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Abstract This paper studies a simple monetary model with a Ricardian fiscal policy
in which equilibria are indeterminate if monetary policy consists solely of a rule for
fixing the short-term interest rate. We introduce explicitly into the model the agents’
expectations of inflation which create the indeterminacy and show that there are two
types of policies—a term structure rule or a forward guidance rule for the short rate—
which lead to determinacy. The first consists in fixing the interest rates on a family
of bonds of different maturities as function of realized inflation; the second consists
in fixing the short-term interest rate and the expected values of the short-term interest
rate for a sequence of periods into the future as a function of realized inflation. If the
monetary authority chooses an inflation process that satisfies conditions derived in the
paper and applies one of these rules, it anchors agents’ expectations to this process,
in the sense that it is the unique inflation process compatible with equilibrium when
the interest rates or expected future values of the short rate are those specified by the
term structure or forward guidance rule.
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1 Introduction

The possible indeterminacy of inflation expectations in forward-looking rational
expectations models over an open-ended future when a monetary authority uses an
interest rate rule was first raised by Sargent and Wallace (1975). The price level today
depends on agents’ consumption-savings decisions, and these in turn depend on their
anticipations of the price level in the future: this induces a forward-looking dynamics
which, if not tied down by a condition at infinity, has a continuum of possible solutions.
Whether or not a transversality condition ties down the equilibrium depends on the
assumption on fiscal policy. If the fiscal policy always adapts itself to the level of the
government’s debt to ensure that the debt does not grow faster than the interest rate—a
policy which Sargent (1982) referred to as a Ricardian policy—then the transversality
condition does not tie down a unique path since every path automatically satisfies the
transversality condition, and there is a continuum of equilibria.

An extensive literature subsequently emerged1, which studies indeterminacy of
equilibrium models with Ricardian fiscal policy. Much of the literature is based on
a local analysis around a steady state of an underlying nonlinear system: such an
analysis only gives a valid approximation to the nonlinear system for paths that stay
in a neighborhood of the steady state. In standard New Keynesian models, an active
monetary policy, by which the short-term nominal interest rate is raised by more than
the increase in inflation, leads to a unique path of the linearized system which stays
close to the steady state, and this approximate equilibrium is selected as the basis
for policy analysis (see Woodford 2003). However, while using a local analysis with
active monetary policy selects an equilibrium, it does not eliminate the existence of
other equilibria.2

It thus seems worthwhile to explore alternative approaches by which monetary
policy can lead to determinacy of equilibrium. The anticipatory mechanism creating
multiple equilibria—namely that the consumption-savings decision today that creates
current inflation depends on agents’ expectations of inflation in the future—makes
clear that the many different equilibria arise from the many different self-fulfilling
beliefs regarding future inflation. Our approach consists in modeling explicitly the
expectations of inflation which can be self-fulfilling and asks whether a monetary
authority can determine a unique equilibrium by choosing a specific expectations
process and, by a suitable choice of its monetary policy instruments or procedures, can

1 For a non-exhaustive list of references, see McCallum (1981, 1983, 2003), Leeper (1991), King (2000),
Woodford (2003), Walsh (2003).
2 A series of papers (Schmitt-Grohé and Uribe 2000; Benhabib et al. 2001a,b) have pointed out that the
local determinacy result with an active monetary policy is sensitive to the way preferences and technology
are modeled and that the nonlinear system of equations describing equilibrium can give rise to a continuum
of equilibria although there is local determinacy around a particular steady state.

123



Term structure and forward guidance 3

make this process the only possible expectations process compatible with equilibrium:
when this is possible, we say that the monetary authority can anchor agents’ expec-
tations of inflation. If the sole instrument of the monetary authority is the short-term
nominal interest rate, then it can only tie down the mean of the probability distribution
of the inflation rates next period. Since there are many probability distributions with
the same mean, agents’ expectations of inflation are indeterminate, and to tie down
the full probability distribution, more instruments are required.

We study two types of policy instruments or procedures for anchoring agents’ expec-
tations. The first consists in extending the traditional policy of fixing the short-term
interest rate to a policy of fixing the interest rates (yields to maturity) on government
bonds of several maturities, which we call a generalized interest rate rule or a term
structure rule. Analyzing the expectations processes that can be anchored by such a
rule, we show that it is not possible to anchor expectations that inflation will always be
at target or will return immediately to target if there is a deviation, even if the real side
is deterministic. More generally i.i.d. expectations cannot be anchored. As McCallum
(1981) pointed out, reducing indeterminacy of equilibrium requires using feedback
rules. The interest rate rules compatible with i.i.d. expectations are constant and hence
do not provide the requisite feedback. Thus, expectations must vary systematically
with inflation which, as we shall see, amounts to permitting some permanence in the
inflation expectations process.

The second type of policy consists of a forward guidance rule for the future short-
term interest rate: such a rule associates with each possible current inflation rate, the
short-term interest rate, and the future short-term interest rate which is expected to
prevail for a sequence of T periods into the future: we call this a forward guidance
rule or an expected future interest rate rule. From a mathematical point of view, this
type of rule is approximately equivalent to a term structure rule, since modulo a term
premium, long-term interest rates are averages of expected future short-term rates.3

Analyzing expectations that can be anchored by such a forward guidance rule leads
to essentially the same conclusions as those obtained with a term structure rule.

Interestingly, the above two approaches, which are naturally suggested by the the-
oretical model, are closely related to recent innovations in monetary policy by the
Federal Reserve and other central banks: quantitative easing, which seeks to influence
the long-term bond prices and forward guidance on (communication of) the expected
path of the future short-term policy rate (Bernanke 2011).

An important motivation for the present paper was the analysis of Nakajima and
Polemarchakis (2005) (NP), which analyzes the indeterminacy of monetary equilib-
rium with a Ricardian fiscal policy and a short-term interest rate rule for the monetary
authority, using the methods of general equilibrium theory. As in equilibrium theory,
they count the “degree of indeterminacy” of equilibrium.4 Adao et al. (2010) noted

3 The importance of the mutual dependence between the long-term interest rates and agents’ expectations
of future short-term rates has been emphasized by Goodfriend (1991, 1993, 1998). Goodfriend notes that the
term structure can be used by the monetary authority to discover the private sector’s expectations of future
inflation and future short-term rates. In essence, we reverse this logic and assume that the monetary authority
fixes either the term structure or the future expected short-term rates to anchor agents’ expectations.
4 The method was introduced by Balasko and Cass (1989) and Geanakoplos and Mas-Colell (1989).
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that in the NP model with S exogenous “states of nature” at each date, fixing the prices
of bonds of S maturities could determine the equilibrium. Our model differs from the
model in these two papers in the way uncertainty is modeled. Instead of taking as
primitive a set of states of nature with fixed probabilities on which agents base their
actions and the monetary authority bases its policy,5 we take as primitive the possible
inflation rates which can be realized and assume that the monetary authority bases
its policy and the agents base their actions on these observable inflation rates. The
probability distribution on the inflation rates is the endogenous variable determined in
equilibrium. In spirit, our model is an endogenous probability version of a “sunspot”
model, which is alternative to the model of Cass and Shell (1983) which models
sunspots as primitive states of nature. Our approach has the advantage that it allows
monetary policy to be made a function of a simple observable variable—the realized
inflation—rather than a function of the myriad contingencies both fundamental and
“sunspot” which may serve to explain the realized inflation.

The paper is organized as follows. Section 2 presents the simplest deterministic
economy with a cash-in-advance constraint and studies the determinacy of equilib-
rium, showing uniqueness with a non-Ricardian fiscal policy and one degree of inde-
terminacy with a Ricardian policy. Section 3 shows that with a Ricardian policy, the
degree of indeterminacy increases when stochastic expectations are taken into account.
Introducing an explicit model of expectations of inflation, we give conditions under
which a term structure rule leads to determinacy. Section 4 studies the alternative
monetary policy—a forward guidance rule for the short rate—which, under appro-
priate conditions, also leads to determinacy. Section 5 shows how the analysis of the
previous sections can be extended to a production economy subject to real shocks,
and in Sect. 6, we show how the analysis can be applied to model a policy of inflation
targeting when monetary policy consists either of a term structure rule or a forward
guidance rule for the short rate. Section 7 concludes.

2 Deterministic exchange economy

We begin with the simplest model of an exchange economy with a representative agent
and a monetary–fiscal authority financing an exogenously given debt inherited from the
past and examine whether the monetary authority can tie down the price level, i.e., the
purchasing power of money. Although in an exchange economy with a representative
agent nominal variables do not have a real effect, as is standard in monetary theory we
study the determinacy of equilibrium in the exchange model and then check that the
properties obtained extend to more general models in which the nominal interest rate
and /or inflation has a real effect on output. Consider therefore a simple deterministic
exchange economy with a (composite) good and a representative agent. The agent has
a constant endowment stream (e0, e1, . . . et , . . .) = (e, e, . . . , e, . . .) and additively
separable preferences

5 For a discussion of the conceptual difficulties raised by seeking to make monetary policy a function of
states of nature see Drèze and Polemarchakis (2001).
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Term structure and forward guidance 5

U (c0, c1, . . . , ct , . . .) =
∞∑

t=0

δt u(ct ), (1)

over consumption streams (c0, c1, . . . , ct , . . .), with ct ∈ R+. Money must be used
to buy consumption ct , with the usual timing of the cash-in-advance (CIA) model:
an agent cannot directly consume his endowment but must use money to buy his
consumption from another agent: the money obtained from the sale of his endowment
is obtained after the opportunity to purchase consumption goods and so must be carried
into the next period. There is a monetary authority which can increase or decrease the
amount of money in circulation in the private sector by buying or issuing one-period
nominal bonds; there is also a fiscal authority which imposes taxes to be paid in money
(or makes transfers to the private sector). For simplicity we omit government expenses
and assume that the government has a debt at date 0 to the private sector inherited
from the past. The evolution of the government debt as a function of the monetary and
fiscal (tax) policy is what distinguishes a Ricardian from a non-Ricardian policy.

