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Vol. 20, No. 3, October, 1979

THE STABILITY OF EQUILIBRIUM*

By MicHAEL J.P. MAGILL!

1. INTRODUCTION

This paper presents an analysis of the stability of equilibrium for a broad
class of models of intertemporal maximizing behavior that arise in dynamic eco-
nomics. This class of models is capable of handling not only traditional problems
in capital theory such as the adjustment-cost theory of the firm and many variants
of the Ramsey problem, but also simple instances of intertemporal rational
expectations equilibrium (see Magill [1977b, 1978] and Scheinkman [1978]).

The analysis of the stability of equilibrium for this class of models has been
the subject of extensive recent research,? much of which has been surveyed by
Brock [1977]. Until the work of Magill-Scheinkman [1979], attention was
focused exclusively on sufficient conditions for the stability of equilibrium.
This paper is an attempt to extend the necessary and sufficient conditions derived
by Magill-Scheinkman.

After introducing the basic class of intertemporal maximum problems (Section
2), I reduce the problem in the neighborhood of an equilibrium point to a simple
canonical form in which the forces that determine the stability of equilibrium
stand out with especial clarity (Section 4). 1 show that a concept which is basic
to an understanding of the stability of equilibrium is the distinction between a
symmetric and an asymmetric equilibrium point (Section 3). It follows from
the work of Magill-Scheinkman [1979] that in the neighborhood of a symmetric
equilibrium point the local topological structure of the trajectories arising from
the intertemporal maximum problem can be inferred from considerations based
on a static maximum problem, namely the problem of maximizing steady state
profit. In the neighborhood of an asymmetric equilibrium point dynamic
forces come into play which prevent the local topological structure of the trajecto-
ries from being inferred from purely static considerations. These dynamic forces
are skew-symmetric (rotational) and when present with sufficient magnitude

* Manuscript received January 16, 1978; revised July 31, 1978.

! This research was supported by a grant from the National Science Foundation, SOC-76—
16838. I am grateful to Edwin Burmeister, Glenn Loury, Dale Mortensen, Harl Ryder and
Paul Samuelson for helpful discussions.

2 See Benveniste-Scheinkman [1976], Brock [1976, 1977], Brock-Magill [1979], Brock-Scheink-
man [1976], Burmeister-Hammond [1977], Burmeister-Long [1977], Burmeister-McCarthy [1976],
Cass-Shell [1976], Liviatan-Samuelson [1969], Lucas [1967, 1976], McKenzie [1976], Magill
[1977a, 1977b, 1978], Magill-Scheinkman [1979], Mortensen [1973], Rockafellar [1976], Routh
[1877, 1905], Ryder-Heal [1973] and Samuelson [1947, 1972].
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578 M. J. P. MAGILL

lead to cyclical motion about the equilibrium point.>  Under simplifying assump-
tions on the way in which these skew-symmetric forces are present I show that in
certain instances their presence induces a stabilizing effect and in other instances
a destabilizing effect (Section 4). These stability conditions are interpreted in
Section 5, where [ also indicate a number of results that are likely to kold under
more general assumptions.

The class of symmetric variational problems introduced by Magill-Scheinkman
have a number of remarkable properties, which arise in essence from the fact that
a single function, the steady state profit function, characterizes the equilibria and
their stability properties. One of these properties concerns the results that may
be obtained by an application of the Correspondence Principle, a method of
far-reaching importance first explored by Samuelson [1947]. This Principle
provides a natural way of generalizing the method of comparative statics to the
simplest class of dynamical systems namely those for which equilibria represent
the important type of limiting behavior (the w-limit sets). Thc Principle rests
on two ideas.  First, only stable equilibria or motion in the neighborhood of such
equilibria can expect to be observed for any reasonable length of time, motion
in the neighborhood of an unstable equilibrium being a transient phenomenon.
Second, the necessary conditions for the local stability of an equilibrium point
can be used to obtain a qualitative restriction on the way in which the equilibrium
point varies when certain underlying parameters in the model vary. Until the
work of Magill-Scheinkman, the applicability of the Correspondence Principle
for dynamical systems arising from maximizing behavior was limited by a failure
to have a complete set of necessary conditions. Magill-Scheinkman showed,
using the necessary conditions for stability, that the term which appears in apply-
ing the Correspondence Principle to determine the way in which an equilibrium
point varies with a given parameter consists of two components of which one is
precisely the inverse of the Hessian matrix of the steady state profit function.

