiscal authority, the allocation

x̄ in the private sector and the nominal stochastic discount factor µ̄ which, when combined

with the forecast B̄ defines the vector of present-value prices P̄ξ = B̄ξµ̄ξ , ξ ∈ |D. To simplify the

analysis of equilibrium we assume that the portfolios zh
−1 inherited from date −1 are composed

only of short-lived bonds, so that the wealth wh
0 of each agent h ∈ H at the beginning of

date 0, wh
0 = mh

−1 + zh1
−1, is exogenously given and does not depend on the security prices at

date 0. Also to simplify the notation we do not mention p̄ in the reduced-form equilibrium

variables, and take as given that the compatibility conditions p̄ξ = (1 + πs1) . . . (1 + πst) if

ξ = ((s0, g0), . . . , (st, gt)) defines p̄ξ for all ξ ∈ |D.

Definition 2. A reduced-form equilibrium of the economy E consists of a pair

((
B̄, (q̄j)j∈Jg , Θ̄), x̄, µ̄

)

such that
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(1) x̄h ∈ argmax




∑

ξ∈|D

δt(ξ)B̄ξu
h(xh

ξ )

∣∣∣∣∣∣

∑

ξ∈|D

P̄ξ p̄ξ

(
ch
ξ −

ah
ξ (eh − `h

ξ )

1 + r̄1
ξ

)
+ γhP̄ξ0Θ̄ = P̄ξ0w

h
0





(2) P̄ξ = B̄ξ µ̄ξ, ξ ∈ |D, (P̄ξp̄ξ)ξ∈|D ∈ `1(|D)

(3)
∑

h∈H

c̄h
ξ =

∑

h∈H

āh
ξ (eh − ¯̀h

ξ ), ξ ∈ |D

(4) µ̄ξ q̄
τ
ξ =

∑

ξ′∈ξ+

B̄ξ ξ′ µ̄ξ′ q̄
τ−1
ξ′ , τ = 1, . . . , T, ξ ∈ |D

(5) q̄τ
ξ ≤ 1, τ = 1, . . . , T, ξ ∈ |D

Once the forecast B̄ and the short-term interest rate process (r̄1
ξ)ξ∈|D are given, (1)-(3) define a

determinate “real” equilibrium x̄. Given that monetary policy consists both of a forecast B̄ and

a bond pricing policy (q̄j)j∈Jg , equations (4)-(5) give the constraints on the simultaneous choice

of (B̄, (q̄j)j∈Jg). The equations (4) express the duality between bond prices and expectations:

for given expectations they exhibit the appropriate bond prices, and for given bond prices they

exhibit the compatible expectations. These equations are central to formalizing the idea of a

credible inflation targeting policy. (5) ensures that the nominal interest rates on the bonds of

different maturities are non-negative. If qτ
ξ is the price of the τ -period bond, the associated

interest rate or yield to maturity rτ
ξ is defined by qτ

ξ =
1

(1 + rτ
ξ )τ

and qτ
ξ ≤ 1 is equivalent to

rτ
ξ ≥ 0.

Proposition 3. (Equivalence of extensive and reduced-form equilibrium) If financial markets

are complete,7
(
rank

[
ˆ̄qξ+

]
= SG for all ξ ∈ |D

)
then

(
(B̄, (q̄j)j∈Jg , Θ̄) x̄, µ̄

)
is a reduced-form

equilibrium of E if and only if there exist money holdings, portfolios, taxes and prices such

that
((

(B̄, (q̄j)j∈Jg), (M̄, Z̄, θ̄)
)
,
(
(x̄, m̃, z̄), (ȳ, L̄)

)
,
(
P̄ , p̄, ω̄, (q̄j)j∈Jp

))
is an extensive-

form equilibrium of E .

Proof: There are essentially two parts to the proof of Proposition 3, which is given in the

Appendix. The first is to show that under the condition of complete markets the opportunity

sets of the agents in the two equilibria are the same. The second is to show how the portfolio-

tax policy of the government can be constructed once the consumption streams of the agents

and the short-term interest rate is known. It must also be shown that the way the government

7If there is only one agent, or equivalently all agents are identical, the condition of complete markets is not
necessary for the proposition to hold.
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taxes appear in the two opportunity sets—the present value of taxes Θ̄ and the sequence of

taxes θ̄ = (θ̄ξ)ξ∈|D—are compatible.

(4) suggests that if there are enough bond prices which are fixed by the monetary authority,

then there should be a unique conditional expectation Bξξ′ , ξ
′ ∈ ξ+ at each node which is

compatible with the bond prices. As a result agents would have no reason to adopt beliefs

different from the announced forecast B̄. In the sections that follow we will study the exact

conditions under which equations (4) tie down agents’ expectations of inflation. We begin by

studying the simplest case where all agents are identical and the only source of uncertainty

comes from expectations of inflation: the insights from this case carry over in an important

way to the general setting.

3. Stationary Equilibrium: Identical Agents and No Real Shocks

Consider the special case of the economy in Section 2 in which there are no real shocks (G = 1),

all agents have identical preferences and endowments, uh = u, ah = 1, eh = 1 for all h ∈ H,

and the only securities are the government bonds: Jp = ∅. If we write the equilibrium in

per-capita terms, then the equilibrium is formally equivalent to the equilibrium of Definition

1 with H = 1, γh = 1, Jp = ∅.

Proposition 4. (Equilibrium equations) If E an economy with identical agents, for any

bounded sequence of short-term interest rates, a reduced-form equilibrium is characterized by

a pair ((B̄, q̄), c̄, ) satisfying the system of equations

(a)
uc(c̄ξ, 1− c̄ξ)

u`(c̄ξ, 1− c̄ξ)
= 1 + r̄1

ξ , ξ ∈ |D

(b1) q̄τ
ξ = δ

∑
ξ′∈ξ+ B̄ξξ′

uc(c̄ξ′ , 1− c̄ξ′)

uc(c̄ξ, 1− c̄ξ)
q̄τ−1
ξ′

1

1 + πξ′
, τ = 1, . . . , T, q̄0

ξ′ = 1, ξ ∈ |D

(b2) q̄τ
ξ ≤ 1, τ = 1, . . . , T, ξ ∈ |D

Proof: see Appendix.

The striking property of Proposition 4 is that the budget constraint of the representative

agent does not enter in the description of the reduced-form equilibrium: the agent’s budget

constraint disappears since it is the mirror image of the government budget constraint which,

by the Ricardian property of its fiscal policy, is automatically satisfied and hence disappears.
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It clear from (a) and (b1) that a monetary policy which only determines the price of the

short-term bond (or equivalently the short-term interest rate) cannot fully determine agents’

expectations of inflation. The choice of a sequence of short-term interest rates (r1
ξ
)

ξ∈|D
deter-

mines the real allocation (c
ξ
)

ξ∈|D
through the equations (a). But then equations (b1) applied

to the short-term bond are compatible with any belief Bξξ′ satisfying

1

1 + r1
ξ

= δ
∑

ξ′∈ξ+

Bξξ′
uc(cξ′ , 1− cξ′)

uc(cξ, 1− cξ)

1

1 + πξ′

This equation only puts a restriction on a weighted average of the conditional probabilities Bξξ′

and hence leaves room for expectations B different from the announced forecast B̄. Equation

(b1) when applied to long-term bonds (τ ≥ 2) is normally viewed as the statement that agents’

expectations of inflation determine the prices of the long-term bonds. The basic argument of

this paper is to reverse this logic, and to argue that if the monetary authority can control T

bond prices (yields to maturity) and if T is the branching number of the event-tree (i.e. the

number of inflation rates which are thought to be possible at the successors) then it can control

the expectations of the agents, forcing them to coincide with the announced forecast B̄.

We show below that if the matrix ̂̄Qξ+ = (ˆ̄q)
ξ′∈ξ+

consisting of the T -vector of bond prices

at each of the successors of node ξ satisfies an appropriate rank condition, then knowing
̂̄Qξ+ forces the agents’ expectations of inflation to coincide with (B̄ξξ′)ξ′∈ξ+

at node ξ. In

order for the agents to anticipate next period the bond prices ̂̄Qξ+ , the monetary authority

must have a rule for determining the price of each long-term bond as a function of the path

of inflation rates: the more complex the rule the less the chance that it will be learned or

verified by the agents. Thus we focus on simple rules for which bond prices depend only

on the current inflation: in this way we are led to a generalization to the term structure of

interest rates of the short-term interest rate rules studied in neo-Keynesian models8. It is clear

from Proposition 4(a) that if the security prices only depend on current inflation, then the

agents’ consumption, which is determined by the nominal short-term interest rate, also only

depends on current inflation. Since (b1) is a system of first-order difference equations, if the

bond prices and the consumption only depend on current inflation and if B̄ is the only belief

compatible with the system of equations (b1), then it has to be Markov. We thus assume that

the monetary authority announces a Markov forecast matrix B̄ss′ : if ξ = (s0, s1, . . . , s) and

ξ′ = (s0, s1, . . . , s, s
′) then B̄ξξ′ = B̄ss′ .

8See Woodford (2003) for an extensive exposition of short-term interest rate rules and Cochrane (2007) for
a discussion of the approach.
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As a special case of Proposition 4 we characterize a Markov reduced-form equilibrium

(B, c, q) as a Markov matrix B = (Bss′)s,s′∈S, a vector of consumption c = (cs, s ∈ S), and

bond prices q = (qs, s ∈ S) which only depend on current inflation.9

Corollary 5. (Stationary equilibrium equations) If E is a one-agent economy, then a Markov

reduced-form equilibrium is characterized by a pair ((B̄, q̄), c̄) =
(
(B̄ss′ , q̄s), c̄s

)
s,s′∈S

∈ |RSS
+ ×

|RS
+ × |RS

+ satisfying the reduced-form equilibrium equations

(a)
uc(c̄s, 1− c̄s)

u`(c̄s, 1− c̄s)
= 1 + r1

s, s ∈ S

(b1) q̄τ
s = δ

∑
s′∈S

B̄ss′

1 + πs′

uc(c̄s′ , 1− c̄s′)

uc(c̄s, 1− c̄s)
q̄τ−1
s′ , τ = 1, . . . , T , q̄0

s′ = 1, s ∈ S

(b2) q̄τ
s ≤ 1, τ = 1, . . . , T, s ∈ S

Expectations of inflation and monetary policy. Suppose the monetary authority

wants to induce the expectations of inflation defined by a Markov matrix B. We can think

of this as formalizing the idea of inflation targeting. The monetary authority makes public

its inflation target, but this will be credible only if it indicates how its monetary policy will

lead to this target. The policy instrument at its disposal consists in fixing the prices of a

family of nominal bonds of different maturities, and the monetary authority makes public the

rule (qτ
s , τ, . . . , T )s∈S by which it fixes the bond prices (or equivalently the yield to maturity

of these bonds) as functions of the possible current inflation states. Since monetary policy is

usually expressed in terms of interest rates rather than bond prices, we will refer to it as a

term-structure rule, although analytically it is generally simpler to work directly with the bond

prices (qτ
s , τ = 1, . . . , T )s∈S.

The analysis that follows studies the properties that a Markov matrix B must satisfy if it

is to be consistent with equilibrium and be credibly sustained by a term-structure rule. The

matrix must have two properties:

(1) It must be such that there exist bond prices (qτ
s , τ = 1, . . . , T )s∈S with qτ

s ≤ 1 (non-

negative nominal interest rates) which satisfy the equilibrium equations (a) and (b) of

Corollary 5: if this property holds we say that B is compatible with equilibrium or more

briefly is a compatible expectations matrix.