The timing of the transactions (which allows us to follow how money is exchanged
for goods and assets) is such that financial markets open at the beginning of each
period and agents pay taxes, then agents buy goods with their money balances and
finally at the end of the period receive money from the sale of their endowment. This
gives them money balances which they transfer to the next period. Let zt denote the
amount of the one-period government bond purchased by the representative agent in
period t and let qt = 1

1+rt
denote its price, where rt is the nominal interest rate in

period t . The agent pays θt in taxes (if θt > 0) or receives a transfer (if θt < 0). Let
pt denote the dollar price of one unit of the good in period t , then m̃t =pt ct units of
money must be kept to purchase the amount ct of the good for consumption in period
t . The money balances mt = pt e earned from the sale of the endowment in period t
must then be carried over into the next period t + 1. Focusing on a setting where the
nominal interest rate is always positive, the agent’s transactions and money holdings
in period t must satisfy

⎧
⎨

⎩

m̃t + θt + qt zt = mt−1 + zt−1, t = 0, 1, . . .

pt ct = m̃t

mt = pt e

which can be summarized as

pt ct + θt + qt zt = pt−1e + zt−1, t = 0, 1, . . . , (2)

with (p−1, z−1) or equivalently (m−1, z−1) being exogenously given. The agent is
to make a sequence of consumption–portfolio choices (ct , zt )t≥0 which maximizes
(1) subject to (2). The date t budget constraint induces a multiplier λt , which is the
marginal utility at date 0 of (a promise to deliver) one dollar at date t . The necessary and
sufficient conditions for a consumption–portfolio sequence to maximize (1) subject
to (2) are given by
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6 M. Magill, M. Quinzii

δt u′(ct ) = λt pt , t = 0, 1, . . . (3)

λt qt = λt+1, t = 0, 1, . . . (4)

lim
T →∞

(
λT

λ0

)
qT zT = 0, (5)

Equation (3) is the FOC for ct and defines λt ; (4) is the FOC for zt expressing equality
of the marginal cost and marginal benefit of an additional unit of the bond; (5) expresses
the transversality condition—an asymptotic property of the agent’s portfolio asserting
that the agent does not allow himself to be a lender, nor seeks to be a borrower, at
infinity. For the government, we do not assign a specific objective function, but rather
focus on the feasibility of monetary–fiscal policies and their consequences for the
determinacy of equilibrium. In period t , the government chooses the price of the bond
qt , the taxes θt , the amount Zt of the bond to issue, and the quantity of money Mt

subject to its budget equation

Mt − Mt−1 + θt + qt Zt = Zt−1, t = 0, 1, . . . ,

with M−1 + Z−1 denoting its initial liabilities, where Z−1 = z−1 and M−1 = m−1.
Thus the government can increase the money supply, use taxes or issue debt to pay
off the debt Zt−1 inherited from t − 1. Equilibrium on the goods market, bond, and
money markets requires

ct = e, Zt = zt , Mt = mt , t = 0, 1, . . . .

Since the monetary authority that fixes the interest rate must accommodate the private
sector’s demand for money and bonds, the equilibrium conditions Zt = zt and Mt =
mt are automatically satisfied.

Equations (3) and (4) imply that at equilibrium

qt = δt+1u′(ct+1)

pt+1

pt

δt u′(ct )
= δ

1 + πt+1
,

since ct = e, where πt+1 = pt+1
pt

− 1 is the inflation rate in period t + 1. Thus the
constant consumption stream implies that the Fisher relation takes the form

1

1 + rt
= qt = δ

1 + πt+1
. (6)

If the monetary authority fixes (q0, . . . , qt , . . .) or equivalently the interest rates
(r0, . . . , rt , . . .), then the inflation rates (π1, . . . , πt+1, . . .) are determined so that
p1 = (1 + π1)p0, . . . , pt = (1 + π1) . . . (1 + πt )p0. But is p0 determined? This
depends on the fiscal policy and there are two cases.

Case I Taxes do not adjust to the current nominal government debt. The interpretation
usually given is that the rate at which output is taxed is exogenously given. The real
tax τt is some given proportion βt of real output τt = βt e, 0 < βt < 1 and the nominal
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Term structure and forward guidance 7

tax is θt = ptτt for all t = 0, 1, . . .. We discuss this case assuming that θt = ptβt e
for all t ≥ 0.

If the Fisher relation (6) holds, then the consumption stream ct = e for all t ≥ 0
satisfies the FOC (3) and (4) for all sequences of multipliers (λt )t≥0 such that

u′(e) = λ0 p0, λt = λt−1qt−1, t ≥ 1.

Since as we have seen the equilibrium conditions on money and bonds are auto-
matically satisfied, restrictions additional to the market-clearing conditions ct = e
and the Fisher relation (6) to determine an equilibrium can only come from the budget
equations (2) and the transversality condition (5). The Eq. (2) can be used sequentially,
beginning with t = 0, to determine the equilibrium portfolio (zt )t≥0. A particularly
simple case, which illustrates the general property, occurs when the monetary authority
chooses a constant nominal interest rate

rt = r, t ≥ 0, δ(1 + r) = 1, (7)

so that πt+1 = 0, t ≥ 0. Thus, the nominal interest rate is equal to the real interest rate
and there is no inflation. Multiplying the budget equation (2) at date t by qt (where
q = 1

1+r ) and noting that since there is no inflation (pt − pt−1)e = 0 gives the
sequence of present values

p0e + θ0 + qz0 = z−1 + m−1

qθ1 + q2z1 = qz0

q2θ2 + q3z2 = q2z1
. . .

qtθt + qt+1zt = qt zt−1

. . .

which when summed to date T implies

T∑

t=0

qtθt + qT +1zT = z−1 + m−1 − p0e.

Since by (4),
λT
λ0

= qT = 1
(1+r)T and since θt = ptβt e = p0βt e

λT

λ0

qzT = qzT

(1 + r)T
= m−1 + z−1 − p0e

(
1 +

T∑

t=0

βt

(1 + r)t

)
.

Thus, the transversality condition (5) implies that the only value of p0 for which

there is an equilibrium is given by p0 = m−1 + z−1

(1 +∑∞
t=0

βt
(1+r)t )e

: the price level p0 at

date 0 equates the present value of the infinite stream of future real taxes to the total
current real liabilities (m−1 + z−1)/p0 of the government. A tax policy that takes
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8 M. Magill, M. Quinzii

the infinite stream (τt )t≥0 of future real taxes as exogenously given is referred to as
a non-Ricardian tax policy, and this approach to determining the price level is often
called the fiscal theory of the price level.6

Case II Taxes are adjusted to accommodate the current nominal government debt.
The idea is that tax policy prevents government debt from growing indefinitely in the
manner of a Ponzi scheme. A simple way of implementing such a tax policy—which
captures the essential elements of the general setting—is to set θt = αZt−1, with
0 < α < 1 so that taxes in period t are used to pay back a fraction α of the debt Zt−1
carried into the current period.

To compare the outcome obtained in this case with the outcome in Case I, we
continue to assume that the monetary authority sets the nominal interest rate equal to
the real interest rate [as in (7)] so that inflation is zero in every period: πt+1 = 0, t ≥
0. Once again the equations that determine the equilibrium are the market-clearing
equations ct = e for all t , the Fisher relation (6), to which are added the budget
equations (2) and the transversality condition (5). As before the budget equations
(2) can be used recursively, beginning with t = 0, to calculate the agents’ portfolio
(zt )t≥0. Market clearing and zero inflation imply (pt − pt−1)e = 0; this combined
with the tax policy θt = αt Zt−1 and Zt = zt implies that the date t budget equation
(2) for t ≥ 1 reduces to

zt

1 + r
+ αzt−1 = zt−1 ⇐⇒ zt = (1 − α)(1 + r)zt−1.

Thus zT = (1 − α)T (1 + r)T z0 so that the transversality condition (5)

lim
T →∞

(
λT

λ0

)
qzT = zT

(1 + r)T +1 = (1 − α)T z0

1 + r
→ 0,

it is satisfied for any z0. Any pair (p0, z0) satisfying the date 0 budget equation

p0e + qz0 = M−1 + (1 − α)Z−1,

gives an equilibrium. Since the transversality condition is automatically satisfied for
any z0, the price level p0 indeterminate. Thus in Case II, equilibrium prices (pt )t≥0 =
(p0, p0, . . .) are indeterminate.

When Case II holds—tax policy always ensures that the government’s debt does
not grow indefinitely like a Ponzi scheme—fiscal policy is said to be Ricardian. A
Ricardian policy formalizes the idea of a responsible government whose fiscal policy
does not let the debt grow without bound, and it provides the reference case for much
of monetary theory. This is the case we study in this paper.

6 There is an extensive literature in monetary theory discussing assumptions on fiscal and monetary gov-
ernment policies and their consequence for the determination of the price level: see in particular Sargent and
Wallace (1981), Leeper (1991), Sims (1994), Woodford (1994), Woodford (1995), and Cochrane (2001).
For a general equilibrium model with Ricardian policy and determinate equilibria see Dubey and Geanako-
plos (2006). Bloise et al. (2005) show that the determinacy result with a non-Ricardian policy may not be
robust to slight modifications of the assumed underlying fiscal policy.
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Term structure and forward guidance 9

As shown in the two cases studied above, given a sequence of consumption satisfy-
ing the market-clearing equations and a sequence of prices, there is always a portfolio
strategy which solves the budget equations (2). Since the portfolio of the government
is the mirror image of that of the representative agent, a Ricardian policy implies that
such a portfolio strategy necessarily satisfies the transversality condition. Thus, the
equations that determine the equilibrium reduce to the market-clearing equations for
goods, ct = et and the Fisher relation qt = δ

1+πt+1
at each date t ≥ 0. Given a Ricar-

dian rule, all the other variables can be recovered as a function of p0. The property that
in a Ricardian equilibrium, the equilibrium equations reduce to the market-clearing
equation and the Fisher relation continues to hold when the equilibrium prices are
stochastic, as we show in the next section.