Using the necessary conditions derived in Section 4, I show in Section 6 the
qualitative restrictions that can be obtained from the Correspondence Principle
when the stable equilibria are allowed to be asymmetric. It is shown that the
dynamic skew-symmetric forces which come into play in the neighborhood of an
asymmetric equilibrium point no longer make it necessary for a certain local
steady state profit function to attain a maximum at a stable equilibrium point
but only a maximin, a condition that carries with it a correspondingly weaker
condition on the inverse of the Hessian matrix of the local steady state profit
function. T apply these results to the dynamic theory of the firm in a stationary
environment and show that the basic result of the static theory, namely that the
Jacobian matrix of the input demand function is negative definite, no longer holds
in the dynamical case. Inputs in fact can exist for which an increase in the rental
price leads to an increase in the steady state demand.

3 For an analysis of the way in which these skew-symmetric terms can give rise to cycling in a
rational expectations equilibrium for a competitive industry see Magill [1977b].
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Mention should be made of the interesting work of Burmeister-Hammond
[1977] on the stability of equilibrium when the maximization of an integral of
discounted utility (profit) is replaced by an intertemporal version of Rawls’
Maximin Criterion of Justice. It appears that the skew-symmetric terms which
complicate the analysis under the conventional criterion may well be absent under
Rawls’ Maximin Criterion thereby leading to a potentially simpler theory of the
stability of equilibrium.

A historical remark may be of interest. The analysis of the local stability of
equilibrium for a conservative dynamical system was first given by Lagrange
in the Mécanique Analytique [1853, Part 2, Section 6]. Routh [1905; 1877,
Chapters 3-6] and Lord Kelvin and Tait [1879, Section 345] were the first to
analyze the stability of steady motion for a conservative dynamical system.*
The equilibria of the first are symmetric in my terminology, the equilibria of the
second are asymmetric when the standard Routhian function® is introduced.
Lord Kelvin and Tait showed, in simple cases, that the skew-symmetric (cen-
trifugal) forces arising from the steady motion can stabilize the unstable equi-
librium of a conservative dynamical system. The spinning top provides the
simplest classic example of this quite general phenomenon. With no spin, the
verticle position, in which the potential energy is a maximum, is unstable, but
with sufficiently rapid rotation the vertical position becomes stable.

2. THE INTERTEMPORAL MAXIMUM PROBLEM

Let I=[0, o) denote the non-negative time-interval and let & denote the
state space, where " is a convex set in R*, n=1.

DeriniTION. For fixed k, € &7, the class of absolutely continuous paths

(1) k(1) = ko + g;k(t)dt: [—
for which

IOl < kol + S;I[ic(‘c)ll dr < forall tel
where o denotes the interior of # and || | denotes the standard Euclidean

norm, is called the class of feasible paths and is denoted by £. It is convenient
to let {k, k} denote the path (1).

Let &/ = RS, s=1 denote the parameter space. We consider a vector of
exogenous parameters a=(f, 0)e & =y x Z; and real valued instantaneous
utility (profit) functions

(2) Lk, k; B)e™%t: o x R* x of —> R

¢ See also Appell [1921, Chapter 8] and Pars [1965, Chapters 9, 10].
> See Pars [1965, p. 159].
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which satisfy the following®

AssumpTIoN 1 (Concavity, differentiability). L(-; ) is a C" concave function
in (k, k) for all (k, k)e o x R", for all fe .o, where r=2.

We consider feasible paths (1) induced by (2) through the following

VARIATIONAL PROBLEM. Find a feasible path {k, k} € 2 such that

) tim (| (L0RC2), k&) — L(k(@), ke)e-de 2 0

for all {k, k} e #. The path {k, IE} € 2 is said to be optimal.

DeriniTION. Let #2* denote the class of absolutely continuous price paths
t
) PO = po + | pode: 1—s R
for which

1P < Ipoll + S;upmndr <o forall tel.

It is convenient to let {p—Jp, p} denote the path (3).

DEFINITION. A feasible path {k, E} € 2 is competitive if there exists an abso-
lutely continuous path of prices {§—3p, p} € 2* such that
@ Lk, k) + 5k + (5 = 0p)E = Lk, k) + Bk + (5 — 0p)'k
for all (k, k) e o x R for almost all te].