9Although the growth of money demand
Mξ′

Mξ
=

(1+is′ )cs′

cs
is Markov, the financial variables of the extensive-

form equilibrium or their rates of growth are not necessarily Markov, especially if the government’s debt reim-
bursement policy αξ is not Markov.
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(2) If B satisfies (1) with bond prices (qτ
s , τ = 1, . . . , T )s∈S then these bond prices fully

determine B only if B is the unique solution of the equilibrium equations (b1) viewed as

a system of equations in B with parameters (c, q), where c satisfies (a): if this property

holds we say that B is controllable, or that (B, q) is strongly credible.

The compatibility condition (1) in essence requires that the expectations of inflation be

compatible with the real interest rate. For the (simplified) Fisher relation states that

r1
s = rreal

s + Es(π)

Since the real interest rate rreal
s can be negative, expectations of inflation Es(π) must be suf-

ficiently large to ensure that the nominal interest rate r1
s is always non-negative: as we point

out after Proposition 8 this makes it difficult to implement a target inflation rate which is

negative.

If (2) does not hold then many expectations matrices are compatible with the interest rate

policy and there is no guarantee that agents will choose the announced forecast B as their

expectations, so that the objective of inflation targeting may not be achieved.

Compatibility of expectations with equilibrium. If the monetary authority wants to

induce a matrix of beliefs B it needs to set the term-structure rule in such a way that equations

(b) of Corollary 5 are satisfied. Since these equations involve both the expectations matrix B

and the stochastic discount factor which, by the equations (a), is determined by the short-term

interest rates r1 = (r1
s , s ∈ S), there is a compatibility or fixed-point problem which needs to

be solved. To study this problem it is convenient to use the gross returns

Rs = 1 + r1
s

on the short-term nominal bonds as the basic variables. We first show that for a given return R

there is a unique solution to the consumption/leisure choice problem of the agent characterized

by equation (a) of Corollary 5.

Lemma 6. (Equilibrium consumption) If u satisfies Assumption U(1)-(3) then

(i) for all R > 0, the equation
uc(c, 1− c)

u`(c, 1− c)
= R (10)

has a unique solution c(R), where c(R) is a strictly decreasing function of R.
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(ii) Φ(R) ≡ uc(c(R), 1− c(R)) is strictly increasing on (0,∞).

(iii) Φ̃(R) ≡
Φ(R)

R
is strictly decreasing on (0,∞).

Proof. (i) Let h(c) ≡
uc(c, 1− c)

u`(c, 1− c)
. Then h′(c) = 1

u2
`

(uccu` − u`cuc − uc`u` + u``uc). Since

ucc < 0, u`` < 0, uc > 0, u` > 0, uc` ≥ 0, it follows that h′(c) < 0 and h is decreasing. By the

Inada condition h(c) → ∞ as c → 0 and h(c) → 0 as c → 1. Thus (10) has a unique solution

c(R). Differentiating h(c(R)) = R gives h′(c(R))c′(R) = 1: h′ < 0 implies c′(R) < 0.

(ii) Φ′(R) = (ucc − uc`)c
′(R) > 0 by (i).

(iii) Φ̃′(R) = 1
R2

(
(ucc − uc`)c

′(R) R − uc

)
. Using c′(R) = 1/h′(c(R)) where h′(c) has been

calculated in (i), and R = uc/u`, we obtain Φ̃′(R) = u2
c

D
(uc` − u``) < 0, where the

derivatives are calculated at c(R) and D = R2(uccu` − u`cuc − uc`u` + u``uc). Since

D < 0 and uc` ≥ 0, Φ̃′(R) < 0. 2

In view of Lemma 6 the FOCs (a) and the FOCs (b1) for the short-term nominal bond of

Corollary 5, can be combined into the system of equilibrium equations

1

Rs
= δ

∑

s′∈S

Bss′

1 + πs′

Φ(Rs′)

Φ(Rs)
, s ∈ S (11)

For each s ∈ S this is the ‘true’ stochastic Fisher equation relating the price q1
s = 1

Rs
of the

short-term nominal bond to the price of the real bond

1

1 + rreal
s

= δ
∑

s′∈S

Bss′
Φ(Rs′)

Φ(Rs)
, s ∈ S

and inflation (πs′)s′∈S next period, when the current inflation is πs. Since the nominal interest

rate determines the real wage and hence output and consumption, it affects the real interest rate

and the system of equations (11) only implicitly defines the nominal interest rates associated

with an expectations matrix B. If the condition Rs ≥ 1, s ∈ S (non-negative nominal interest

rates) were omitted then the equations (11) would always have a solution (this can be deduced

from the fixed point argument given below). However when the condition Rs ≥ 1, s ∈ S, is

imposed, conditions of compatibility have to be imposed on the matrix B.

Definition 7. A Markov matrix B is said to be compatible with equilibrium if the system of

equations (11) has a solution R ≥ 1 = (1, . . . , 1).
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Note that if R̄ ≥ 1 is a solution of (11) then q̄1
s = 1

R̄s
≤ 1, s ∈ S, and (b2) of Corollary 5

is satisfied for τ = 1. (b1) of the same corollary, which can be written as

q̄τ
s = δ

∑

s′∈S

Bss′

1 + πs′

Φ(Rs′)

Φ(Rs)
q̄τ−1, s ∈ S, τ = 2, . . . , T

then gives by successive substitution the prices of the bonds of higher maturities and the

inequality q̄τ
s ≤ 1 is transferred to these prices. Thus all the conditions of Corollary 5 are

satisfied and there exists a reduced form equilibrium.

Using the function Φ̃ defined in Lemma 6(iii), (11) can be written as

Φ̃(Rs) = δ
∑

s′∈S

Bss′

1 + πs′
Φ(Rs′), s ∈ S (12)

Since Φ̃ is decreasing, if for each s the right side of (12) lies in the image of Φ̃ (a condition for

this is given below) then Φ̃ can be inverted and (12) is equivalent to the system of equations

Rs = Φ̃−1
(
δ
∑

s′∈S

Bss′

1 + πs′
Φ(Rs′)

)
≡ Ψs(R1, . . . , RS), s ∈ S (13)

where Ψs is decreasing for each s ∈ S. Let Ψ = (Ψ1, . . . , ΨS) denote the vector-valued map

which associates with R the new vector of returns Ψ(R). An equilibrium R̄ is a fixed point

of Ψ: R̄ = Ψ(R̄).

Since a vector of nominal returns must satisfy R ≥ 1 = (1, . . . , 1) and since Ψ is decreasing,

the minimal return vector 1 maps into the maximal return vector Rmax = (Rmax
1 , . . . , Rmax

S ) =

Ψ(1). Consider the rectangular subset of the non-negative orthant of |RS

K = {R ∈ |RS
+ | 1 ≤ R ≤ Rmax}

If Rmax ≥ 1 then K 6= φ, and if Ψ(Rmax) = Ψ(Ψ(1)) ≥ 1 then Ψ(K) ⊂ K so that Brouwer’s

Theorem can be applied.

It remains to give conditions which ensure that the two properties K 6= φ and Ψ(K) ⊂ K

are satisfied. The maximum achievable consumption c∗ occurs when the nominal interest rate

is zero, c∗ = c(1): this is also what an agent’s consumption would be without a cash-in-advance

constraint. Rmax = Ψ(1) is equivalent to

1

Rmax
s

= δ
∑

s′∈S

Bss′

1 + πs′

uc(c
∗, 1− c∗)

uc(c(Rmax
s ), 1− c(Rmax

s ))
, s ∈ S (14)

(14) must have a solution for each s, and this solution must satisfy Rmax
s ≥ 1. Condition (1)

in Proposition 8 below ensures that these two properties hold: the first inequality implies that
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Rmax
s exists and the second inequality ensures that it is greater than or equal to 1. The right

side of (14) gives an upper bound on the real interest rate since it assumes that the consumption

in each state s′ next period is maximal (at c∗) while it is minimal today (at c(Rmax
s )). Thus

Rmax
s ≥ 1 requires that the nominal interest rate, which is essentially the real interest rate plus

the expected rate of inflation, be positive when the real interest rate is at its highest possible

value. This is clearly a necessary condition. The condition EB
s

(
δ

1+π

)
≤ 1, which ensures that

Rmax
s ≥ 1 is not a demanding condition, but it still requires that high deflation states are not

given too much weight.

To find a condition which ensures that the vector Ψ(Ψ(1)) = Ψ(Rmax) ≥ 1, consider the

vector Rmin = (Rmin
1 , . . . , Rmin

S ) where Rmin
s defined by

1

Rmin
s

= δ
∑

s′∈S

Bss′

1 + πs′

uc(c(R
max
s′ ), 1− c(Rmax

s′ ))

uc(c∗, 1− c∗)
, s ∈ S (15)

The return Rmin
s would occur if consumption today were maximal (at c∗) and consumption

tomorrow were expected to be at its minimal value c(Rmax
s′ ) in each state s′: this gives a lower

bound on the real interest rate in each state. Condition (2) in Proposition 8 requires that the

nominal interest rate is positive even when the real interest rate is at this lower bound, a more

demanding requirement than condition (1).

Proposition 8. (Existence of stationary equilibrium) If B is a S × S Markov matrix such

that

(1) limRs→∞
uc(c(Rs),1−c(Rs))

Rsuc(c∗,1−c∗) < EB
s

(
δ

1+π

)
≤ 1, s ∈ S

(2) Rmin

s ≥ 1, s ∈ S where Rmin

s is defined by (15) and c(Rmax

s ) is defined by (14)

then there exists a stationary equilibrium of E , and B is a compatible expectations matrix.

Proof: Equation (14) is equivalent to

Φ̃(Rmax
s )

Φ̃(1)
= as, as = EB

s

(
δ

1 + π

)

Since Φ̃ is decreasing, if as ≤ 1 (which is the second inequality in (1)) then the solution, if

it exists, will satisfy Rmax
s ≥ 1. The equation will have a solution if asΦ̃(1) > infR≥1 Φ̃(R) =

limR→∞ Φ̃(R), which is the first inequality in (1). This proves that, when (1) is satisfied,

K 6= φ.

19



It remains to show that Ψ(Rmax) ≥ 1 to ensure Ψ(K) ⊂ K. For each state s ∈ S

Ψs(R
max) = Φ̃−1

(
δ
∑

s′∈S

Bss′

1 + πs′
Φ(Rmax

s′ )
)
≥ 1 ⇐⇒ δ

∑

s′∈S

Bss′

1 + πs′
Φ(Rmax

s′ ) ≤ Φ̃(1) =
Φ(1)

1

⇐⇒
1

Rmin
s

≤ 1

By Brouwer’s Theorem Ψ has a fixed point R̄ in K which defines a positive short-term interest

rate compatible with the expectations matrix B. 2

As is well known, in the deterministic version of our economy with a cash-in-advance

constraint, the Friedman rule, which requires that the nominal interest rate is zero, is Pareto

optimal. The associated inflation rate π∗ = δ − 1 is negative. Anticipating the analysis of

controllability of Proposition 11, which requires that there be a minimum of fluctuation in

inflation for expectations to be controllable, Proposition 8 shows that in a stochastic economy

it is not possible to implement an approximate version of the Friedman rule with an inflation

target π∗ = δ− 1 without creating much variability in inflation. For if the target inflation rate

is set at π∗ there will be states where the deflation πs will be lower than π∗. An expectations

matrix which mainly puts weights on the deflation rates between πs and π∗ to induce a reversion

to the target rate will not satisfy (1) of Proposition 8 since δ
1+π∗ = 1 and δ

1+πs
> 1. To satisfy

(1) and (2) sufficient weight must be given to inflation rates strictly greater than π∗, creating

realized trajectories of inflation which alternate between inflation and deflation. Thus even

if the Friedman rule is optimal in the deterministic framework, when agents have “sunspot

beliefs” it may be not be optimal to set a target with negative inflation since in the domain

of deflation it becomes difficult to control agents’ expectations while maintaining non-negative

nominal interest rates—the monetary authority is in essence caught in a “liquidity trap”.