3 Stochastic equilibria and term structure rule

In the deterministic model, the difference between a Ricardian and a non-Ricardian
policy may appear trivial—after all when the monetary authority sets the nominal
interest rate it does tie down inflation [that is the content of the Fisher equation (6)]: all
that is missing is the determination of the initial price level p0. However, this apparently
innocent indeterminacy opens the door to a much more pervasive indeterminacy of
agents’ beliefs regarding the future course of inflation, which arises when fiscal policy
is Ricardian, but does not arise when the policy is non-Ricardian.

To see this consider the same economy as in the previous section with the same mon-
etary policy which consists of setting the nominal interest rate equal to the real interest
rate, rt = r = 1

δ
− 1, and the same Ricardian fiscal policy θt = αZt−1.7 Suppose, for

example, that agents have come to have beliefs at each date t that inflation next period
can take one of the three values {πl , πm, πh} with probabilities {Bl , Bm, Bh}, which
are consistent with the nominal interest rate rule of the monetary authority

1

1 + r
= δ

[
Bl

1 + πl
+ Bm

1 + πm
+ Bh

1 + πh

]
⇐⇒ Bl

1 + πl
+ Bm

1 + πm
+ Bh

1 + πh
= 1,

(8)

so that the expected purchasing power of money next period is the same as today.
Equation (8) is the Fisher equation for economy in which ct = e at every date, and
agents are uncertain about the purchasing power of money next period. Since the
market clearing and the Fisher equation at each date characterize an equilibrium, there
exists a stochastic equilibrium in which consumption is constant and inflation follows
an i.i.d. process taking the values {πl , πm, πh} with probabilities {Bl , Bm, Bh} in which
agents’ expectations are self-fulfilling. Since any beliefs satisfying (8) generate an
equilibrium, there is a continuum of equilibria in which the interest rate rule no longer
determines the inflation process.

7 It is less immediate to check that the transversality condition is satisfied in the stochastic case (see Magill
and Quinzii 2013).
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10 M. Magill, M. Quinzii

Suppose the central bank recognizes that there are many stochastic equilibria asso-
ciated with any short-term interest rate rule it may choose, since the short-term interest
rate ties down expected inflation next period, but leaves undetermined all other char-
acteristics (moments) of the probability distribution characterizing agents’ beliefs. To
tie down these probability distributions, i.e., to really anchor agents’ expectations,
more instruments will be needed. Our goal is to study the stochastic processes of
beliefs which can be induced as agents’ expectations if the central bank can control
a sufficient number of instruments, which, in this section, we take to be the prices of
nominal government bonds of different maturities.

We present a framework in which the different stochastic equilibria can be para-
meterized by probability distributions, or more precisely by Markov processes on the
space of possible inflation rates. The idea is that agents’ beliefs about the future course
of inflation and the price that they are willing to pay for government bonds of different
maturities are intimately related, so that if the central bank can control the prices of
the bonds, then it can influence agents’ expectations when these expectations are a
priori indeterminate.

The monetary authority is assumed to choose an inflation process B that it wants to
induce agents in the private sector to adopt as their beliefs. To simplify the analysis,
the process is taken to be Markovian, so that the beliefs about inflation next period
only depend on current realized inflation. The instruments that the monetary authority
uses to direct agents’ expectations are the prices, or equivalently the yields to maturity
(interest rates) on a family of bonds of maturities 1, . . . , T . Thus, for each inflation
rate π , the monetary authority chooses the interest rates r(π) = (r1(π), . . . , r T (π))

that are equilibrium interest rates when the inflation process is B. It then adopts r(π)

as its rule for fixing the interest rates when the current inflation is π . The question that
we study is the following: When is this generalized interest rate rule compatible with
only one inflation process (which then necessarily must be B) so that there is a unique
self-fulfilling equilibrium associated with the monetary policy r(π) and a Ricardian
fiscal policy? When there is only one inflation process associated with r(π), we say
that the beliefs B are anchored by the generalized interest rate rule.

To obtain such a uniqueness result, we consider Markov processes on a finite set
of inflation rates. Such processes may be considered as discrete approximations of
processes with continuous support as shown in Fig. 1. Thus, at each date, agents’
beliefs about inflation next period, which are characterized by a probability distribution
conditional on current inflation, are approximated by a discrete probability distribution
on a finite set 	 = {π1, . . . , πS}. A Markov process of beliefs is then represented by
a Markov matrix B = [Bss′ ]s,s′∈S where Bss′ is the probability that inflation is (lies in
the interval summarized by) πs′ next period when current inflation is πs . To express
the idea that agents can have beliefs that express genuine uncertainty about next period
inflation, we assume S > 1.

Figure 1 shows a distribution on an infinite support where the upper and lower end
points of the discrete approximation represent the two unbounded tails of the distribu-
tion. In a Ricardian framework of the type we consider, where the generalized interest
rate rule is typically made to drive expectations toward an inflation target (see Sect. 6),
there are no forces at work to cause unbounded inflation or deflation. Thus, there is
no loss of generality in restricting agents’ expectations to be on a bounded interval.
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Term structure and forward guidance 11

Fig. 1 Approximating a continuous random variable by a discrete random variable: the support of the
density function is partitioned into a finite number of intervals and each interval is represented by a value
(typically the midpoint, except at the tails where the interval may be infinite) to which is assigned the
probability that the random variable lies in the corresponding interval. The finer the partition and the
slimmer the tail, the better the approximation

The model that we present is different from the model which is usually adopted
to study the role that agents’ expectations play in an equilibrium model, namely the
sunspot model. Such a model takes as given a probability space (
,P) consisting of
the set 
 of “sunspot states” which can occur with exogenously given probabilities
P(ω), the discretization being made at this level since the set 
 is usually taken to be
finite. These sunspot states do not influence the characteristics of the economy—the
agents’ Bernoulli utility index u, their endowments e, and the technology when there
is production—but agents believe that the equilibrium variables (prices and quantities)
depend on the sunspot states—and their beliefs turn out to be self-fulfilling. Trying
to implement a monetary policy that leads to determinacy of equilibrium in such a
setting would be difficult since the monetary policy would need to depend on the
sunspot states and such states, which represent all possible causal factors which can
influence agents’ beliefs, would be numerous and difficult to identify. For this reason,
we explore a different approach, expressing agents’ beliefs by probability distributions
on the possible inflation rates that can be realized: monetary policy can then be made
a function of observable realized inflation rate and agents’ probability assessments
become the endogenous variables that can be influenced by monetary policy.

To study the uniqueness of equilibrium, we extend the model of Sect. 2 to incorpo-
rate agents’ uncertainty about future inflation, summarized by the Markov matrix B.
As before we assume that the representative agent has a constant endowment stream.
The utility function is now

E B
∞∑

t=0

δt u(ct ),

where B is the stochastic process for inflation. The uncertainty about the purchasing
power of money gives a role for bonds of different maturities for spanning purposes so
we assume that government bonds of maturities τ = 1, . . . , T can be traded, denoting
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12 M. Magill, M. Quinzii

by qτ
t the (random) price at date t of the bond of maturity τ . Let qt = (q1

t , . . . , qT
t )

denote the vector of bond prices at date t . We assume that all bonds are zero-coupon
bonds so that the payoff at date t + 1 of a bond of maturity τ purchased at date t is
qτ−1

t+1 , i.e., the price of a (τ − 1)-bond next period. Let q̂t+1 = (1, q1
t+1, . . . , qT −1

t+1 )

denote the vector of payoffs of the bonds at date t + 1. The agent now chooses a
portfolio zt = (z1

t , . . . , zT
t ) of the bonds at each date, and the date t budget equation

(2) of Sect. 2 becomes

pt ct + θt + qt zt = pt−1e + q̂t zt−1. (9)

Eliminating the multipliers induced by the budget constraints (9), the first-order con-
ditions for the agent’s choice of consumption and portfolio become

qτ
t = E B

t

(
δ

u′(ct+1)

u′(ct )

qτ−1
t+1

1 + πt+1

)
, τ = 1, . . . , T, t = 0, 1, . . . , (10)

with the transversality condition at each date t, E B
t �t ′

t qt ′ zt ′ → 0, as t ′ → ∞ where

�t ′
t =

t ′−1∏

τ=t

( 1

1 + rτ

)
, (11)

is the present value at date t of a promise to pay one dollar at date t ′.
The government acts in a way similar to that in Sect. 2 except that now instead

of choosing the short-term bond price (interest rate) it chooses the prices qt =
(q1

t , . . . , qT
t ) of a family of bonds of maturities τ = 1, . . . , T at each date, accom-

modating the private sector demand by issuing appropriate amounts of money Mt and
a portfolio Zt = (Z1

t , . . . , Z T
t ) of the bonds. Its overall policy (qt , Mt , Zt , θt ) must

satisfy the budget equation

Mt + θt + qt Zt = Mt−1 + q̂t Zt−1, t = 0, 1, . . . , (12)

at each date. In addition, we assume that the fiscal policy is Ricardian in the sense
that for all t, E B

t �t ′
t qt ′ Zt ′ → 0 as t ′ → ∞, where �t ′

t is given by (11). As before the
market-clearing conditions are given by

ct = e, Zt = zt , Mt = pt ct , t = 0, 1, . . . , (13)

where the latter two equations express the fact that the government’s issues of money
and bonds must accommodate private sector demand. When (13) is satisfied, the rep-
resentative agent’s budget constraint is the mirror image of that of the government, and
since the transversality condition is automatically satisfied for the government, it also
holds for the representative agent. Thus, the equations that determine an equilibrium
reduce to the market-clearing equation for the good ct = e for all t ≥ 0, and the FOC’s
for the bonds (10).
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Term structure and forward guidance 13

If the monetary authority is to implement a given Markov process B for inflation
by anchoring agents’ expectations to B, then it must set the prices of the bonds so
as to be commensurate with the representative agent’s FOC’s for the optimal choice
of the portfolio of bonds of maturities τ = 1, . . . , T , for each current inflation rate
s = 1, . . . , S

qτ
s = δ

S∑

s′=1

Bss′

1 + πs′
qτ−1

s′ , s ∈ S, τ = 1, . . . , T , (14)

where we have used the fact that in equilibrium ct = e for all t so that pricing is risk
neutral. If the bond prices satisfy (14), we say that they are compatible with the inflation
process B. Note that fixing the price of a zero-coupon bond of maturity τ is equivalent
to fixing the τ -period interest rate (yield to maturity) since qτ

s = 1/(1 + r τ
s )τ , so that

a generalized interest rate rule that consists in choosing the interest rates as functions
of realized inflation can equivalently be described as a bond pricing rule for choosing
bond prices as functions of current inflation, and the latter is often more convenient in
view of (14).