REMARK. Since (1, p) is the vector of (imputed) output prices and —(p—9dp)
is the vector of (imputed) rental costs

L+ pk + (p — dp)k

is the (imputed) profit which is maximized at almost every instant by a competitive
path.

The following result is an immediate consequence of (4).

LemMA 1. If Assumption 1 holds then {k, k} € 2 is competitive if and only
if
(%) (p —dp, p) = — (L, L) for almost all tel.

§ The dependence of L(k, k; B) on the parameter ‘8 is sometimes oritted to simplify the
notation.
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ReEMARK. (5) is equivalent to the Euler-Lagrange equation

(#) Ly +6L; = -$(Lp) = Ly + 6L; — Ligh — Ligk = 0.

ReMARK. Under a standard transversality condition a competitive path
{k, k} e 2 is optimal (Magill [1977a, p. 177]). The converse is established by
Benveniste-Scheinkman [1976] under certain additional conditions. For our
purposes it is sufficient to know that an optimal path is a solution of (%).

DEFINITION. A path {k, k} € 2 which satisfies (%) with k(f)=k(f)=0 for all
tel is called an equilibrium point (stationary state).

¢ = {(k*, 0)e A x of | Ly(k*, 0; B) + dLi(k*, 0; f) = 0}

is called the equilibrium set for the variational problem (¥7).
DeriniTION. Let (k*, )e&. The local coordinates around the equilibrium
point k*=k*(x) are given by

x =k — k*

Let 2’ denote the class of absolutely continuous paths {x, x} for which {k, k} e
2. The second variation problem about k*

") | inf —é—gwm(x, ¥)e-dtdt
{x,x}e2’ 0
where
xT Ly Ly 1M x’
(8) LO(x, %) = . .
X Lip Lip 11X

and where the asterisk signifies that the Hessians are evalvated at (k*, 0), has
associated with it the Euler-Lagrange equations

() Lii% + (Lix = Lyi = SL{p)% — (L + 0L{x = 0
which are the linearized equations for (%) about k*.

DErFINITION. An equilibrium point k*=k*(«) is said to be regular (hyper-
bolic) if 2,50 (Re (1)) #0), i=1,..., 2n where 2,€C is a root of the characteristic
polynomial

) D) = LG + (Liy — Ly — SLE)A — (L + SL{)| = 0.

A parameter value o€ <7 is regular (hyperbolic) if all the associated equilibria
k*(a) are regular (hyperbolic). We let " (8") denote the set of regular (hyper-
bolic) equilibria in &. Similarly we let /" (&%) denote the set of 1egula/
(hyperbolic) parameter values in .o .

REMARK. Let (k¥ a)e &, then k* € & if and only if
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A = |Ly(k*, 05 B) + SLix(k*, 03 B)] # 0

ReEMARK. Hyperbolic equilibria are of basic importance in the analysis
that follows since it is only for these equilibria that the linearized equations
(&L’) reveal the topological structure of the trajectories that are solutions of (£)
in a neighborhood of an equilibrium point. Hyperbolic equilibria are an impor-
tant subset of the set of regular equilibria.

AssuMPTION 2 (Profitability). There exist k;, k;, i=1,..., n such that
A ={keR"|— w0 <k, <k<k<c,i=Il.,ncx
and for all j=1,...,n
L,\.j(kl,..., Kiveoos Ky 0,005,053 ) + (51,,;!(/(],..., Kjyeor Ky 0,...,05 ) > 0
Lk ooy iy 0,00, 05 B) A 0L (K ysoes Koy Ky 0,000, 05 5) < O
for all kye(k;, k), i#]).
Remark. The classical theorem of Kronecker-Poincaré [1951, Chapter 18]

leads to the following result. If ae.o/” and if Assumption 2 holds then there
exists at least one regular equilibrium point k* e A.

Assumption 2 is a natural economic condition to postulate: for each capital
good j, the marginal revenue (Ly) from an additional unit of j must be greater
(less) than its rental cost (—0L;,) when the endowment of this capital good is
sufficiently small (large), independent of the endowments of the other capital
goods (i#})).