Controllability of expectations. Suppose that B is a compatible expectations matrix

which the monetary authority wants to induce as the only expectations for the agents. Then

the short-term interest rate must be fixed in such a way that the equilibrium equations (11)

are satisfied. If r1(B) = (r1
1(B), . . . , r1

S(B)) is such a short-run interest rate rule announced

by the Central Bank, then there are many Markov matrices B̃ = (B̃ss′)ss′∈S which also satisfy

1

1 + r1
s

= δ
∑

s′∈S

B̃ss′
uc(c(Rs′(B)), 1− c(Rs′(B)))

uc(c(Rs(B)), 1− c(Rs(B)))

1

1 + πs′
, s ∈ S (16)

since this is a system of S linear equations in the S × (S − 1) unknown coefficients of the

Markov matrix. If B̃ satisfies (16) then the same collection of short-run equilibrium interest
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rates is compatible with B̃: r1(B) = r1(B̃). Thus B and B̃ are two different expectations of

inflation compatible with the same short-term interest rate rule, so that agents can have their

own views B̃ of the transition probabilities of inflation which do not need to coincide with the

Central Bank’s announced expectations B.

If the CB controls more interest rates on bonds of longer maturities then there will be more

no-arbitrage equations similar to (16) which an alternative matrix B̃ will need to satisfy to be

compatible with the given interest rate rule. It may be possible, by fixing sufficiently many

interest rates, to restrict the expectations to the unique matrix B, but this requires that the

equations of compatibility with prices of the bonds of different maturities be independent.

The interest rates on the long-term bonds which are compatible with B can be calculated

recursively. First the prices q1
s (B) = 1

1+r1
s (B)

= 1
Rs(B)

are calculated by solving the fixed-point

equations (11), which is possible if B is a compatible expectations matrix. Then the prices of

the two-period bonds across the inflation states are deduced from the prices of the one-period

bonds by

q2
s (B) = δ

∑

s′∈S

Bss′
uc(c(Rs′(B)), 1− c(Rs′(B)))

uc(c(Rs(B)), 1− c(Rs(B)))

1

1 + πs′
q1
s′(B), s ∈ S

Replacing q1
s′(B) by q2

s′(B) and q2
s(B) by q3

s(B) in this equation gives the price of the three-

period bond in each inflation state, and so on up to maturity T chosen be the Central Bank.

To write the prices of all the bonds up to maturity T in a condensed form, define the diagonal

matrices

D1(B) =




1

Φ(R1(B))
· · · 0

...
. . .

...

0 · · ·
1

Φ(RS(B))




D2(B) =




δΦ(R1(B))

1 + π1
· · · 0

...
. . .

...

0 · · ·
δΦ(RS(B))

1 + πS




where Φ is the function defined earlier in Lemma 6: Φ(Rs(B)) = uc

(
c(Rs(B)), 1−c(Rs(B)

)
, s ∈

S. Then the matrix ∆(B) defined by

∆(B) = D1(B)BD2(B) (17)

is the matrix of (date t) present-value prices between any pair of dates t and t + 1: omitting

the dependence on B, the term ∆ss′ in row s and column s′ gives the present value in inflation

state s at date t of the promise to pay one unit of money at date t + 1 in inflation state s′.

Using this present-value matrix the price of the short-term bond in state s can be written as
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q1
s =

∑
s′∈S ∆ss′ = ∆s1 where ∆s = (∆s1, . . . , ∆sS) is row s of ∆ and 1 = (1, . . . , 1)′ ∈ |RS.

Let q1 = (q1
1 , . . . , q1

S)′ denote the vector of short-term bond prices across the inflation states

then

q1(B) = ∆(B)1

From Corollary 5 (b1), if q2 = (q2
1, . . . , q

2
S)′ denotes the vector of two-period bond prices across

the inflation states then

q2(B) = ∆(B)q1(B) = ∆2(B)1

and more generally the vector of prices for the τ period bond across the states is given by

qτ (B) = ∆(B)qτ−1(B) = ∆τ (B)1, τ = 1, . . . , T (18)

If the Central Bank fixes the prices of the long-term bonds of several maturities then it may

further restrict the expectations matrices which are compatible with the interest rate rule. If

the originally announced forecast B is the only matrix compatible with these bond prices then

we say that the combined announcement of B and the term-structure rule is strongly credible.

Definition 9. Let B be a compatible expectations matrix and let q(B) = (q1(B), . . . , qT (B))

be a compatible term-structure rule satisfying (18). The monetary policy (B, q(B)) is said to

be strongly credible if B̃ = B is the only solution to the system of linear equations

qτ
s (B) =

∑

s′∈S

B̃ss′
λss′(R(B))

1 + πs′
qτ−1
s′ (B), s ∈ S, τ = 1, . . . , T (19)

where

λss′(R(B)) ≡
δ uc(c(Rs′(B)), 1− c(Rs′(B)))

uc(c(Rs(B)), 1− c(Rs(B)))

is the real stochastic discount factor induced by the short-term interest rate rule r1(B).

Definition 10. A Markov matrix B is said to be a controllable expectations matrix if there

is an associated term-structure rule q(B) such that (B, q(B)) is strongly credible.

The requirement of strong credibility is essential if the Central Bank wants to be sure

to control the expectations of agents in the private sector when it announces its forecast B.

Supporting the forecast—as is currently done—by a compatible short-term interest rate rule

only makes the forecast “weakly credible”, in the sense that the agents may believe the forecast

since the interest-rate rule is compatible with it, but they can also have their own expectations

B̃ on the process of inflation which is compatible with r1(B) but different from B. The need
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to fix the prices of additional long-term bonds to support the announced forecast is made

precise by the following proposition.

Proposition 11. (Controlling expectations) Let (B, q(B)) be a monetary policy consisting

of a forecast B and a term-structure rule q(B) = (q1(B), . . . , qT (B)) satisfying (18). If the

payoff matrix

Q̂ =
[
1, ∆(B)1, . . . , (∆(B))S−11

]
(20)

is invertible, then the policy (B, q(B)) is strongly credible and B is a controllable expectations

matrix.

Proof: Let B̃ be a matrix satisfying the system of equations (19). This can be written as

Q = ∆̃ Q̂

where Q is the matrix of bond prices Q = [q1(B), . . . , qT (B)] and ∆̃ = D1(B)B̃D2(B).

Since B also satisfies the equations (19), ∆̃ = QQ̂−1 = ∆(B). But then D1(B)B̃D2(B) =

D1(B)BD2(B) implies B̃ = B. 2

In order that the rank condition rank(Q̂) = S can be satisfied, the monetary authority

must fix the prices of S bonds,10 and for any possible current inflation the payoff matrix of

these bonds in the different inflation states next period must have full rank, i.e. markets must

be dynamically complete. This is expressed as the requirement that the transforms of the sure

payoff 1 under iterates of the present-value map ∆(B) are linearly independent. Note that

the condition of complete markets, which usually ensures that there is optimal risk sharing,

is used here for another purpose. In this representative-agent model, risk sharing is not the

issue: controlling expectations is the issue, and Proposition 10 points to the fact that the

more markets there are for long-term bonds, the less divergent the expectations of the market

participants can be.

Propositions 8 and 11 impose conditions on a Markov matrix B for it to represent expec-

tations which are sustainable by a term-structure rule. To better understand these restrictions

10In principle this condition can be weakened by requiring that the Central bank controls the prices of only
S−1 bonds, using the equations B̃1 = 1 which must be satisfied if the matrix B̃ is to be a Markov matrix. This
works only if the equations B̃1 = 1 are independent of the other bond pricing equations (19) for τ = 1, . . . , S−1.
Since it is not easy to give conditions which ensure that this property of independence holds, we prefer to require
that the rank condition which implies uniqueness of B̃ is obtained from the full rank condition on the payoff
matrix of the bonds.
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consider the simple case where the agent’s utility function is quasi-linear in consumption

u(c, `) = c + v(`) (21)

where v is increasing, differentiable, strictly concave and satisfies v′(`) → ∞ when ` → 0 and

v′(`) → 0 when ` → 1. The FOC (a) in Corollary 5

v′(1 − c) =
1

1 + rs
=

1

Rs

defines the optimal consumption c̄(Rs) as a function of the current nominal gross return Rs of

the short-term bond. Since uc(c̄(Rs), 1− c̄(Rs)) = 1, the pricing of the bonds is risk neutral.

In the notation introduced above, Φ(R) = 1, Φ̃(R) = 1
R

. Thus the pricing equations reduce to

1

Rs
= δ

∑

s′∈S

Bss′

1 + πs′
= δEB

s

(
1

1 + π

)
, s ∈ S

and Rmin
s = Rmax

s = Rs. Conditions 1 and 2 of Proposition 8 reduce to

δEB
s

(
1

1 + π

)
≤ 1, s ∈ S (22)

If the smallest inflation state π1 which agents consider possible satisfies δ
1+π1

≤ 1 ⇐⇒ π1 ≥ δ−

1, then (22) is satisfied for any Markov matrix B, so that all Markov matrices are ‘compatible’

expectations matrices. The condition starts to bite if 1 + π1 < δ. Then any row which puts

weight on the lowest deflation states must compensate by putting sufficient positive weight

on positive (or at least less negative) inflation states to ensure that the nominal interest rate

is non-negative: in short, in order that expectations of large deflation be compatible with

equilibrium they must be accompanied by the expectations of regular occurrence of periods of

inflation.

Consider the restrictions on B imposed by the rank condition in Proposition 11. The date

t present-value matrix ∆(B) defined by (17) becomes

∆(B) = δ B diag

(
1

1 + π

)
=




δB11
1+π1

· · ·
δB1S

1+πS

...
...

...
δB

S1
1+π1

· · ·
δB

SS

1+πS




where diag(v) denotes the diagonal matrix whose diagonal elements are the coordinates of the

vector v. Since ∆(B)(1 + π) = δB 1 = δ1, the vector 1 is in the range of ∆(B) and so are

all the vectors ∆n(B)1, for 1 ≤ n ≤ S − 1. Thus the rank condition can hold only if the
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subspace spanned by the columns of the matrix ∆(B) is of dimension S, i.e. if the matrix

∆(B) is invertible. But this is equivalent to the matrix B being invertible. Thus for example

matrices which require that, whatever the initial inflation state, inflation in the next period is

the desired inflation state π∗ = πs∗ , of the form

B =




0 0 · · · 1 · · · 0
0 0 · · · 1 · · · 0
...