Suppose the monetary authority seeks to implement the Markov inflation process
B and uses equations (14) to determine its bond pricing rule. Consider all the rational
expectations equilibria, which can be generated by this bond pricing rule. If there is
another Markov matrix B̃ such that

qτ
s = δ

S∑

s′=1

B̃ss′

1 + πs′
qτ−1

s′ , s = 1, . . . , S, τ = 1, . . . , T ,

then the inflation process B̃ with consumption ct = e for all t is another rational
expectations equilibrium associated with the same bond pricing rule. Thus, to obtain
a unique equilibrium8 for the bond pricing rule, we need to be sure that the system
of Eq. (14) viewed as a system of linear equations in the unknowns B = [Bss′ ]s,s′∈S
with fixed coefficients q = [qτ

s ]s∈S,τ=1,...,T (determined by the bond pricing rule) has
a unique solution.

A necessary condition for this is that (14) consists of S × S independent equations,
which implies that the interest rate rule must involve bonds of T = S maturities.9 To
characterize the conditions for independence, let us introduce the notation

Dss′ = δBss′

1 + πs′
, (15)

8 Note that since the prices (pt )≥0 only enter the equations through the inflation rate πt+1, the price p0
is necessarily undetermined. Thus when we define uniqueness of equilibrium and mean uniqueness of the
inflation process, the general price level still being indeterminate.
9 By taking into account the condition B1 = 1 which adds S equations that the coefficients Bss′ , s, s′ ∈ S
must satisfy, one can obtain slightly weaker conditions (requiring one less instrument) than the conditions
(R1), (R2), and (R3) of Propositions 1, 3 and 5. However, since (R1), (R2), and (R3) are easier to interpret,
we have chosen not to use the Markov condition B1 = 1.
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14 M. Magill, M. Quinzii

where Dss′ is the present value in inflation state s of a promise to pay one dollar if
inflation is s′ next period. Equation (14) gives a simple recursive way of calculating the
prices of the bonds as functions of [Dss′ ]s,s′∈S . Since the one-period bond promises
to pay one dollar in every state s′ that can arise next period

q1
s =

S∑

s′=1

Dss′1, s ∈ S. (16)

This gives the price of the one-period bond in each possible state s today. Since a
two-period bond becomes a one-period bond next period, the payoff of the two-period
bond in state s′ is q1

s′ , and the price of the two-period bond when the current state is s
is given by

q2
s =

S∑

s′=1

Dss′ q1
s′ , s ∈ S. (17)

Proceeding recursively in this way, the price of the τ -period bond in state s can be
obtained

qτ
s =

s∑

s′=1

Dss′qτ−1
s′ , s ∈ S, (18)

once the prices qτ−1
s′ of the (τ − 1)-period bond in each state s′ have been calculated.

Writing the pricing Eqs. (16)–(18) in matrix form will quickly reveal the invertibility
condition which must be satisfied in order that there is a unique Markov matrix B which
satisfies (14). Let D denote the S × S matrix of present values defined by (15), let
qτ = (qτ

1 , . . . , qτ
s )′ denote the column vector of prices of the τ -period bond for the

S possible values of current inflation, and let 1 = (1, . . . , 1)′ denote the S-vector of
sure payment of one dollar in each of the possible inflation states next period (i.e.,
the payoff stream promised next period by a one-period bond in any state s). Then
(16)–(18) can be written as

[
q1, q2, . . . , qT

]
= D
[
1, q1, . . . , qT −1

]
. (19)

Viewing (19) as a system of linear equations in [Dss′ ], the solution is unique if and

only if T = S and the matrix
[
1, q1, . . . , qT −1

]
is invertible, or equivalently the

vectors 1, q1, . . . , qT −1 are linearly independent. Since by (15), there is a one-to-one
relation between [Bss′ ] and [Dss′ ], and hence between B and D, the uniqueness of D
is equivalent to the uniqueness of B. Thus, we have shown the following proposition.

Proposition 1 A Markov matrix B represents expectations which can be anchored if
the bond prices of maturities τ = 1, . . . , S − 1 which are compatible with B are such
that the matrix of bond payoffs satisfies
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Term structure and forward guidance 15

rank
[
1, q1, . . . , qT −1

]
= S. (R1)

This result, while established in the simplified setting of a constant endowment-
exchange economy, can (as we show in Sect. 5) be extended to much more general
settings. To understand the restrictions on an inflation expectations process implied
by Proposition 1, we begin by exhibiting some inflation processes which cannot be
anchored. The first and simplest is the expectation that, whatever inflation is today, it
will revert to the steady state π∗ = 0 next period. To see this, consider the example of
Sect. 3 in which the real rate of interest is 2 % (1/δ = 1.02) and there are three possible
inflation rates π1 = −1 %, π2 = −0 %, π3 = 1 %. Suppose the inflation process B
is Markov with Bss′ = 0 if s′ 
= 2, Bss′ = 1 if s′ = 2, which implies that inflation
reverts to 0 after any deviation. Then, the bond prices (interest rates) associated with
B are given by

q1
s = 1

(1 + r1
s )

= δ
∑

s′

Bss′

1 + πs′
= δ

1 + π∗ = δ �⇒ q1
s = δ,

i.e., r1
s = 2 % for s = 1, 2, 3

q2
s = 1

(1 + r2
s )2 = δ

∑

s′

Bss′ q1
s′

1 + πs′
= δ2

1 + π∗ = δ2 �⇒ q2
s = δ2,

i.e., r2
s = 2 % for s = 1, 2, 3

so that the matrix in (R1) is

⎡

⎣
1 δ δ2

1 δ δ2

1 δ δ2

⎤

⎦

which has rank 1 < 3. More generally, any Markov process on a set of inflation
rates π1, . . . , πS which is i.i.d. has identical rows (i.e., Bss′ independent of s) and
hence yields bond prices which are identical across the different inflation states qτ

s =
qτ

s′ , s′ 
= s, so that the rank of the matrix of bond prices in (R1) is one. Thus, fixing
the prices of sufficiently many bonds does not suffice to tie down expectations: the
bond prices must also differ sufficiently across the different inflation states for the rank
condition to be satisfied.

As these examples show, the property that the bond prices q vary sufficiently across
the states for (R1) to be satisfied imposes restrictions on the inflation process B which
the monetary authority can seek to anchor, in particular the restriction that B be non-
trivially Markov, i.e., that the expectations of future inflation depend on the currently
realized inflation. Actually, the next proposition shows that the conditional probabili-
ties of future inflation must differ systematically from one inflation state to another.

Proposition 2 A necessary condition for an expectations matrix B to yield bond prices
satisfying (R1) is that B is invertible.
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16 M. Magill, M. Quinzii

Proof We show that the vectors (1, q1, . . . , qT −1) are in the range of D. For the bond
prices, this is immediate since qτ = Dqτ−1, τ = 1, . . . , T − 1. For the vector 1,
note that B1 = 1 implies D diag[ 1+π

δ
]1 = 1, where diag[ 1+π

δ
] denotes the diagonal

matrix with diagonal elements 1+πs
δ

. Thus, 1 is the image of the vector diag[ 1+π
δ

]1. By
Proposition 1, the vectors (1, q1, . . . , qT −1) are linearly independent and since they
are in the range of D, D must be of rank S. Since D = B diag[ δ

1+π
] and 1 + πs > 0

for all s, D is invertible if and only if B is invertible. �

Proposition 2 leads to an intuitive interpretation of the rank condition (R1) on the

bond prices. Since the matrix of payoffs [1, q1, . . . , qT −1] is invertible and we just
showed that this implies that D is invertible, it follows that when (R1) is satisfied the
matrix of bond prices [ q1, . . . , qT ] is invertible. In order that the rows

[
q1

s , q2
s , . . . , qT

s

]
=
[

1

1 + r1
s
,

1

(1 + r2
s )2 , . . . ,

1

(1 + r T
s )T

]
, s ∈ S,

are linearly independent, the term structure of interest rates rs = (r1
s , r2

s , . . . , r T
s ) must

be systematically different when current inflation s varies. Propositions 1 and 2 show
that what is needed to eliminate indeterminacy is a monetary policy which provides
a feedback rule between inflation and the term structure of interest rates. This result
is in essence a generalization of the idea originally introduced by McCallum (1981)
that a feedback rule can eliminate the indeterminacy of equilibrium first exhibited
by Sargent and Wallace (1975) for Ricardian models. In our model the term structure
of interest rates serves as an instrument for conveying to the agents in the private sector
the inflation process chosen by the monetary authority. To be sufficiently informative,
i.e., to determine a unique process of inflation, the rule must be a true “feedback rule,”
which chooses different term structures of interest rates for different realized inflation
rates. As we have seen, when the term structure is the same for every current inflation
rate, the information is not sufficient.