3. SYMMETRIC AND ASYMMETRIC EQUILIBRIA

DEFINITION. Let (k*, a)e&. k* will be called a symmetric (asymmetric)
equilibrium point if

Lyik*, 05 B) — Li(k*, 0; ) =0 (s 0).
DerINITION. The variational problem (¥°) will be called symmetric (asym-
metric) if
Lyi(k, 05 B) — Lix(k, 0; ) = 0 (5 0) forall ke, for all pest,

REMARK. Symmetric variational problems generate symmetric equilibria
but the equilibria of an asymmetric variational problem need not be asymmetric.

DerFiNiTION. Let k*e&”.  The solution of (¥") will be called locally cyclical
(monotone) in a neighborhood of k* if the characteristic polynomial D(1) has at
least one (no) pair of complex conjugate roots.
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REMARK. Let k*¥*e&". Ifk* is a symmetric equilibrium point and if L°(x, X)
is negative definite, then the solution of (¥7) is monotone in a neighborhood of
k*.7

Magill-Scheinkmman have given a complete characterization of the local
stability of regular symmetric equilibria. Their analysis is motivated by the
following simple idea. Under Assumption 2 there are certain states in the region
A, namely the steady states or equilibria, which have the property that if the
system starts in such a state it remains there permanently. Do these steady
states have an economically interesting extremal property which might serve to
characterize their stability properties? Is it possible that a certain function
which depends only on the state of the system attains an extremum at such steady
states, the extremum being a local maximum at locally stable regular equilibria
and a local minimum at locally unstable regular equilibria. The analysis in
Magill-Scheinkman shows that this is indeed the case.

That the steady states of symmetric variational problems have an extremal
property is a consequence of the following.

LemMma 2. If L(-; B) e C? then there exists a real valued function

k’k
b(k*: %) = S (Lu(k, 0; B) + SLi(k, 03 By dk: o x of — R
k
where k is an arbitrary fixed point in A, such that
bp(k* ;) = L(k*, 0; B) + SLy(k*, 0; ) for all (k*, a)e X x &
if and only if (+7) is a symmetric variational problem.

Proor. The symmetry of L,(k, 0; f8) for all ke &, fe.o7; and the standard
theorem for the existence of a potential function (Apostol [1957, pp. 293-297])
yield the result.

In view of (4) we are led to the following.
DeriNiTiON.  The function ¢p(k*; a) is called the steady state profit function.

This function characterizes the steady states and their stability properties in the
following way.

ProrosiTION 1 (Magill-Scheinkman). If (#°) is a symmetric variational
problem, then k*e X is a steady state if and only if the steady state profit
function attains a local extremum at k*. If k*ed&", then k* is locally
asymptotically stable (completely unstable) if and only if the steady state profit
function attains a local maximum (minimum) at k*.

For a more complete statement of the results the reader is referred to Magill-

" See Magill-Scheinkman [1979, Lemma 3).
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Scheinkman. The proof of the above result hinges on a relation which may be
established between the eigenvalues of the linearized Euler-Lagrange equations
(&") at k* and the cigenvalues of the Hessian matrix ¢.(k*; &) of the steady
state profit function.

The results of Magill-Scheinkman lead us to ask the following question. Is
it possible to obtain a complete characterization of the local stability properties
of hyperbolic asymmetric equilibria? The section that follows provides an
answer to this question under certain simplifying assumptions.

4. STABILITY OF ASYMMETRIC EQUILIBRIA

To analyze the stability of hyperbolic asymmetric equilibria for (¥°) and (%)
in terms of (¥"') and ('), 1 will reduce the problem (¥"') with associated Euler-
Lagrange equation (#') to a simple canonical form. Assumption | implies
LO(x, %) is non-negative definite. It is convenient to strengthen this property to

AssumMPTION 1’ (Strong concavity). LO(x, X) is negative definite.
I will introduce the notation
(10) A= —1L¥%, B=-L} N=—-L
and consider the trénéformation
(1) x(1) = & 3(0)

which reduces (¥7') to

") inf %S:MO(J;, )dt

(v, p}eo” =

where 2" is defined in terms of 2’ through (11) and where

‘V/Z N v
N
yJLN BJLy

(12) Z=A+%(N+N’)+(%>ZB,N‘=N+(—‘32—>B.

REMARK. In view of Assumption I, MO°(y, y) is positive definite. Thus
the matrices A and B are both positive definite.
Under the transformation (11), (%) reduces to

") Bj —Cy—Ay=0, C=N-—N"

DEFINITION.  &; € C will be called an eigenvalue of A in the metric of B and
wi e C", wis0 is an associated eigenvector if B is positive definite and
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(A — a@;B)w = 0.