...
...

...
...

...
0 0 · · · 1 · · · 0




do not satisfy the controllability condition of Proposition 11, and hence can not be sustained

by a term-structure rule of the type we consider. Our framework cannot force an immediate

return of inflation to a target inflation rate π∗.

The requirement that B has full rank also means that the rows of B must be different.

Since ∆(B)1 =
(
Es

(
1

1+π

))
s∈S

the condition that ∆(B)1 is independent of 1 requires that

the rows of the matrix B must be sufficiently different: thus the conditional expectation of

inflation next period given the current inflation state must change in a systematic way as

the current inflation state changes. Some permanence in the matrix B—sufficient weight on

diagonal and near diagonal terms—seems a reasonable way to ensure that this condition holds.

The additional conditions that ∆2(B)1, . . . , ∆S−1(B) are independent, and independent of 1

and ∆(B)1, reinforce this need for the rows of B to be “sufficiently different”.

Example. To illustrate how a term-structure policy can be used to control agents’ expecta-

tions of inflation, suppose that the interval of inflation rate is Π = {−0.02,−0.01, . . . , 0.06},

by increments of 0.01 so that there are 9 inflation rates indexed by s = 1, . . . , 9. Suppose the

target rate is π∗ = 0.02, corresponding to the index s∗ = 5, and that the monetary authority

seeks to return inflation to the target when the current rate πs deviates π∗ by choosing the

mean-reverting expectations matrix B defined as follows

for s = 1 B(1, 1) = b
s∗

, B(1, 2) = 1 −

b
s∗

, B(1, σ) = 0 otherwise

for 1 < s < s∗ B(s, s − 1) = ab
s∗−s+1

, B(s, s) = (1−a)b
s∗−s+1

, B(s, s + 1) = 1−

b
s∗−s+1

, B(s, σ) = 0 otherwise

for s = s∗ B(s∗, s∗ − 1) = ab, B(s∗, s∗) = 1 − 2ab, B(s∗, s∗ + 1) = ab, B(s∗, σ) = 0 otherwise

for s∗ < s < 9 B(s, s − 1) = b
s−s∗+1

, B(s, s) = (1−a)b
s−s∗+1

, B(s, s + 1) = ab
s−s∗+1

, B(s, σ) = 0 otherwise

for s = 9 B(s, s − 1) = 1 −

b
s−s∗+1

, B(s, s) = b
s−s∗+1

, B(s, σ) = 0 otherwise

with two parameters a ≥ 0, b > 0. a is the “noise” which helps with the rank of the matrix

and b represents the intensity of the reversion to π∗. For every inflation rate πs in the interior
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of Π (s 6= 1, 9), with some probability the inflation rate is unchanged, with smaller probability

it moves to “the wrong side” (s − 1 if s < s∗ or s + 1 if s > s∗), and with greater probability

it moves toward the target s∗, the probability being proportional to the deviation of s to s∗.

The smaller b the higher the probability of moving toward the target rate π∗. Suppose the

preferences are given by u(c, `) = (c1−α + β`1−α) with α = 3, β = 0.4 and a discount factor

δ = 0.98.
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Figure 2: Term structure rules associated to the expectations matrix B in the example. In
Figure(a) b=0.2; in Figure (b), b=1.5. Each curve represents the term structure (rτ

s )9τ=1 for a

given current inflation rate πs.

Figure 2 shows the term structure for the bond prices defined in (18) for two values of

the intensity parameter b = 0.2 (Figure (a)) and b = 1.5 (Figure (b)). Each curve represents

the term structure (rτ
s )9τ=1 for a given current inflation rate πs: the top curve corresponds to

πs = 6% and the lowest curve to πs = −2%. For both values of the parameter when current

inflation is at the target rate π∗ the short term nominal interest rate is close to 4%, the real

interest rate being close to 1/δ − 1 namely 2.04% and the expected inflation rate next period
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being 2%. In view of the symmetry of B and the approximate symmetry of interests rates r1
s

around r1
s∗ , the long run average of the short term interest rate r̄1 is also approximately 4%.

Since the fluctuations in consumption induced by the fluctuations in the nominal interest rates

are small the risk premia are small and the yield to maturity rτ
s on τ -period bond converges

to r∞ which also close to 4%.

In Figure 1(a) the term structure rises fast if there is deflation or low inflation (πs < π∗)

and decreases fast when current inflation is high (πs > π∗), leading agents to anticipate a fast

return to the target inflation rate of 2%. In Figure 1(b), for each current inflation rate the

term structure is flatter, leading agents to anticipate more permanence and a sluggish return

to the target rate.

Relation to literature. In this section we have outlined a representative-agent model of

the term structure of interest rates parameterized by the expectations of the agent. Models of

this kind have been studied with the objective of best replicating the data, rather than as a

way of studying how the term structure can be used as an instrument of monetary policy. The

qualitative and quantitative characteristics of the term structures generated by such models

under different assumptions on the primitives are surveyed in Piazzesi-Schneider (2007): they

show that a combination of Eipstein-Zin recursive utility for the representative agent and

realistic assumptions of the inflation/consumption growth process—in particular permanence

in both inflation and growth, and the fact that high inflation tends to be followed by low

consumption growth—generates a term structure which is on average upward sloping. This

is a stylized fact which previous representative-agent models have had difficulty replicating.

In our model, as shown by the example above, if there are no real shocks and the monetary

authority succeeds in keeping inflation close to the target “most of the time” then the average

term structure will approximately be flat. If there are real shocks and inflation is kept close

to the target then the term structure should essentially depend on the process of consumption

growth.

4. Stationary Equilibrium: Heterogeneous Agents and Real Shocks

In this section we generalize the analysis of the previous section to multi-agent economies

with both inflation and real shocks. Let η = (s, g) ∈ S × G identify the current inflation

πs and the real shock g which determines the productivities ah
g = ah

η of the agents h ∈ H.
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The exogenous shocks are assumed to have a Markov structure described by a G × G matrix

A = (Agg′)g,g′∈G. We assume that the forecast of the Central Bank is given by a transition

matrix B = (Bηη′)η,η′∈S×G compatible with A. As in the previous section we assume that the

term structure rule (rτ
ξ )τ=1,...,T only depends on the current state η, so that the rule is of the

form (rτ
η)τ=1,...,T for each η ∈ S × G.

An equilibrium of an economy with heterogeneous agents and a cash-in-advance constraint

is not Pareto optimal: there is thus no social welfare function which is maximized at an

equilibrium, and in this sense no representative agent. However what is really needed to derive

properties of an equilibrium with security markets is a common stochastic discount factor for

pricing the securities which only depends on the aggregate state of the economy. In Proposition

12 we show that we can exploit the property that the marginal rates of substitution of the

agents are equalized—they all face the same prices and the nominal interest rate distorts the

real wage in the same way for all agents—to derive a social marginal utility of consumption

at equilibrium, denoted by
(
Φη

)
η∈S×G

, which when discounted to date 0, leads to the real

stochastic discount factor for pricing the securities. Lemma 13 will show that this social

marginal utility of consumption is a function of the income distribution, the real shock and the

nominal short-term interest rate. Once the function Φ is introduced, many of the constructions

of the previous section can be extended to the multi-agent case, for Φη plays a role akin to

the marginal utility uc of the representative agent in the previous section. The fixed-point

argument however needs to be extended to include not only the vector of returns R on the

short-term bond, but also the vector of weights for the agents characterizing the distribution

of income in the economy.

The first step of the analysis is given by Proposition 12 which provides the multi-agent

generalization of Corollary 5 of the previous section: it characterizes a stationary reduced-

form equilibrium of the economy in which the consumption and leisure (ch
ξ , `h

ξ ) = (ch
η, `

h
η) only

depend on the current state η, assuming that the agents adopt the forecast B of the Central

Bank as their beliefs. The maximization of each agent in Definition 2(i) is replaced by the

corresponding first-order conditions (a1, a2) and the budget equation (a4): the first-order

conditions are expressed as the statement that the marginal utility of consumption of each

agent is proportional to the social marginal utility of consumption Φη, the vector of coefficients

of proportionality ν = (νh)h∈H in the simplex ∆H ⊂ |RH capturing the relative wealth of the

agents. These weights are determined by the life-time budget equations of the agents which

can be expressed (in (a4)) as functions of the variables (Φη, cη, `η, r
1
η)η∈S×G which are state,
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and not path, dependent. Let Rη = 1 + r1
η denote the gross return on the short-term bond in

state η. Then the following equations characterize a stationary reduced-form equilibrium of

the multi-agent economy.

Proposition 12. (Stationary equilibrium equations) Under Assumption U , a stationary

reduced-form equilibrium is characterized by a pair
(
(B̄, q̄, Θ̄), (ν̄, x̄, Φ̄)

)
satisfying the follow-

ing system of equations

(a1) ν̄huh
c (c̄h

η , ¯̀h
η) = Φ̄η, η ∈ S × G, h ∈ H

(a2) ν̄huh
¯̀(c̄

h
η , ¯̀h

η) =
ah

η Φ̄η

R̄η
, η ∈ S × G, h ∈ H

(a3)
∑

h∈H

c̄h
η =

∑

h∈H

ah
η(eh − ¯̀h

η), η ∈ S × G

(a4)
∑

η∈S×G

[I − δB̄]−1
η0 η

Φ̄η

(
c̄h
η −

ah
η(eh − ¯̀h

η)

R̄η

)
+ γhΘ̄ = Φ̄η0w

h
0 , h ∈ H

(b1) Φ̄ηq̄
τ
η = δ

∑

η′∈S×G

B̄ηη′

1 + πη′
Φ̄η′ q̄τ−1

η′ , η ∈ S × G τ = 1, . . . , T

(b2) q̄τ
η ≤ 1 τ = 1, . . . , T, η ∈ S × G

Proof: Consider a reduced-form equilibrium
((

B̄, (q̄j)j∈Jg , Θ̄
)
, x̄, µ̄

)
as defined in Definition

2. Assuming that the present value of after tax income is P̄ξ0(w
h
0 − γhΘ̄) +

∑
ξ P̄ξα

h
ξ eh/R̄ξ is

positive, in view of Assumption U , the solution to the maximum problem of agent h is interior,

i.e. ch
ξ > 0 and 0 < `h

ξ < eh for all ξ ∈ |D, and is characterized by the FOCs for optimal

consumption/leisure and the present-value budget equation. The FOCs for the maximum

problem of agent h are
δt(ξ)uh

c (c̄h
ξ , ¯̀h

ξ ) = λ̄hµ̄ξ p̄ξ

δt(ξ)uh
` (c̄h

ξ , ¯̀h
ξ ) = λ̄hµ̄ξ p̄ξ

ah
ξ

R̄ξ

(23)

for all ξ ∈ |D and some λ̄h > 0. Let ν̄h = 1
λ̄h . Since the budget equations in (1) in Definition 2

are homogeneous in (µ̄), µ̄ can be normalized so that
∑

h∈H ν̄h = 1. This amounts to choosing

µ̄ξ0 so that µ̄ξ0

∑
h

1
uh

c (c̄h
ξ0

,¯̀h
ξ0

)
= 1.