From the theoretical point of view, our model is a rational expectations model in
which the term structure rule is applied by the government, i.e., the model assumes
commitment on the part of the monetary authority. The advantage of a term structure
rule is that the commitment is immediate to verify—agents can easily check that the
interest rates correspond to the announced rule. Although this may seem to make the
policy too “inflexible,” we show in Sect. 5, where we introduce production and real
shocks, that the rule can be made conditional on the shocks affecting the real side
without requiring more instruments than the number of possible inflation rates (i.e.,
the same number as in this section).

Is such a policy rule of fixing the term structure of interest rates—i.e., the prices of
a fixed number of government bonds as a function of the realized inflation—a policy
rule which would be feasible for a central bank to implement? Translated literally to
the institutional framework in the USA, the model would require changing the way
government bonds are traded: currently, the finance department of the government
(the Treasury) chooses the quantities of bonds of different maturities to auction and
the demand determines the prices in the auction. The model would suggest that the
Treasury sells the bonds of different maturities at the prices chosen by the monetary
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Term structure and forward guidance 17

authority (the Fed), selling the quantities that the “market” wants to buy at these prices.
Taxes then adjust to clear the government budget constraint. It might be difficult to
change the current operating procedure to implement our proposed policy in this way.

An alternative approach, which respects the separation of the monetary and finance
branches of the government, is that the monetary authority participates in the trade on
the bond market, influencing the demand and thus the price of the bonds. This is close
to what has been attempted in several episodes in the USA and other countries and
is now practiced by several central banks (USA, UK) under the label of “quantitative
easing,” policies that “alter the scale and the composition of their balance sheets”
(Bernanke 2011). These policies are still controversial and are typically used with the
goal of influencing real activity through the real interest rate rather than influencing
expectations of inflation as in our model. However, since the way a nominal interest
rate translates into a real interest rate depends on expectations of inflation, directly or
indirectly there is a need to control expectations of inflation.

A concern often expressed is that a monetary policy which consists of fixing the
prices of a given number of bonds and accommodating the demand for these bonds by
the private sector could become “very expensive” if agents did not behave as antici-
pated. This concern sometimes takes the form of asking what happens “out of equilib-
rium.” Note first that our assumption of a Ricardian monetary/fiscal policy implies that
the intertemporal (present-value) budget constraint of the government is satisfied on
any path (qt , Mt , Zt , θt ) satisfying the period-by-period government budget equations
(12). A Ricardian fiscal rule often considered in the literature is defined by

Mt

1 + rt
+ θt = αt (Mt−1 + qt Zt−1), αt < 1,

that is, at each date t , seignorage plus taxes (LHS) reimburse a proportion αt of the
liabilities of the government to the private sector (RHS). Thus, if it happened that at
date t −1 the liabilities have increased, then at date t the taxes would increase. Even if
in practice taxes cannot be adjusted so often or so readily, the fundamental assumption
behind a Ricardian monetary/fiscal policy is that an increase in liabilities would be
followed by a correction by increasing taxes at some subsequent date.

It is actually unlikely that such an increase in taxes would be needed to cover
increased liabilities incurred by implementing the bond pricing policy. Since the bond
prices are consistent with one probability belief (namely the one chosen by the mone-
tary authority), they do not offer arbitrage opportunities (by the fundamental theorem
of finance). Thus if an agent had beliefs about inflation which differ from the one cho-
sen by the monetary authority, he/she could not make a sure gain by playing (investing)
against the government: the agent could at best perceive the possibility of a gain in
expected value. Since there are no arbitrage opportunities, realizing such an expected
gain necessarily involves losses for some realizations. To create problems for the mon-
etary authority, agents anticipating expected gains would have to trade on a large scale
and this would mean that they would have to have “deep pockets” to sustain the pos-
sibility of large losses. Rather than seeking to maintain their own beliefs against those
of the monetary authority, typical Fed watchers are more likely to seek to adapt their
beliefs to those implied by the monetary authority’s bond price policy.
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18 M. Magill, M. Quinzii

In the next section we show that if for institutional or other reasons it is difficult
for a central bank to use a term structure policy, there is an alternative policy—which
we call a forward guidance rule—which can be used to anchor agents’ expectations
of inflation. This policy consists in continuing to use the short-term interest rate and
replacing the prices of long-term bonds as policy instruments by communication of
the path of the expected value of the future short-term interest rates for a sequence of T
periods into the future. To be successful, this policy must be applied in a systematic way
and agents in the private sector must believe in the announcements of the central bank.

4 Forward guidance rule

If a monetary policy based on a term structure of interest rates of the kind outlined
above has not been used until now on a regular basis, most central banks have felt the
need to complement their short-term interest rate policy by a periodic announcement
of the path of future expected short-term interest rates. Central banks that practice
inflation targeting regularly post “fan charts” with the path of expected values for
inflation, the short-term interest rate and output. The Federal Reserve, which follows
an informal (recently made official) policy of inflation targeting, has begun to make
announcements of the path of the expected future short-term rate and is considering
making such announcements a systematic policy. It is instructive to use our model to
compare this practice, which Bernanke (2011) has referred to as “forward guidance
about the future path of policy rates,” with a monetary policy based on a term structure
rule like the one studied in the previous section.

We formalize the policy of announcing the path of the expected future (short-
term) interest rate by a rule which associates with each inflation rate a sequence of
future expected short-term bond prices, which amounts to using the approximation

Et

(
q1

t+τ

)
= Et

(
1

1+r1
t+τ

)
≈ 1− Et (r1

t+τ ). A monetary policy based on a rule for paths

of short-term interest rates is then of the form
(

B,
[
q1

s , Es(q1
τ ), τ = 1, . . . , T

]
s∈S

)

where q1
s is the short-term interest rate (bond price) given current inflation s, Es(q1

τ )

is the expected future short-term interest rate τ periods in the future (given s), for a
sequence of T periods into the future τ = 1, . . . , T . As before, the vector of short-term
bond prices q1 must be compatible with the expectations B

q1
s = δ

∑

s′∈S

Bss′

1 + πs′
, s ∈ S,

as well as the expected prices τ periods ahead

Es(q
1
τ ) =

∑

s′∈S

Bτ
ss′q1

s′ , s ∈ S, τ = 1, . . . , T ,

where Bτ denotes the τ th power of B. Suppose the monetary authority has a policy
(B, q1, (Eτ )τ=1,...,T ) where q1 = (q1

s )s∈S and Eτ = (Eτ
s )s∈S with Eτ

s = Es(q1
τ ). We
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Term structure and forward guidance 19

say that (q1, (Eτ )τ=1,...,T ) anchors B if there is only one Markov matrix B compatible
with (q1, (Eτ )τ=1,...,T ). This is equivalent to requiring that the system of equations

δ
∑

s′∈S

Bss′

1 + πs′
= q1

s , s ∈ S

∑

s′∈S

Bτ
ss′q1

s′ = Eτ
s , s ∈ S, τ = 1, . . . , T , (20)

has a unique solution B = [Bss′ ]s,s′∈S . As written, this system of equations is nonlinear
in B since the coefficients of the matrix Bτ are polynomials of degree τ in Bss′ .
However, given the form of this system of equations, it can be transformed into an
equivalent linear system. Writing the equations in matrix form, i.e., taking all values
s ∈ S simultaneously gives

B
δ

1 + π
= q1, Bq1 = E1, B2q1 = E2, . . . , BT q1 = ET ,

where δ
1+π

is the column vector with components δ
1+πs

, s ∈ S. Substituting Bq1 into

the equations for expectations of bond prices 2 periods ahead gives B E1 = E2; in the
same way, substituting B2q1 for E2 gives B E2 = E3, and by successive substitutions
B Eτ−1 = Eτ . Thus, the nonlinear system of equations (20) is equivalent to the system
of linear equations

B

[
δ

1 + π
, q1, E1, . . . , ET −1

]
=
[
q1, E1, . . . , ET

]
(20′)

If the monetary policy is consistent, then B is a solution of this system of equations.
For B to be the only solution, (20′) must be a system of S × S equations in which the
matrix of coefficients is invertible.

Proposition 3 The Markov expectations matrix B is uniquely determined by a forward
guidance rule (q, E1, . . . , ET ) for the expected future short-term interest rates if
T = S − 1 and

rank

[
δ

1 + π
, q1, E1, . . . , ET −1

]
= S. (R2)

Equation (R2) is slightly different from (R1) in the previous section.10 As we have
seen, i.i.d expectations are never compatible with (R1): however, i.i.d expectations are

10 A knowledge of the term structure of interest rates is equivalent to the knowledge of the associated
family of forward rates. Even with risk neutral pricing as in Sects. 3 and 4, the forward rates differ from the
expected value of the corresponding short-term rates, so that a term structure rule and an expected future
short-rate rule are not equivalent. To see this, let q1

s and q2
s be the prices at date t in inflation state s of the

bonds maturing, respectively, in 1 and 2 periods. Then

123



20 M. Magill, M. Quinzii

compatible with (R2) in the special case S = 2. For then the condition reduces to

det

[
δ

1+π1
q1

1
δ

1+π2
q1

2

]

= 0

and this condition is satisfied by an i.i.d process for which q1
1 = B1

δ
1+π

= q1
2 =

B2
δ

1+π
(with Bs denoting row s of B) provided π1 
= π2. The case S = 2, or a

high/low discrete distribution of inflation rates, seems however too crude to provide a
useful approximate model of inflation expectations. As shown in the next proposition,
this is the only case where i.i.d expectations satisfy condition (R2).

Proposition 4 A necessary condition for B to lead to a path of expected future short-
term interest rates satisfying (R2) is that rank B ≥ S − 1.