Suppose the equilibrium is stationary, i.e. that (c̄ξ, ¯̀
ξ, R̄ξ, iξ, (a

h
ξ )h∈H) only depend on the

current state η = (s, g) at date t(ξ). In order for the FOCs (23) to be satisfied the common
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factor
µ̄ξ p̄ξ

δt(ξ) must only depend on the current state η at node ξ. Thus for all η ∈ S × G there

must exist Φ̄η, the social marginal utility of consumption in state η, such that

ν̄huh
c (c̄h

η,
¯̀h
η) = Φ̄η

ν̄huh
` (c̄h

η,
¯̀h
η) = Φ̄η

ah
η

R̄η

and the nominal stochastic discount factor for one unit of money at a node ξ with current state

η is then equal to

µ̄ξ =
δt(ξ)Φ̄η

p̄ξ

Each agent’s budget equation can then be written as

∑

η∈S×G

∑

{ξ∈|D |η(ξ)=η}

(
δt(ξ)Bξ

)
Φ̄η

(
ch
η −

ah
η(eh − `h

η)

Rη

)
− γhΦ̄η0Θ = Φ̄η0w

h
0 (24)

For a given date t,
∑

{ξ∈|D, t(ξ)=t, η(ξ)=η} Bξ is the probability of going from η0 to η in t periods

and is thus equal to [Bt]η0η, where [Bt] is the tth power of the matrix B. The sum after the

second summation sign in (24) can thus be written using the (S × G)× (S × G) matrix

[I − δB]−1 =
∞∑

t=0

δtBt

where the series converges since δ < 1. This leads to the expression (a4) for the budget

constraint in Proposition 12. 2

Comparing the characterization of a stationary equilibrium for the multi-agent economy in

Proposition 12 with that of the representative-agent economy in Corollary 5, (a1)-(a3) replace

condition (a) in Corollary 5. In (a4), for symmetry, we have written the budget constraints

for all the agents h ∈ H. It would suffice to write the budget constraints for all but one of

the agents, the Ricardian condition ensuring that it holds for the remaining agent: omitting

one agent’s budget constraint corresponds to the characterization of equilibrium in Corollary

5 which omits the budget constraint for the representative agent. (b1, b2) of Proposition 12

are equivalent to (b1, b2) of Corollary 5, the marginal utility of the representative agent being

replaced by the social marginal utility Φ.

The next step is to characterize the expectations matrices B for which there exist a sta-

tionary reduced-form equilibrium: as in the previous section (Definition 7) we call any such

matrix a compatible expectations matrix. To generalize Proposition 8 and obtain conditions for

a matrix B to be a compatible expectations matrix we need the equivalent of Lemma 6 for the
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multi-agent case. We show that under Assumption U , for a fixed vector of positive weights ν

and a fixed vector of productivities a = (ah)h∈H, the first-order conditions (a1)-(a2) and the

market-clearing equations (a3) uniquely define the consumption and leisure of each agent and

the social marginal utility of consumption.

Lemma 13. (ν-equilibrium consumption) Let uh satisfy Assumption U for all h ∈ H.

(i) For any (ν, a, R) ∈ ∆H × |RH
++ × |R++ the equations

(a1) νhuh
c (ch, `h) = Φ if νh > 0, ch = 0 if νh = 0, h ∈ H

(a2) νhuh
` (ch, `h) =

ahΦ

R
if νh > 0, `h = 0, if νh = 0 h ∈ H

(a3)
∑

h∈H

ch =
∑

h∈H

ah(eh − `h)

have a unique solution
(
ch(ν, a, R), `h(ν, a, R), Φ(ν, a, R)

)
continuous on ∆H × |RH

++ ×

|R++.

(ii) Φ(ν, a, R) is strictly increasing in R.

(iii) Φ̃(ν, a, R) ≡
Φ(ν, a, R)

R
is strictly decreasing in R.

Proof: See Appendix.

Lemma 13 is the multi-agent analogue of Lemma 6 in the previous section: it permits the

equations (a1)-(a3), and (b1) of Proposition 12 for τ = 1 to be combined into the system of

equations
1

Rη
= δ

∑

η′∈S×G

Bηη′

1 + πη′

Φ(ν̄, aη′ , Rη′)

Φ(ν̄, aη, Rη)
, η ∈ S × G (25)

which has the same form as the equilibrium equations (11) for the single-agent economy.

Finding a reduced-form equilibrium for the single-agent economy reduced to finding a solution

R̄ ≥ 1 to equations (11). For the multi-agent economy, in addition to solving the system of

equations (25) in the proper domain, we must find relative weights ν̄ for the agents which are

compatible with the distribution of wealth implied by the budget equations (a4) in Proposition

12. Thus for the multi-agent economy finding an equilibrium reduces to finding a pair (ν̄, R̄)

such that the budget equations (a4) and the bond pricing equations (25) are satisfied.
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The conditions which imply the existence of a reduced-form equilibrium thus naturally

reduce to two sets of conditions: the first set is analogous to conditions (1) and (2) in Propo-

sition 8 which ensure that there is a solution R̄ to the short-term bond pricing equations (25)

satisfying R̄ ≥ 1; the second ensures that the tax burden is shared among the agents in a way

which is commensurate with their wealth, so that each agent can afford positive consumption

and leisure in all states η ∈ S × G after paying his/her share of the present value of the taxes

Θ̄.

To give conditions which ensure (25) has a solution in the right domain, we need to bound

the possible values of R. For each ν ∈ ∆H , define Rmax
η (ν) as the solution of the equation

Φ̃(ν, aη, R
max
η ) =

Φ(ν, aη, R
max
η )

Rmax
η

= δ
∑

η′∈S×G

Bηη′
Φ(ν, aη′ , 1)

1 + πη′
, η ∈ S × G (26)

(condition (1) in Proposition 14 below ensures that the equation has a solution) and then for

each η ∈ S × G define

Rmax
η = max

ν∈∆H
Rmax

η (ν)

As before conditions which ensure Rmax ≥ 1 place restrictions on the matrix B given the

inflation/technology/preference characteristics of the economy. We then define, for each ν ∈

∆H , Rmin
η (ν) by

1

Rmin
η (ν)

= δ
∑

η′∈S×G

Bηη′

1 + πη′

Φ(ν, aη′ , Rmax
η′ )

Φ(ν, aη, 1)
η ∈ S × G

Rmin
η (ν) gives a lower bound on the nominal interest rate since it corresponds to the lowest

possible real interest rate, and hence the assumption that Rmin
η (ν) ≥ 1 (condition 2 below)

imposes stronger restrictions on B.

To understand the tax-sharing assumption consider each agent’s present value budget equa-

tion in the original form given in (1) of Definition 2. Summing the budget equations of the

households implies that when the market clearing equations (3) in Definition 2 hold, then

∑

ξ∈|D

P̄ξ

r̄1
ξMξ

1 + r̄1
ξ

+ P̄ξ0Θ̄ = P̄ξ0

∑

h∈H

wh
0 = P̄ξ0W0 (27)

where Mξ = p̄ξ

∑
h∈H c̄h

ξ . (27) expresses the property that the government asymptotically

withdraws its initial liabilities P̄ξ0W0 (which correspond to the initial wealth of the private

sector) by a combination of seignorage (the first term on the left side) and direct taxes (P̄ξ0Θ̄).

Since r̄1
ξ ≥ 0, it follows from (27) that

Θ̄ ≤ W0 (28)
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We want to be sure that each agent h has a positive after-tax present-value of income

γhP̄ξ0Θ̄ < P̄ξ0w
h
0 +

∑

ξ∈|D

P̄ξa
h
ξ eh

R̄ξ

, h ∈ H

and, to ensure that it holds in equilibrium, we require that it holds for the ‘lowest’ possible

values of
P̄ξ

R̄ξ
and the highest possible P̄ξ0 . In the stationary case this can be expressed using

the highest returns Rmax
η and leads to condition 3 in the following Proposition.

Proposition 14. (Existence of stationary equilibrium) Let E be an economy in which the

agents’ utility functions satisfy Assumption U . If B is a Markov matrix such that

(1) limR→∞
Φ(ν, aη, R)

R
< δ

∑

η′∈S×G

Bηη′
Φ(ν, aη′ , 1)

1 + πη′
≤ Φ(ν, aη, 1), ∀ η ∈ S × G, ∀ ν ∈

∆H

(2) Rmin
η (ν) ≥ 1, ∀ η ∈ S × G, ∀ ν ∈ ∆H

and if the tax burden is distributed among agents so that γ = (γh)h∈H ∈ ∆H satisfies

(3) γhW0 < wh
0 +

∑

η∈S×G

[I − δB]−1
η0η

Φ(ν, aη, R
max
η ) ah

ηeh

Rmax
η Φ(ν, aη0, R

max
η0

)
, ∀ ν ∈ ∆H , ∀ h ∈ H

then there exists a stationary equilibrium of E , and B is a compatible expectations matrix.

Proof: See Appendix.

For an expectations matrix B compatible with equilibrium, let ν(B) denote the vector of

relative weights of the agents in an equilibrium induced by B, and let Rη(B) be the return

on the short-term bond traded in state η, for each η ∈ S × G. Φη(B) ≡ Φ(ν(B), aη, Rη(B))

is then marginal social utility of an additional unit of consumption in state η, for η ∈ S × G.

Equations (b1) in Proposition 12 give by successive substitutions the prices of the bonds of

maturities τ ≥ 2: as in the previous section, the complete system of bond prices across the

different states η ∈ S × G can then be written in compact form by defining the matrices

D1(B) = diag

(
1

Φη(B)

)

η∈S×G

, D2(B) = diag

(
δΦη(B)

1 + πη

)

η∈S×G

, ∆(B) = D1(B)BD2(B)

where, for a vector u ∈ |RSG, diag(u) denotes the SG × SG diagonal matrix whose nth entry

is the nth component of u. The prices of the bonds compatible with B are then given by (18)
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of the previous section. The definition of a strongly credible monetary policy (B, q(B)), and

of a controllable matrix B (Definitions 9 and 10) are the same as in the previous section with

s replaced by η: if B is the only matrix compatible with the bond pricing (or term structure)

rule q(B), then the forecast B is made strongly credible by the bond pricing rule q(B), and

the agents will adopt B as their expectations matrix. Proposition 10 immediately generalizes

by replacing S, the number of independent bonds whose price should be fixed, by SG.

Proposition 15 (Controlling expectations) Let (B, q(B)) be a monetary policy consisting

of a forecast B and a term-structure rule q(B) = (q1(B), . . . , qT (B)) satisfying (18). If the

payoff matrix

Q̂ =
[
1, ∆(B)1, . . . , (∆(B))SG−11

]
(29)

is invertible, then the policy (B, q(B)) is strongly credible and B is a controllable expectations

matrix.

Thus the main difference between a heterogeneous-agent and a representative-agent econ-

omy is that the social marginal utility of consumption, which replaces the marginal utility of

the representative agent, depends on the distribution of income among the agents. Thus the

equilibrium vector of returns R̄ on the short-term bond must be determined simultaneously

with the equilibrium vector of weights ν̄ for the agents by solving the fixed-point problem (46)

in the appendix. The pair (ν, R) induces a vector of social marginal utilities of consumption(
Φη

)
η∈S×G

which, from the bond pricing equations, lead to the term-structure rule associated

with the expectations matrix B. As in the previous section, a rank condition is then required

to ensure the uniqueness of the compatible expectations matrix.

5. Conclusion

We have proposed a framework for studying the policy of inflation targeting. The point of

departure is that in a model in which monetary-fiscal policy is Ricardian if monetary policy

consists solely of controlling the short-term nominal interest rate—and if we do not invoke

a local steady state analysis based on the Taylor rule—the agents’ expectations of inflation

are indeterminate. We are used to the idea that prices of long-term nominal bonds depend

on agents’ expectations of inflation: the basic idea of the paper is to reverse the argument

and suggest that controlling the prices of long-term bonds can be a natural instrument for

controlling agents’ expectations of inflation. We have proposed a framework in which the
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Central Bank seeks to anchor agents’ expectations of inflation by making a public forecast of

inflation—represented in the stationary case by a Markov transition matrix—and choosing a

compatible term structure of interest rates to make the forecast credible.

In practice controlling more than the short-term interest rate would require either co-

ordination between the Central Bank and the fiscal authority to choose the maturity of the

bonds used to finance the government debt, or open market operations by the Central Bank

on long-term government bonds. Once the Central Bank has acquired credibility, since the

term structure it wants to control is that which is compatible with the expectations it wants

to promote, it will not have to move “against the market”—thus implementing the policy does

not seem call on the use of extensive funds.

It is well-known that the problem of indeterminacy of expectations of inflation present

in a flexible- price model is also present in models—such as the New-Keynesian models—

with staggered price setting by firms. As Nakajima-Polemarchakis (2005) have made clear by

converting models with different price setting assumptions to a finite horizon framework, the

indeterminacy comes from the Ricardian policy which removes a market-clearing equation on

each trajectory. For this reason we have chosen the simplest flexible-price framework in which

the choice of the short-term nominal interest rate affects real output to expose our proposal

for anchoring agents’ expectations of inflation: it would certainly be of interest to see how this

highly stylized monetary module could be incorporated into a richer model of the real side of

the economy.

Appendix

Proof of Proposition 3: Step 1. Show that the extensive and reduced-form budget sets are

the same. The budget set Bh(p, q, θ) of agent h in an extensive-form equilibrium is given by

|Bh(p, q, θ) =





xh ∈ (`+
∞(|D))2

∣∣∣∣∣∣∣∣∣∣∣

∃ zh ∈ |R
|DJ such that ∀ ξ ∈ |D

pξc
h
ξ + γhθξ + qξz

h
ξ = pξ−Lh

ξ−
+ q̂ξz

h
ξ−

lim
T→∞

∑

ξ′∈|DT (ξ)

Pξ′qξ′z
h
ξ′ = 0





where `+
∞(|D) is the space of non-negative bounded sequences on |D, and where pξ−0

Lh
ξ−0

+

q̂ξ0z
h
ξ−0

= wh
0 denotes the agent’s initial wealth at date 0. While the extensive-form budget

set is defined by an infinite sequence of budget constraints (one at each node of the event-

tree) the reduced-form budget set of agent h, denoted by Bh(p, P , r1, Θ) is defined by a single
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present-value budget equation

Bh(p, P , r1, Θ) =



xh ∈ (`+

∞(|D))2

∣∣∣∣∣∣

∑

ξ∈|D

Pξpξ

(
ch
ξ −

Lh
ξ

1 + r1
ξ

)
+ γhPξ0Θ = Pξ0w

h
0





where r1 = (r1
ξ)ξ∈|D is the sequence of short-term interest rates over the event-tree |D. Let

`1(|D) = {π ∈ |R
|D|
∑

ξ∈|D |Pξ| < ∞} denote the space of summable sequences on |D. We want

to show that if

(i) rank [ q̂ξ+ ] = SG, ∀ ξ ∈ |D (complete markets)

(ii) Pξq
j
ξ =

∑
ξ′∈ξ+ Pξ′ q̂

j
ξ′ , j ∈ J , ∀ ξ ∈ |D (no-arbitrage security prices)

(iii) (Pξpξ)ξ∈|D ∈ `1(|D) (summable prices)

(iv)
∑

ξ′∈|DT (ξ) Pξ′θξ′ → 0 as T → ∞, Θ =
∑

ξ∈|D Pξθξ, (summable taxes)

then |Bh(p, q, θ) = Bh(p, P , r1, Θ) for all h ∈ H.

(=⇒) We show |Bh(p, q, θ) ⊂ Bh(p, P , r1, Θ). Pick xh ∈ |Bh. Multiplying the budget equation

at node ξ by Pξ for all ξ ∈ |D , summing over the event-tree up to date T and using the

no-arbitrage condition (ii) gives (remember that |DT denotes the set of nodes up to date T and

|DT the set of nodes at date T )

∑

ξ∈|DT

Pξpξc
h
ξ + γh

∑

ξ∈|DT

Pξθξ +
∑

ξ∈|DT

Pξqξz
h
ξ =

∑

ξ∈|DT−1

( ∑

ξ′∈ξ+

Pξ′

)
pξL

h
ξ + pξ0w

h
0

Since no arbitrage applied to the short-term bond implies that, for all ξ ∈ |D,
Pξ

1+r1
ξ

=
∑

ξ′∈ξ+ Pξ′ ,

this equation can be written as

∑

ξ∈|DT−1

Pξpξ

(
ch
ξ −

Lh
ξ

1 + r1
ξ

)
+ γh

∑

ξ∈|DT

Pξθξ +
∑

ξ∈|DT

Pξpξc
h
ξ +

∑

ξ∈|DT

Pξqξz
h
ξ = pξ0w

h
0

Since (Pξpξ)ξ∈|D ∈ `1(|D) and ch ∈ (`+
∞(|D), limT→∞

∑
ξ∈|DT

Pξpξc
h
ξ = 0, and by the Transver-

sality Condition for |Bh, limT→∞
∑

ξ∈|DT
Pξqξz

h
ξ = 0, so that x ∈ Bh(p, P , r1, Θ).

(⇐=) We show |Bh(p, q, θ) ⊃ Bh(p, P , r1, Θ). Pick xh ∈ Bh(p, P , r1, Θ). We need to find

portfolios zh such that the sequential budget constraints are satisfied at each node and the

Transversality Condition is satisfied. We define the portfolio zh
ξ by the requirement that it

brings enough wealth to the successors of ξ to finance the excess present value of expenditure
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over after-tax income on the subtrees originating at each of these nodes. In view of the

assumption of complete markets such a portfolio exists and is defined by

 ∑

ξ′′∈|D(ξ′)

Pξ′′pξ′′

(
ch
ξ′′ −

Lh
ξ
′′

1 + r1
ξ′′

)
+ γh

∑

ξ′′∈|D(ξ′)

Pξ′′θξ′′ − Pξ′pξL
h
ξ




ξ′∈ξ+

=
[
P ◦

ξ+
q̂
]
zh
ξ , ∀ξ ∈ |D

(30)

where
[
P ◦

ξ+
q̂
]

=
[
Pξ′ q̂

j
ξ′

]
j∈J

ξ′∈ξ+

is the SG× J matrix of present values of the payoffs of the J

securities at the immediate successors ξ+ of ξ. Let us show that with this choice of portfolio

the sequential budget constraint is satisfied at each node. We begin with the initial node ξ0.

Premultiplying the SG equations (30) by 1T ∈ |RSG gives

∑

ξ∈|D\ξ0

(
Pξpξ

(
ch
ξ −

Lh
ξ

1 + r1
ξ

)
+ γhPξθξ

)
−
( ∑

ξ′∈ξ+
0

Pξ′

)
pξ0L

h
ξ0

= Pξ0qξ0z
h
ξ0

(31)

and since xh ∈ Bh(p, P , r1, Θ) and
∑

ξ′∈ξ+
0

Pξ′ =
Pξ0

1+r1
ξ0

it follows that

−Pξ0pξ0

(
ch
ξ0
−

Lh
ξ0

1 + r1
ξ0

)
− γhPξ0θξ0 + Pξ0w

h
0 −

Pξ0

1 + r1
ξ0

pξ0L
h
ξ0

= Pξ0qξ0z
h
ξ0

namely

pξ0c
h
ξ0

+ γhθξ0 + qξ0z
h
ξ0

= wh
0

In the same way, for any any node ξ̃ with t(ξ̃) ≥ 1 premultiplying (30) by 1T and using (ii)

gives the analogue of (31) with |D replaced by D(ξ̃) and ξ0 replaced by ξ̃. Using (30) again to

express P
ξ̃
q̂
ξ̃
zh
ξ̃−

and substituting leads to

Pξ̃ q̂ξ̃z
h

ξ̃−
− Pξ̃pξ̃

(
ch
ξ̃
−

Lh
ξ̃

1 + r1
ξ̃

)
− γhPξ̃θξ̃ + Pξ̃L

h

ξ̃−
−

Pξ̃

1 + r1
ξ̃

pξ̃L
h
ξ̃

= Pξ̃qξ̃z
h
ξ̃

so that the budget constraint at node ξ̃

p
ξ̃
ch
ξ̃

+ γhP
ξ̃
θ
ξ̃
+ q

ξ̃
zh
ξ̃

= p
ξ̃−

Lh
ξ̃−

+ q̂
ξ̃
zh
ξ̃−

is satisfied. It remains to show that the Transversality Condition is satisfied. To this end

consider any node ξ ∈ |D and for any date T ≥ t(ξ), consider the nodes of |DT (ξ) at date T in

the subtree |D(ξ). Using (30) and summing over the nodes of |DT (ξ) gives

∑

ξ′∈|DT (ξ)

Pξ′qξ′z
h
ξ′ =

∑

ξ′′∈|D(ξ)

t(ξ′′)≥T+1


Pξ′′pξ′′

(
ch
ξ′′ −

Lh
ξ
′′

1 + r1
ξ′′

)
+ γhPξ′′θξ′′


−

∑

ξ′∈|DT (ξ)

Pξ′pξ′−Lh
ξ′− (32)
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By condition (iii) and (iv) all the tails of the series on the right side of (32) converge to zero,

and thus
∑

ξ′∈|DT (ξ) Pξ′pξ′z
h
ξ′ → 0 when T → ∞, so that xh ∈ |Bh(p, q, θ).

Step 2. We show that, given price processes satisfying conditions (i)-(iii) of Step 1 and an

aggregate consumption process C =
∑

h∈H ch ∈ `∞(|D), the government policy (M , θ, Z) is

determined by the feasibility conditions and the fiscal rule, and it satisfies
∑

ξ′∈|DT (ξ) Pξ′Wξ′ → 0

and
∑

ξ′∈|DT (ξ) Pξ′θξ′ → 0 as T → ∞.