Proof The S − 1 vectors q1 = B δ
1+π

, E1 = Bq1, . . . , E S−2 = B E S−3 are in the
range of B and must be linearly independent by (R2). Thus, the range of B must be at
least of dimension S − 1. �


The rank condition (R2) is a little harder to interpret than (R1). As we saw in
the previous section, (R1) implies that B must be invertible and we conjecture that,
generically in the inflation rates (π1, . . . , πs), all invertible matrices B will satisfy
(R1). Condition (R2) only requires that rank B ≥ S − 1 and it is straightforward to
construct examples of matrices B (e.g., 3 × 3) with rank S − 1 which satisfy (R2)
and thus do not satisfy (R1). Interpreting the requirement that the rank of B be at
least S − 1 and that {q1, E1, . . . , E S−2} and δ

1+π
are not linearly dependent is less

immediate. However, the spirit of the conditions in Propositions 1–4 are the same: the
rank condition (R2) requires that the probability distributions for inflation next period
depend in a systematic way on current inflation and that the expected future path of
inflation must be different in the different inflation states in order that at least S − 1
rows

[
1

1+πs
, q1

s , E1
s , . . . , ET

s

]
be linearly independent.

Footnote 10 continued

q2
s = 1

(1 + r1
s )(1 + r f

s )
= Es

(
δq1

t+1

1 + πt+1

)
,

where the first equality is the definition of the forward rate r f
s between periods t + 1 and t + 2, and the

second equality is (14). Since q1
s = Es

(
δ

1+πt+1

)

q2
s = q1

s Es (q
1
t+1) + covs

(
q1

t+1,
δ

1 + πt+1

)
.

Knowing (q1
s , q2

s ) is not equivalent to knowing (q1
s , Es (q1

t+1)) because of the covariance term. In terms of

the forward rate, using the approximation 1
1+r = 1 − r , the relation can be written as

r f
s = Es (r

1
t+1) − covs

(
q1

t+1,
δ

1 + πt+1
/Es

(
δ

1 + πt+1

))
.

.
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The most natural property of the Markov expectations that permits the rank con-
ditions (R1) or (R2) to be satisfied is to allow for some degree of permanence in the
inflation process. If the CB wants to induce expectations that inflation will return to a
target, permanence in the mean-reverting Markov matrix will create inertia, with dif-
ferent paths of expected future inflation, expected future interest rates, and different
term structures of interest rates for different realized inflation rates.

5 Extending model to production economy

In this section, we show how the previous analysis can be extended to more realistic
models of economies in which goods are produced, the technology is affected by real
shocks, and production decisions are affected by the nominal interest rate. To keep
the analysis simple, we do not go all the way to a New Keynesian model, which
has the most realistic description of the feedback between nominal and real variables,
adhering instead to the simpler flexible price model of production introduced by Lucas
and Stokey (1987) and used by Schmitt-Grohé and Uribe (2000) and Nakajima and
Polemarchakis (2005) to study the indeterminacy of equilibrium when monetary–fiscal
policy is Ricardian. This amounts to changing the description of the private sector of
the economy in the following way. Instead of a constant endowment e of the good,
the representative agent has a constant endowment e of labor which is normalized
to e = 1. The consumption good is produced from labor with the constant-returns
technology y = aL , where a is subject to real shocks. Let G = {1, . . . , G} denote
the possible shocks11 and let (ag)g∈G denote the resulting productivities of labor. We
assume that the shocks to productivity are driven by an exogenously given Markov
process with transition matrix A = [Agg′

]
g,g′∈G where the matrix A is known by all

agents in the economy. The assumption of constant returns implies that the structure
of the production sector does not matter—however, we make the standard assumption
of the cash-in-advance model that an agent cannot transform his/her labor into output
but needs to work for a firm and is paid a salary at the end of the period, too late to buy
consumption goods within the period. This timing creates a cash-in-advance constraint
in the purchase of the good. Apart from this change in the way the consumption good
enters the economy (through production rather than as an exogenous endowment), the
model is the same as in the previous sections. We focus on the case where monetary
policy involves fixing the term structure of interest rates, since this is the reference case
of the earlier sections: the analysis can be readily adapted to a policy of announcing
the future path of the expected short-term interest rate.

As in Sect. 2, the representative agent’s transactions on the goods and financial
markets must satisfy sequential budget equations, which here can be written

p0c0 + θ0 + q0z0 = W0

pt ct + θt + qt zt = wt−1Lt−1 + q̂t zt−1, t = 1, 2, . . . , (21)

11 For simplicity, we use the same letter for the number and the set of shocks.
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where W0 = m1 + q̂0z−1 denotes the agent’s inherited wealth at date 0. At each
date the agent gets income wt−1Lt−1 (money carried over from the previous period)
where wt−1 denotes the wage rate and Lt−1 the labor sold in period t − 1. The agent
buys a portfolio zt = (z1

t , . . . , zT
t ) of the bonds of maturities 1, . . . , T at prices

qt = (q1
t , . . . , qT

t ) and receives the income q̂t zt−1 from the portfolio acquired in the
previous period, where q̂t = (1, q1

t , . . . , qT −1
t ) denotes the vector of payoffs of the

bonds purchased at t − 1, which depends on the bond prices at date t .
The agent seeks a sequence of consumption/leisure choices which maximizes

E
∞∑

t=0

δt u(ct , 
t ),

subject to being achievable through labor choices (Lt )t≥0 and portfolio choices zt

satisfying (21). The function u is an increasing, concave, and differentiable function
of current consumption ct and leisure 
t , where 
t = 1−Lt . The expectation E is taken
with respect to the stochastic process of agents’ beliefs. Monetary policy consists in
fixing the prices qt = (q1

t , . . . , qT
t ) of the bonds as a function of the currently realized

inflation and productivity shock (s, g). Current inflation is determined by the amount
qt zt that the agent saves (or borrows) since this determines the amount of money
mt = mt−1 + q̂t zt−1 − qt zt − θt that the agent lays aside to spend on the goods
market. This savings decision in turn depends on the agent’s expectations of future
inflation, future taxes, and future wages, and hence of the future shocks to productivity
since, with constant returns to scale, the wage is equal to productivity: wt+τ = at+τ

for τ ≥ 1.
The setting is now substantially richer than in Sect. 3: agents have to form beliefs

�ηη′ about the transition probabilities from the current inflation–productivity pair
characterized by η = (s, g) to the possible inflation–productivity pairs next period
η′ = (s′, g′), where we retain the assumption that the inflation expectations have a
Markov structure. We assume that the productivity shocks are independent of inflation,
giving the following structure to agents’ expectations:

Assumption MT (Markov transitions) Given the current inflation–productivity
state η = (s, g), the agents’ expectations of inflation–productivity next period are
given by the joint probability distribution

�η,η′ = Bg
ss′ Agg′ , η, η′ ∈ S × G.

Bg is the matrix of expectations of the distributions of inflation rates next period,
which can depend on the current productivity shock g. These expectations are induced
by the monetary authority, which may want to induce differential expectations for
different shocks g in order to use the nominal interest rate to counter the effect of the
productivity shock.12 The transition matrix A for real shocks is exogenously given
and is independent of the realized inflation.

12 The dependence of the expectations process, and thus of the interest rate rule, on the productivity shock
g is the analogue in this model of the term involving the “output gap” in a Taylor rule.
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The role of monetary policy is to anchor agents’ expectations of inflation and
perhaps partially to undo the effect of the productivity shocks on production through
an interest rate policy q. In each period, the government accommodates the agents’
demands for bonds and money by issuing Zt = (Z1

t , . . . , Z T
t ) bonds of maturities

1, . . . , T and setting the money supply Mt in such a way that Zt = zt and Mt =
mt = pt ct . We assume that the fiscal policy is Ricardian, i.e., the choice of taxes θt

ensures that for any policy (Mt , Zt , qt )t≥0, the present value of the government debt
qt Zt tends to zero when t tends to infinity.13

As in Sect. 2, the characterization of equilibrium can be reduced to two collections
of equations

(1) market clearing on the good and the labor markets
(2) first-order conditions for the representative agent and the representative firm.

Explicit market-clearing equations for the bonds and money are not needed since the
government accommodates the demand for bonds and money. Solving the Eq. (21)
from date 0 forward, there always exist portfolios satisfying the budget constraints
(21) for any given consumption and tax processes. The Ricardian policy then implies
that the transversality condition is satisfied. Thus, an equilibrium is characterized by
the equations

(i) ct = at Lt , Lt + 
t = 1, t ≥ 0
(ii) δt uc(ct , 
t ) = λt pt , δt u
(ct , 
t ) = Et (λt+1wt ), wt = at , t ≥ 0

(iii) λt qτ
t = Et (λt+1qτ−1

t+1 ), q0
t+1 = 1, τ = 1, . . . , T, t ≥ 0

where (ii) and (iii) are the first-order conditions for the representative consumer and
firm. Eliminating the multipliers λt and solving (i) as 
t = 1 − ct

at
, these equations

reduce to

(ii)′
uc

(
ct , 1 − ct

at

)

u


(
ct , 1 − ct

at

) = 1 + r1
t

at
, t ≥ 0

(iii)′ uc

(
ct , 1 − ct

at

)
qτ

t = δEt

⎛

⎝
uc

(
ct+1, 1 − ct+1

at+1

)

1 + πt+1
qτ−1

t+1

⎞

⎠ , τ = 1, . . . , T, t ≥ 0

13 For the purpose of this paper, the exact form of the fiscal policy does not matter, as long it is Ricar-
dian. An example of a Ricardian policy which is often considered (Benhabib et al. 2001a; Nakajima and
Polemarchakis 2005) is the following

θt = αMt−1

(
1 + q̂t Zt−1

Mt−1

)
− r1

t Mt

1 + r1
t

, 0 < α < 1.

Since in equilibrium Mt−1 = pt−1 ct−1 is the nominal value of aggregate consumption which is equal to
aggregate output, each period the government raises revenue equal to a fraction α of nominal aggregate

output, increased or reduced by the factor
q̂t Zt−1
Mt−1

which is the ratio of the debt to GDP. The revenue is

the sum of the indirect seignorage tax
r1
t Mt

1+r1
t

and the direct tax θt levied on the private sector. It is shown

in Magill and Quinzii (2013) that in a stochastic environment this fiscal policy ensures that for every subtree
starting at every date event of the economy, the present value of the government debt at date t tends to zero
when t tends to infinity.
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Suppose the monetary authority wants to anchor the inflation expectations (Bg)g∈G

in the private sector. The goal of this section is to study which expectations can be
anchored, and how many instruments (bond prices) the monetary authority needs to
control: a similar analysis could be carried out for a policy of announcing the path of
future expected short-term interest rates.