Since agents pay for the consumption good using money, the aggregate demand for money

for transactions pξCξ = Mξ, ξ ∈ |D is equal to the aggregate supply made available by the

government. Given the short-term rate interest rate r1 = (r1
ξ)ξ∈|D the seignorage

r1
ξ
Mξ

1+r1
ξ

at each

node is known. Let us show that the government’s budget equation at each node and the

Ricardian rule (α, β)

Mξ + θξ + qξZξ = Wξ (33)

r1
ξMξ

1 + r1
ξ

+ θξ = αξWξ (34)

(
Wξ′

)
ξ′∈ξ+ = dξβξ (35)

where

Wξ = Mξ− + q̂ξZξ−

is the liability of the government at the beginning of node ξ, can be used to determine its

portfolio and tax policy (θ, Z). Start at the initial node ξ0. (33) and (34) determine θξ0 and

k0 = qξ0Zξ0. Premultiplying (35) by the vector Pξ+
0

= (Pξ′)ξ′∈ξ+
0

gives the equation



∑

ξ′∈ξ+
0

Pξ′


Mξ0 + Pξ0qξ0Zξ0 = dξ0

∑

ξ′∈ξ+
0

βξ0ξ′ ⇐⇒
r1
ξ0

Mξ0

1 + r1
ξ0

+ Pξ0k0 = dξ0Pξ+
0
β0

which determines dξ0. Then

(
Wξ′

)
ξ′∈ξ+

0
= Mξ01 +

[
q̂ξ+

0

]
Zξ0

determines Zξ0 since
[
q̂ξ+

0

]
is invertible. Note that

∑

ξ′∈ξ+
0

Pξ′Wξ′ =
r1
ξ0

Mξ0

1 + r1
ξ0

+ Pξ0qξ0Zξ0 = Pξ0(1− αξ0)W0 (36)
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where the last inequality is obtained by substituting the value of θξ0 given by (34) into the

budget equation (33): thus the present value of the government’s liabilities has decreased by the

factor αξ0 by virtue of the Ricardian policy (34). Note also that since all the terms (Wξ′)ξ′∈ξ+
0

have the same sign (βξ0 � 0), they are of the same sign as W0.

By induction we can use (33)-(35) to calculate (θξ, Zξ) for all nodes ξ, showing that (36)

is satisfied at each node and that the liabilities Wξ always have the same sign, which is the

sign of W0. To establish the asymptotic properties, we assume that W0 > 0, so that for all ξ,

Wξ > 0: if W0 < 0 it suffices to reverse the inequalities in the analysis that follows and the

same asymptotic results hold. It follows from (36) that

∑

ξ′∈ξ+

Pξ′Wξ′ ≤ (1− α)Wξ

Applying this inequality recursively gives

∑

ξ′′∈|D(ξ)

t(ξ′′)=t(ξ)+2

Pξ′′Wξ′′ ≤
∑

ξ′∈ξ+

(1 − α) Pξ′Wξ′ ≤ (1 − α)2PξWξ

and moving forward T − t(ξ) periods into the subtree |D(ξ) gives

0 <
∑

ξ′′∈|DT (ξ)

Pξ′′Wξ′′ ≤ (1− α)T−t(ξ)PξWξ (37)

Thus the Ricardian policy implies that the present value of the government’s date T liabilities

tend to zero when T → ∞ on every subtree of |D.

Multiplying (34) by Pξ′ for each node ξ′ ∈ |DT (ξ) and forming the sum of these values gives

∑

ξ′∈|DT (ξ)

Pξ′θξ′ =
∑

ξ′∈|DT (ξ)

αξ′Pξ′Wξ′ −
∑

ξ′∈|DT (ξ)

r1
ξ′

1 + r1
ξ′

Pξ′Mξ′ , ξ ∈ |D

∑

ξ′∈|DT (ξ)

Pξ′θξ′ =
∑

ξ′∈|DT (ξ)

αξ′Pξ′Wξ′ −
∑

ξ′∈|DT (ξ)

r1
ξ′

1 + r1
ξ′

Pξ′Mξ′ , ξ ∈ |D

By (37) the first term on the right side tends to 0 as T → ∞ and since Pξ′Mξ′ = Pξ′pξ′Cξ′

by (iii) of Step 1 and C ∈ `∞(|D), the second term tends to 0. Thus
∑

ξ′∈|DT (ξ) Pξ′θξ′ → 0 as

T → ∞.

Step 3. We show that an extensive-form equilibrium is a reduced-form equilibrium. Let

((
(B̄, (q̄j)j∈Jg), (M̄, Z̄, θ̄)

)
,
(
(x̄, m̃, z̄), (ȳ, L̄)

)
,
(
p̄, ω̄, π̄, (q̄j)j∈Jp

))

39



be an extensive- form equilibrium. The profit maximization in (v) of Definition 1 implies

ω̄ξ = p̄ξ, ξ ∈ |D. Since the government policy is Ricardian the asymptotic properties established

in Step 2 hold. Thus if we define Θ̄ ≡
∑

ξ∈|D P̄ξ θ̄ξ, all the conditions (i)-(iv) of Step 1 are

satisfied, and |Bh(p̄, q̄, θ̄) = Bh(p̄, P̄ , r̄1, Θ̄). Since x̄h is optimal in |Bh, it is also optimal

over Bh so that (1) in Definition 2 is satisfied. Defining the stochastic discount factor µ̄

by P̄ξ = B̄ξ µ̄ξ, ξ ∈ |D and substituting into (ii) of Definition 1 gives (4) in Definition 2: it

follows that the triple
((

B̄, (q̄j)j∈Jg , Θ̄), x̄, µ̄
)

satisfies all the conditions for a reduced-form

equilibrium in Definition 2.

Step 4. We show that from a reduced-form equilibrium we can reconstruct the associated

extensive-form equilibrium. Let
(
(B̄, (q̄j)j∈Jg , Θ̄), x̄, µ̄

)
be a reduced-form equilibrium and let

q̄j be defined by P̄ξ q̄
j
ξ =

∑
ξ′∈ξ+ π̄ξ′ˆ̄q

j
ξ′ , j ∈ Jp, ξ ∈ |D with ˆ̄q

j
ξ′ ≡ V j

ξ′ . By assumption
[
ˆ̄qξ+

]
is

invertible for all ξ ∈ |D. Given the properties of a reduced-form equilibrium, (i)-(iii) of Step 1

are satisfied and we can apply Step 2 to construct the government policy (M̄ , Z̄, θ̄). To show

that Θ̄ =
∑

ξ∈|D P̄ξ θ̄ξ, we sum the agents’ budget equations in the reduced-form equilibrium

and use the market clearing equations to obtain

∑

ξ∈|D

r̄1
ξ

1 + r̄1
ξ

P̄ξM̄ξ + Θ̄ =
∑

h∈H

wh
0 = W0 (38)

On the other hand multiplying the government’s budget equation (33) at node ξ by P̄ξ for all

ξ ∈ |D and summing over the whole event-tree leads to

∑

ξ∈|D

r̄1
ξ

1 + r̄1
ξ

P̄ξM̄ξ +
∑

ξ∈|D

P̄ξ θ̄ξ = W0

which combined with (38) implies that Θ̄ =
∑

ξ∈|D P̄ξ θ̄ξ. Thus all the conditions (i)-(iv) of Step

1 are satisfied and |Bh(p̄, q̄, θ̄) = Bh(p̄, P̄ , r̄1, Θ̄). Thus for each h ∈ H, x̄h is optimal over |Bh

and the portfolio strategy z̄h which finances x̄h is given by (30). It remains to show that the

financial markets clear, i.e.
∑

h∈H z̄h = Z̄. Summing the equations (30) at node ξ over the

agents gives


 ∑

ξ′′∈|D(ξ′)

P̄ξ′′

r̄1
ξ
′′M̄ξ

′′

1 + r̄1
ξ′′

+
∑

ξ′′∈|D(ξ′)

P̄ξ′′ θ̄ξ′′ − P̄ξ′M̄ξ




ξ′∈ξ+

=
[
P̄ ◦ξ+ ˆ̄q

] ∑

h∈H

z̄h
ξ , ∀ξ ∈ |D (39)

On the other hand multiplying the government budget constraints (33) over the subtree |D(ξ)

by the corresponding node prices and, for each ξ′ ∈ ξ+, summing over the subtree |D(ξ′) leads
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to

P̄ξ′ q̄ξ′ Z̄ξ + P̄ξ′M̄ξ =
∑

ξ′′∈|D(ξ′)

P̄ξ′′

r̄1
ξ
′′M̄ξ

′′

1 + r̄1
ξ′′

+
∑

ξ′′∈|D(ξ′)

P̄ξ′′ θ̄ξ′′ , ξ′ ∈ ξ+

which, combined with (39) implies that
∑

h∈H z̄h
ξ = Z̄ξ for all ξ ∈ |D. Thus all the properties

of Definition 1 are satisfied, and the proof is complete. 2

Proof of Proposition 4: (=⇒) Let
(
(B̄, q̄, Θ̄), x̄, µ̄

)
be a reduced-form equilibrium. The

FOCs for the maximum problem (1) of Definition 2 for the agent imply that there exists λ > 0

such that for all ξ ∈ |D

B̄ξ δt(ξ) uc(c̄ξ, ¯̀
ξ) = λ P̄ξ p̄ξ = λ B̄ξ µ̄ξ p̄ξ (40)

B̄ξ δt(ξ) u`(c̄ξ, ¯̀
ξ) = λ

P̄ξ p̄ξ

1 + r̄1
ξ

= λ
B̄ξ µ̄ξ p̄ξ

1 + r̄1
ξ

(41)

where, by Assumption U the consumption/leisure decision is always interior. Market clearing

implies ¯̀
ξ = 1 − c̄ξ and (a) follows by taking the ratio of (40) and (41). Replacing µ̄ξ by

its value given in (40), (4) implies that (b1) is satisfied, and since (b2) is the same as (5) of

Definition 2, a reduced-form equilibrium satisfies (a), (b1), (b2).

(⇐=) Let ((B̄, q̄), c̄) satisfy (a), (b1), (b2). For all ξ ∈ |D define ¯̀
ξ = 1− c̄ξ , x̄ξ = (c̄ξ, 1− c̄ξ),

and µ̄ξ, P̄ξ (such that P̄ξ = B̄ξ µ̄ξ) by (40). (a) implies that the FOCs (41) also hold. Since (a)

holds, since the sequence (r̄1
ξ)ξ∈|D is bounded, and since by Assumption U ,

uc(c, 1− c)

u`(c, 1− c)
→ ∞

as c → 0, the consumption sequence (c̄ξ)ξ∈|D is bounded away from zero and the sequence

(uc(c̄ξ, ¯̀
ξ))ξ∈|D is bounded. Thus by (40) (P̄ξ p̄ξ)ξ∈|D ∈ `1(|D). Define Θ̄ by

∑

ξ∈|D

r̄1
ξ

1 + r̄1
ξ

P̄ξ p̄ξ c̄ξ + Θ̄ = w0

x̄ satisfies the budget equation in (1) of Definition 2 and the FOCs are satisfied, so (1) in

Definition 2 is satisfied. Multiplying the two sides of (b1) by δt(ξ)

p̄ξ
gives (4) of Definition 2, so

that
(
(B̄, q̄, Θ̄), x̄, µ̄

)
is a reduced-form equilibrium. 2

Proof of Lemma 13: We first assume that (ν, a) ∈ ∆H
++ × |RH

++ are fixed and, to simplify

notation, we omit these parameters as arguments of the functions. For R > 0, Φ > 0, h ∈ H,

and C a large positive number, define the function x̃h : |R2
++ → |R2

++ by

x̃h(Φ, R) = argmax

{
νhuh(ch, `)− Φch − Φ

`h

R

∣∣∣ 0 ≤ ch ≤ C, 0 ≤ `h ≤ eh

}
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By Assumption U and νh > 0, the function which is maximized is strictly concave and has a

unique maximum. By Assumption U , for C large enough the maximum can not occur on the

boundary of the constraint set so that the maximum is the solution of the FOCs (a1)-(a2). Let(
c̃h(Φ, R), ˜̀h(Φ, R)

)
denote the solution of the maximum problem viewed as function of (Φ, R).