To this end, we consider stationary solutions of the equilibrium equations (ii)′ and
(iii)′, namely (c, r1) = (cη, r1

η)η∈S×G satisfying

(ii)′′
uc

(
cη, 1 − cη

ag

)

u


(
cη, 1 − cη

ag

) = 1 + r1
η

ag
, η ∈ S × G

(iii)′′ uc

(
cη, 1 − cη

ag

) 1

1 + r1
η

=δ
∑

η′=(s′,g′)∈S×G

Bg
ss′ Agg′

uc

(
cη′ , 1 − cη′

ag′

)

1 + πs′
, η ∈ S ×G

where we have only written the pricing equation for the short-term bond (τ = 1) in
(iii)′: the idea is to focus on solving (ii)′′ and (iii)′′ first: this will give us the short-term
bond prices, and from these, we can calculate the long-term bond prices using the
remaining equations in (iii)′. The equations (ii)′′ define optimal consumption in state
η as a function of the short-term interest rate r1

η , i.e., cη(r1
η) for each η ∈ S × G.

Substituting this expression into (iii)′′ gives a system of S × G nonlinear equations for
determining the equilibrium short-term interest rate r1 = (r1

η)η∈S×G and this interest
rate must be nonnegative in every state r1

η ≥ 0. This implies that some restrictions must
be imposed on the expectations (Bg)g∈G . To see why, recall that the Fisher equation
can be written approximately as

r1
η = r real

η + Eη(πη′),

where η′ denotes a state at date t +1. If the shocks to productivity imply that consump-
tion is expected to fall, then the real interest rate can become negative and expectations
of inflation must be sufficiently high to compensate for this. In the same way, if there
can be deflation and expectations are such that the expectation of inflation on the right
side is negative, then it may not be possible to find a nonnegative equilibrium interest
rate for such expectations. Conditions for the existence of a nonnegative short-term
interest rate r1 = (r1

η)η∈S×G satisfying (iii)′′ are given in Magill and Quinzii (2013).
The problem of possible non-existence of equilibrium interest rates satisfying (ii)′′
and (iii)′′ arises from the presence of the zero lower bound on the nominal interest
rate and imposes a restriction on the permissible expectations of inflation, requiring
that enough weight be placed on inflation (as opposed to deflation) to ensure that the
resulting nominal interest rate is nonnegative.

From now on, we take as given that the pair [(Bg)g∈G , A] is such that (ii)′′ and
(iii)′′ have a solution (c, r1) = (cη, rη)η∈S×G with r1

η ≥ 0 for all η. For this solution
let

φη = uc

(
cη, 1 − cη

ag

)
, η ∈ S × G,
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denote the marginal utility of consumption when the current state is η = (s, g), and
let q1

η = 1
1+r1

η
denote the short-term bond price compatible with the expectations

(Bg)g∈G . The first-order conditions (iii)′ for bond holdings of all the maturities can
be written as

qτ
η = δ

∑

η′∈S×G

Bg
ss′ Agg′

1 + π ′
s

φη′

φη

qτ−1
η′ , η ∈ S × G, τ = 1, . . . , T . (22)

Given the price q1 = (q1
η)η∈S×G of the one-period bond, (22) permits us to calcu-

late the price q2 = (q2
η)η∈S×G of the two-period bond and so on until we obtain

the T vectors (q1, q2, . . . , qT ) of the bond prices across the inflation–productivity
states η ∈ S × G, which are compatible with the expectations (Bg)g∈G . Having
found the equilibrium bond prices compatible with (Bg)g∈G , we now ask whether
these are the only expectations compatible with these equilibrium prices. We say that
(Bg)g∈G is anchored by the term structure (q1, q2, . . . , qT ) if (Bg)g∈G is the only
family of expectations of inflation which solves (22). Formally, this requires that the
system of equations (22) viewed as a system of linear equations in the unknowns
[(Bg

ss′)s,s′∈S, g ∈ G], taking (A, π, φ, q) as fixed, has a unique solution. Since the
expectations involve G ×S×S unknowns, we need the same number of equations. For
each maturity τ , there are S × G equations which determine the vector (qτ

η )η∈S×G .
Thus we need T = S maturities—perhaps surprisingly the same as in the simple
exchange economy without productivity shocks.

The key to obtaining the appropriate restrictions on the expectations matrices
(Bg)g∈G to obtain uniqueness is to form appropriate averages over the productiv-
ity shocks g′ next period in (22). Consider first the average marginal utility of income
next period with respect to g′, given that the current shock is g, if inflation next period
is s′

φ̂
g
s′ =
∑

g′∈G

Agg′φs′g′ , s′ ∈ S, g ∈ G.

Equation (22) can be written as

qτ
sg = δ

∑

s′∈S

Bg
ss′

1 + πs′

∑

g′∈G

Agg′φs′g′
∑

g′∈G Agg′φs′g′ ,

φ̂
g
s′

φsg
qτ−1

s′g′ . (23)

This suggests replacing the objective probabilities Agg′ by the risk neutral probabilities
(the “equivalent martingale measure”)

ρ
g
s′(g′) = Agg′φs′g′

∑
g′∈G Agg′φs′g′

, g′ ∈ G, s′ ∈ S, g ∈ G,

ρ
g
s′(g′) is risk neutral since the marginal utility φs′g′ is incorporated into the probability

of the productivity shock g′ next period and is conditional on the current shock being
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g and on inflation next period being s′. This measure leads naturally to average values
of the bond prices with respect to productivity shocks

Eg
s′(qτ ) =

∑

g′∈G

ρ
g
s′(g′)qτ

s′g′ , s′ ∈ S, g ∈ G, τ = 1, . . . , T .

The first-order conditions (23) can now be expressed as

qτ
sg = δ

∑

s′∈S

Bg
ss′

1 + πs′

φ̂
g
s′

φsg
Eg

s′(qτ−1), s ∈ S, g ∈ G, τ = 1, . . . , T . (24)

Since these are just present-value equations linking the price of a τ -bond to its payoff
next period, which is the price of a τ − 1-bond, we should expect that the equations
can be written in a form reminiscent of (19) in Sect. 3. This can be seen by introducing
for each g ∈ G the two diagonal matrices

Dg
1 = diag

(
1

φsg

)

s∈S

, D̂g
2 = diag

(
δφ̂

g
s′

1 + πs′

)

s′∈S

,

and the present-value matrix

D̂g = Dg
1 Bg D̂g

2 ,

where the marginal utilities next period in D̂g
2 have been averaged over the possible

real shocks. The present-value matrix D̂g is the generalization of (15) in Sect. 3 to
the case where the stochastic discount factor is not constant because the consumption
varies with both the nominal interest rate and the productivity shock. For each g ∈ G
and each τ , (24) consists of S equations for determining the prices of the bond of
maturity τ in each inflation state s.

Expressing these equations in matrix form for the bonds of maturities 1, . . . , T
gives the matrix equation

[
q1

g , q2
g , . . . , qT

g

]
= D̂g

[
1, Eg(q1), . . . , Eg(q S−1)

]
, g ∈ G. (25)

Viewing (25) as a system of linear equations in [D̂g
ss′ ] for each g ∈ G, the solution is

unique if and only if T = S and the matrix [1, Eg(q1), . . . , Eg(q S−1)] is invertible.
Since the matrices Dg

1 and D̂g
2 are diagonal matrices with positive entries, there is a

one-to-one relation between D̂g and Bg so that uniqueness of D̂g for each g ∈ G
implies uniqueness of Bg for each g ∈ G. Thus we have shown

Proposition 5 The family of Markov matrices
[

Bg, g ∈ G
]

represents inflation

expectations, which can be anchored by a term structure policy
[
qτ

g = (qτ
sg)s∈S, τ =
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1, . . . , T, g ∈ G
]

if the compatible bond prices, averaged over the productivity

shocks, satisfy

rank
[
1, Eg(q1), . . . , Eg(q S−1)

]
= S, for each g ∈ G. (R3)

Condition (R3) is essentially the same as the rank condition (R1) for an exchange
economy. In each case, bond prices fluctuate because of the endogenous effect of
expectations of inflation. Here, however, bond prices also fluctuate because of the
exogenous fluctuations in productivity, which lead to fluctuations in the real rate of
interest. As in Proposition 1, the matrix [1, Eg(q1), . . . , Eg(q S−1)] is an S × S matrix
and row s′, [1, Eg

s′(q1), . . . , Eg
s′(q S−1)] gives the payoffs in period t + 1 of the bonds

of maturities 1, . . . , S purchased in period t . Eg
s′(qτ ) is the average over the real shocks

of the price of the τ -bond in inflation state s′. (R3) requires that these average prices
vary systematically with s′ so that the rows of the matrix [1, Eg(q1), . . . , Eg(q S−1)]
are linearly independent. Since for each row of the matrix the bond prices are averaged
over the shocks g′ using the same probability distribution, the variations across the
rows can only come from the systematic variation induced by the expectations of
inflation [Bg

ss′ ]. Thus, for each g ∈ G, R3 imposes essentially the same condition on
Bg as the rank condition (R1).

6 Example of inflation targeting

The rank conditions (R1), (R2), or (R3) are not practical to enter as constraints for
the choice of an inflation process, which maximizes a social welfare criterion because
they are “open” conditions: the set of invertible matrices is an open set. To see how the
previous analysis can be made operational, consider an economy in which a central
bank has a target rate π∗ and seeks to induce expectations that inflation reverts to the
target rate whenever current inflation deviates from π∗. For simplicity, we take the
model of Sect. 5 with G = 1, i.e., no real shock. However, since the nominal interest
rate affects the supply of labor, inflation has real effects, and the real interest rate
fluctuates.

Suppose the interval of inflation rates is represented by 	 = {−0.02,−0.01, . . . ,

0.06}. The increments are 0.01 so that 	 consists of 9 inflation rates indexed by
s = 1, . . . , 9. Suppose in addition that the target rate is π∗ = 0.02, corresponding to
the index s∗ = 5. We know from the analysis of the paper that it is not possible to
anchor expectations of an immediate reversion to π∗, so the central bank chooses a
mean-reverting expectations matrix B of the following form
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28 M. Magill, M. Quinzii

Whenever current inflation deviates from the target πs∗ , it is drawn in the direction
of the target (from s to s +1 if s < s∗, and from s to s −1 if s > s∗) with a probability
which increases with the deviation |s−s∗| from the target. The intensity of the reversion
to the target is determined by the parameter b: the smaller b, the higher the probability
that inflation moves toward the target. For example, for s = 2, the probability of the
transition to s = 3 is 1 − b

4 , and for s = 3 the probability of transition to s = 4 is
1− b

3 . In each case, the remaining probability ( b
4 or b

3 respectively) is divided between
staying at the current inflation (with probability (1−a) b

4 or (1−a) b
3 ) and transitioning

away from the target (with probability ab
4 or ab

3 ). When the target is reached, inflation
next period deviates either up or down with probability a : the higher a, the greater the
probability of moving away from target. Thus a is a “noise” parameter which makes
the process fluctuate more.

In order that B be a Markov matrix, we must have 0 ≤ a ≤ 1/2 and 0 ≤ b ≤ 2.
Since the probability of moving toward the target decreases when a and b increase,
if the criterion was solely the rapidity of the return to the target, the ideal value of
the parameters would be (a, b) = (0, 0). But as discussed below, for these parameter
values, the process B can not be anchored.

Suppose the preferences are given by u(c, 
) = (c1−α + β
1−α)/(1 − α) with
α = 3, β = 0.4 and with discount factor δ = 0.98. Since the target inflation rate
π∗ = 2 % is sufficiently high, an equilibrium exists for all parameter values satisfying
0 ≤ a ≤ 1

2 , 0 ≤ b ≤ 2. Let r(a, b) = (r1(a, b), . . . , r9(a, b)) denote the short-term
interest rates satisfying the equilibrium equations (ii)′′ and (iii)′′ in Sect. 5 for the
parameter values (a, b): from this, we obtain the vector of marginal utilities φ(a, b)

and the bond prices can be recursively calculated using (24), leading to the two 9 × 9
matrices consisting of the bond prices and their payoffs at the next date

Q(a, b) = [q1(a, b), . . . , q9(a, b)], Q̂(a, b) = [1, q1(a, b), . . . , q8(a, b)].

Solving the equations (ii)′′ and (iii)′′ using MATLAB for the parameter values
(a, b) = (0.1, 0.1) and (a, b) = (0.3, 0.3) gives the associated 9 term structures of
interest rates for the 9 possible current inflation rates shown in Fig. 2i, ii respectively.
In each figure, a curve represents the term structure or yield curve (r τ

s )9
τ=1 for a given

current inflation rate πs : the top curve corresponds to πs = 6 % and the lowest curve
to πs = −2 %. For both pairs of parameter values, the yield curve (r τ

s )9
τ=1 viewed

as a function of current inflation πs increases with πs , the increase in the yield of the
short- term bond typically being greater than that on a long-term bond. Thus, when
the inflation process is mean reverting to a target the associated term structure policy
that ensures determinacy is in essence a “generalized Taylor rule,” the interest rate
on each maturity increasing whenever current inflation increases. In Fig. 2i, the term
structure rises fast if there is deflation or low inflation (πs ≤ 0 %) and decreases fast
when current inflation is high (πs ≥ 4 %), leading agents to anticipate a fast return
to the target inflation rate of 2 %. In Fig. 2ii, for each current inflation rate, the term
structure is flatter, leading agents to anticipate more permanence and a more sluggish
return to the target rate.
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Fig. 2 Term structure rule: term structures associated with the expectations matrix B in the example. i
(a, b) = (0.1, 0.1); ii (a, b) = (0.3, 0.3). Each curve represents the yield curve (rτ

s )9
τ=1 for a possible

current inflation rate πs

If the matrix Q̂(a, b) is invertible, the present-value matrix D = D1(a, b)B D2(a, b)

(with the notation of Sect. 5 can be uniquely recovered by solving the 9 × 9 system
of equations

D Q̂(a, b) = Q(a, b). (26)

Standard linear algebra requires that det(Q̂(a, b)) 
= 0 for Q̂(a, b) to be invertible.
This, however, is not a meaningful criterion from the point of view of numerical
analysis. Since several operations are involved in calculating Q̂ (including solving a
fixed point), Q̂ can only be calculated approximately with the precision of a computer.
Even if the “true” value of the determinant is zero, the calculated value will be a “small
number,” but a small determinant is not necessarily indicative of a lack of invertibility.14

The criterion in numerical analysis is that D can be recovered with sufficient precision
by solving (26), and the precision of the solution depends on the condition number
κ(Q̂(a, b)) of the matrix Q̂(a, b).15

If we replace the condition of invertibility of Q̂(a, b) by the requirement that
κ(Q̂(a, b)) ≤ κ∗ where κ∗ is an appropriate critical value, then we can determine
the optimal parameters (a, b) from the point of view of a central bank seeking to
stabilize inflation around the target π∗. Given the symmetry of the Markov matrix
B around s∗, the associated invariant measure ρ(a, b) puts equal weight on inflation

14 There are matrices with a very small determinant which are easily invertible: for example if M = ε I
where I is the n × n identity matrix, then det(M) = εn can be arbitrarily small.
15 If x is the solution of Ax = b and x̃ = x +e is the solution of Ax̃ = b̃ with b̃ = b+r , then η = ‖e‖/‖x‖

‖r‖/‖b‖
measures the elasticity of the solution (x) with respect to the ‘data’ (b) and is a measure of the “sensitivity”
of the solution. The condition number κ(A) = ‖A‖ ‖A−1‖ of A bounds the sensitivity of the solution,

1
κ(A)

≤ η ≤ κ(A). See Judd (1998) and Trefethen and Bau (1997).
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Fig. 3 Forward guidance rule: paths of expected future short-term rates for the 9 possible current inflation
rates, the lower curve corresponding to −2 % deflation, the upper curve to 6 % inflation

rates equidistant from π∗, so that Eρ(π) = π∗. The smaller the standard deviation
σρ(π) the greater the proportion of time the inflation process spends close to the
target, and the better the inflation process from the perspective of the central bank.
The smaller the values of the parameters (a, b), the smaller σρ(π), and the faster the
convergence of the anticipated probability distribution ρ(t) of inflation in t periods.

However, as shown in Fig. 2, the smaller the parameters (a, b), the closer the yield
curves for different inflation rates; in particular for (a, b) = (0.1, 0.1), the yield
curves for the inflation rates in the vicinity of the target (s = 4, 5, 6) are virtually
indistinguishable. As a result, the matrix Q̂(a, b) is badly conditioned for small (a, b):
the condition number is of the order of 1013 for (a, b) = (0.1, 0.1). Thus, there is
a trade-off between the conditioning of Q̂(a, b) and the variability of the inflation
process around the target. In addition, there is a trade-off between increasing a (more
noise) or increasing b (slower return to target) to decrease the condition number. If
we follow common usage and require that the condition number of Q̂(a, b) is less
than κ∗ = 1010, then we find numerically that the standard deviation of ρ(a, b) is
minimized for the parameter value (a, b) = (0.3, 0.3), which corresponds to the
yield curves of Fig. 2ii. The standard deviation of the associated invariant measure
ρ(0.3, 0.3) which is equal to 0.74 % is relatively small.

If instead of a term structure rule the monetary authority uses a forward guidance
rule, the analysis is similar except that the condition number of the matrix

̂E Q(a, b) ≡
[ δ

1 + π
, q1(a, b), E1(q1(a, b)), . . . , E7(q1(a, b))

]
,

is somewhat higher than that of Q̂(a, b). The value of (a, b) which minimizes the
standard deviation σρ(π), while ensuring that the condition number of ̂E Q(a, b) is
less then 1010, is (a, b) = (0.3, 0.4). The corresponding paths of the expected short-
term rates are shown in Fig. 3.
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7 Conclusion

A recurrent theme in discussions of monetary policy is the idea that an important role of
a central bank is to anchor agents’ expectations of inflation, because any expectations
once adopted can become self-fulfilling. This idea can be formalized in a rational
expectations model only if there is an inherent indeterminacy of equilibrium due to
the self-fulfilling nature of the expectations. Such indeterminacy arises naturally in
monetary models in which fiscal policy is Ricardian, and we have used the simplest
example of such a model as the framework for our analysis.

The innovation of the paper is to incorporate explicitly into the model the set of
possible expectations of inflation which agents can potentially adopt, and to show
that by an appropriate choice of its monetary policy—either a term structure rule or a
forward guidance rule for the short rate—the monetary authority can lead the economy
to the unique equilibrium of its choice.

The analysis has focused on the determinacy of equilibrium and on characterizing
the inflation processes which can be anchored. The spirit of Propositions 1–5 that
provide formal statements of these conditions is that an inflation process that can
be anchored must fluctuate across the different inflation rates and do so with some
permanence. We showed using an example how the analysis can be applied to selecting
a mean-reverting process around a target, which spends as much time as possible close
to target: however the target rate and the minimum variance criterion were not derived
“from first principles.” Thus, the paper can be viewed as a first step toward a richer
analysis, which simultaneously studies not only the determinacy but also the optimality
of the monetary policy. A more complete analysis along these lines would require the
introduction of some frictions to give a real effect to inflation, for example, the price
rigidities studied in the New Keynesian models. Extending the analysis to a richer
model which permits an optimal inflation process to be derived, which can also be
anchored, is left for future research.
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