Since uh
ccu

h
`` − (uh

c`)
2 > 0, the functions c̃h and ˜̀h are differentiable. To obtain a solution to

(a1)-(a3) Φ must satisfy the market clearing equation

∑

h∈H

c̃h(Φ, R) +
∑

h∈H

ah ˜̀h(Φ, R) =
∑

h∈H

aheh (42)

By Assumption U , when Φ → 0, c̃h(Φ, R) → ∞ and the left side of (42) is greater than

the right side. When Φ → ∞ both c̃h(Φ, R) and ˜̀h(Φ, R) tend to zero so that the left side

of (42) is smaller than the right side. Thus it suffices to show that the functions c̃h and ˜̀h

are strictly decreasing functions of Φ to show that equation (42) has a unique solution Φ(R).

Differentiating the FOCs (a1)- (a2) gives

νh uh
cc

∂c̃h

∂Φ
+ νh uh

c`

∂ ˜̀h

∂Φ
= 1

νh uh
`c

∂c̃h

∂Φ
+ νh uh

``

∂ ˜̀h

∂Φ
=

ah

R

which implies

∂c̃h

∂Φ
=

uh
`` −

ahuh
c`

R

νhDh
,

∂ ˜̀h

∂Φ
=

ahuh
cc

R
− uh

c`

νhDhR

where Dh = uh
ccu

h
``−(uh

c`)
2. By Assumption U , Dh > 0 and the numerators of the fractions are

negative, so that both c̃h and ˜̀h are decreasing functions of Φ: thus (42) has a unique solution

Φ(R).

To sign ∂Φ
∂R , differentiating (42) gives

∑

h∈H

(
∂c̃h

∂Φ
+ ah ∂ ˜̀h

∂Φ

)
∂Φ

∂R
= −

∑

h∈H

(
∂c̃h

∂R
+ ah ∂ ˜̀h

∂R

)
(43)

The derivatives ∂c̃h/∂R and ∂ ˜̀h/∂R can be found by differentiating the FOC (a1)- (a2)

νh uh
cc

∂c̃h

∂R
+ νh uh

c`

∂ ˜̀h

∂R
= 0

νh uh
`c

∂c̃h

∂R
+ νh uh

``

∂ ˜̀h

∂R
=

−ahΦ

R2

which gives
∂c̃h

∂R
=

ahΦuh
c`

νhR2Dh
≥ 0,

∂ ˜̀h

∂R
= −

ahΦuh
cc

νhR2Dh
> 0
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which by (43) implies
∂Φ

∂R
> 0. Solving for

∂Φ

∂R
using (43) and substituting gives

∂

∂R

(
Φ

R

)
=

R ∂Φ
∂R − Φ

R2
=

−R
∑

h∈H

(
∂c̃h

∂R
+ ah ∂ ˜̀h

∂R

)
− Φ

∑

h∈H

(
∂c̃h

∂Φ
+ ah ∂ ˜̀h

∂Φ

)

R2
∑

h∈H

(
∂c̃h

∂Φ
+ ah ∂ ˜̀h

∂Φ

) ≡
N

D
(44)

The denominator D is negative. To sign the numerator we replace the partial derivatives of

c̃h and ˜̀h by their values, which gives

N = Φ
∑

h∈H

ahuh
c` − uh

``

νhDh
> 0

so that
∂

∂R

(
Φ

R

)
< 0.

Reverting to the full notation, (42) defines the function Φ(ν, a, R), and if the functions

ch and `h are defined by ch(ν, a, R) = c̃h(Φ(ν, a, R), R), `h(ν, a, R) = ˜̀h(Φ(ν, a, R), R),

all the properties of Lemma 13 are satisfied for (ν, a, R) ∈ ∆H
++ × |RH

++ × |R++. To show

continuity with respect to ν over the whole simplex, suppose that a sequence (νn)n≥0 ∈

∆H
++ in the interior of the simplex converges to ν̄ ∈ ∆H with ν̄h = 0. Since for some

h′, ν̄h′
≥ 1/H and (42) must hold, Φ(νn, a, R) stays bounded away from zero and, since

νh
n → 0, uh

c (ch(νn, a, R), `h(νn, a, R)) and uh
` (ch(νn, a, R), `h(νn, a, R)) must tend to ∞, so

that (ch(νn, a, R), `h(νn, a, R)) tend to 0. 2

Proof of Proposition 14: Since for all η ∈ S × G, aη = (a1
η, . . . , a

H
η ) is fixed, we omit it

from the argument of the functions and let ch
η(ν, R), `h

η(ν, R), Φη(ν, R) denote the functions

ch(ν, aη, R), `h(ν, aη, R), Φ(ν, aη, R) defined in Lemma 12. Since by (1) of Proposition 14

Φ̃η(ν, 1) ≥ δ
∑

η′∈S×G

Bηη′
Φη′(ν, 1)

1 + πη′
> lim

R→∞
Φ̃η(ν, R)

there exists a solution Rmax
η (ν) ≥ 1 to the equation (26), so that Rmax

η ≥ 1. Thus

K =
{
R ∈ |RS×G

+ | 1 ≤ R ≤ Rmax
}

is a non-empty compact convex subset of |RS×G. For ν ∈ ∆H and R = (R1, . . . , RS×G) � 0,

let Θ(ν, R) be defined by the equation (obtained by summing the agents’ budget equations)

∑

η∈S×G

[I − δB]η0ηΦη(ν, Rη)
( ∑

h∈H

ch
η(ν, Rη)

)Rη − 1

Rη
+ Φη0(ν, Rη0)(Θ − W0) = 0 (45)
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Θ(ν, R) is the present value of the taxes needed to withdraw the government liabilities W0 =
∑

h wh
0 from the private sector when the seignorage revenue is given by the first term in (45).

For each h ∈ H consider the function

ζh (ν, R) =
∑

η∈S×G

[I − δB]η0ηΦη(ν, Rη)

(
ah

η(eh − `h
η(ν, Rη))

Rη
− ch

η(ν, Rη)

)
+ Φη0(ν, Rη0)(w

h
0 − γhΘ(ν, R))

which gives the excess of the present value of income over consumption for agent h when the

vector of weights is ν and the vector of returns is R. Given the definition of Θ(ν, R), for all

ν ∈ ∆H and R � 0,
∑

h∈H ζh(ν, R) = 0.

Consider the map Ψ: ∆H × K → |RH × |RS×G defined by

Ψh(ν, R) =
νh + max{ζh(ν, R), 0}

1 +
∑

h′∈H

max{ζh′
(ν, R), 0}

, h ∈ H

Ψη(ν, R) = Φ̃−1
η


ν, δ

∑

η′∈S×G

Bηη′

1 + πη′
Φη′(ν, Rη′)


 , η ∈ S × G

(46)

where Φ̃−1
η (ν, ·) denotes the inverse of the decreasing function R → Φ̃η(ν, R). Ψh increases

the weight of agent h when the present value of his income exceeds the present value of his

consumption, and decreases it otherwise. Ψη gives the return on the short term bond in state

η which is such that the marginal cost of one unit of the bond is equal to its marginal benefit,

when the vector of marginal utilities next period is (Φη′(ν, Rη′))η′∈S×G . Since the function

R → Φη(ν, R) is increasing and limR→0 Φ̃η(ν, R) = ∞, by (1) of Proposition 14

lim
R→∞

Φ̃η(ν, R) < δ
∑

η′∈S×G

Bηη′

1 + πη′
Φη′(ν, 1) ≤ δ

∑

η′∈S×G

Bηη′

1 + πη′
Φη′(ν, Rη′) < lim

R→0
Φ̃η(ν, R)

so that δ
∑

η′∈S×G

Bηη′

1 + πη′
Φη′(ν, Rη′) is in the image of the function R → Φ̃η(ν, R) and Ψη(ν, R)

is well defined. By construction (Ψh(ν, R))h∈H is in ∆H . To show that (Ψη(ν, R))η∈S×G is in

K, note that

δ
∑

η′∈S×G

Bηη′

1 + πη′
Φη′(ν, Rη′) ≤ δ

∑

η′∈S×G

Bηη′

1 + πη′
Φη′(ν, Rmax

η′ ) =
Φη(ν, 1)

Rmin
η (ν)

≤ Φ̃η(ν, 1) (47)

where the equality comes from the definition of Rmin
η (ν), and the last inequality comes from

(2) of Proposition 14 and the fact that Φη(ν, 1) = Φ̃η(ν, 1) for all ν ∈ ∆H . Since Φ̃−1
η (ν, ·) is
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decreasing, (47) implies

Ψη(ν, R) = Φ̃−1
η


ν, δ

∑

η′∈S×G

Bηη′

1 + πη′
Φη′(ν, Rη′)


 ≥ Φ̃−1

η (ν, Φ̃η(ν, 1)) = 1

so that Ψη(ν, R) ≥ 1, for all η ∈ S × G. Thus Ψ is a continuous map from ∆H × K into itself

and, by Brouwer’s Theorem, has a fixed point (ν̄, R̄). Let

q̄1
η =

1

R̄η

, x̄h
η = (ch

η(ν̄, R̄η), `
h
η(ν̄, R̄η)), h ∈ H, Φ̄η = Φη(ν̄, R̄η), , η ∈ S×G, Θ̄ = Θ(ν̄, R̄)

and let the prices of bonds of maturities τ = 2, . . . , T be calculated recursively using equations

(b1) in Proposition 12. Let us show that ((B, q̄, Θ̄), (ν̄, x̄, Φ̄)) is a reduced-form equilibrium.

From the construction of the functions (ch, `h) in Lemma 13 and by the fixed-point property

of R̄ in K, the equations (a1)-(a3), (b1)-(b2) of Proposition 12 are satisfied and it suffices to

show that the budget equations (a4) hold.

Since
∑

h∈H ζh(ν̄, R̄) = 0, if ζh(ν̄, R̄) 6= 0 for some agent. then there is one agent for which

the value of excess income is strictly positive and
∑

h∈H max{ζh(ν̄, R̄), 0} > 0, and there is

another agent h′ such that ζh′
(ν̄, R̄) < 0. For this agent the fixed point property

ν̄h′
(1 +

∑

h∈H

max{ζh(ν̄, R̄), 0}) = ν̄h′

implies ν̄h′
= 0. This in turn implies (ch′

η (ν̄, R̄η), `
h′

η (ν̄, R̄η)) = 0 for all η ∈ S × G, so that

ζh′
(ν̄, R̄) =

∑

η∈S×G

[I − δB]η0η Φ̄η

ah
ηeh

R̄η
− Φ̄η0(γ

h′
Θ̄ − wh′

0 )

If γh′
Θ̄ − wh′

0 ≤ 0 then it is not possible that ζh′
< 0. If γh′

Θ̄ − wh′

0 > 0, then since Φ̃ is

decreasing and Φ is increasing

ζh′
(ν̄, R̄) ≥

∑

η∈S×G

[I − δB]η0ηΦη(ν̄, Rmax
η )

ah
ηeh

Rmax
η

− Φη0(ν̄, Rmax
η0

)(γh′
Θ̄ − wh′

0 ) > 0

by (3) of Proposition 14, contradicting the assumption ζh′
(ν̄, R̄) < 0. Thus ζh(ν̄, R̄) = 0 for

all h ∈ H and (a4) holds. 2
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