REMARK. Since A is positive definite, symmetric, A has n real positive eigen-
values (&y,..., @,) and n real associated eigenvectors (W!,..., W") in the metric
of B. Furthermore the nxn matrix of eigenvectors W=[w!,..., w*] may be
chosen in such a way that (Gantmacher [1960, pp. 310-319])

o 107 & 0"
WBW=1=| * | WAIAW =4 ~ |
01 0 &,

Under the nonsingular transformation
(13) y =Wz
(7"") reduces to

) inf %ngO(z, 2 di
F 0

Yea”

(=
vy

where 2" is defined in terms of 2" through (13) and where

z VT N z
G S g
z N z

RemARK. Since MO(y, y) is positive definite, Q%z, z) is positive definite.
Thus the matrix o — A" A" is positive definite.

Under the transformation (13), (") reduces to

(&™) F—T:—-fz=0
where
-0 Y12 V1n
(14) WCW =T =| =y, 0 -2,
=V —an 0

Lemma 3. If (ny,..., ®,) are the eigenualuesiofA+%—(N+N’) in the metric
of B then

_ 0 \? .
(15) nj=<xj—<—2—) , j=1,.,n
Proor. From the definitions of &;, 7, j=1,..., n

0=(-aB)n = <<A + %(N N+ (%)ZB) - &jB)Wf
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(4= deve =[5 =2 o)
= <A + %—(N + N — njB>Wf. O
DeriNiTION.  Let (k*, o) e &. The quadratic form
n(x: k*, o) = x’(A + g (N + N’))x S x'(L;‘fk + %(L,*:,; + L;"k)>x:

R" x A x o —> R

will be called the local steady state profit function and the eigenvalues (n,..., 7,)
will be called the steady state profit rates.

ReEMARK. If we assume, without loss of generality, that the steady state profit
rates are placed in order of decreasing magnitude

T = T, == T,

then they satisfy the well-known maximum property (Gantmacher [1960, pp. 317—
320])

;= ma;x n(x; k¥, o) = n(wl; k*, o), j=1,...,n
XER j

'@j = {XER"IXIBX = 1, X/BWi = 0, i= 1,-"9j - 1}

I will give two precise characterizations of the local stability of hyperbolic
asymmetric equilibria for (¥7) using the canonical form (£™). In the first T im-
pose a simplifying assumption on I, in the second I impose a simplifying assump-
tion on . To prove the first I use the following.

LeMmMA 4. Under Assumption 1' if there exists a reordering of the com-
ponents of z such that

r, o

(16) r r [ KR } i=1,., (2
= O F n ’ J = > ] = e <——>
3 ~7; 0 2
where <F—>=i when n is even, <B—)=n+1 when n is odd and where I' y+1 =
2 2 2 2 2

[0] when n is odd, then the solutions of (£") are monotone (cyclical) if and only

if

(” NERENCAEL ! j= s (%)
(<)

where (&, 4;) are the components of < associated with y;.
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Proor. (#") splits up into <1;7> pairs of second order differential equations
when n is even [<%>~1 when n is odd} For each such pair the characteristic

polynomial is
D(J;) =4 4+ (73 — &; — a;)A% 4+ ;8 = 0, j=1,.., <!L>

the roots of which are®

9] } —
H
h
X
H
h
\\
~
I
A~
39 | &
N—

(18) Ay =
where
Hj =y = (V& + V&)
I =9 = (&~ JER

Assumption 1" implies \/&;>0, \/&; >0 from which it follows that the roots are
complex if and only if J;>0. ]

REMARK. Let /" ={v;;} then Assumption 1’ implies

(19) \/0:‘1:‘*' \/O—E' > [V2j—1,2j[ + [V2j,2j—1] = ’VZj—1,2j - "2j,2j—1l = IVjL

P = n
j= 1,...,<2>

ProPOSITION 2. Let k*e &*. If I satisfies (16), then k* is locally asymp-
totically stable if and only if

(20) & + V&) =% = (3 — a2 — 9% > 6,

so that pure imaginary eigenvalues cannot arise in (18).

when (z;, z;;) are monotone, if and only if

1) i, + iy > 17, i=1,., (%)

8 (18) is derived as follows. Let §;=a;+ib;=2%, then
1 1
aj=7(a; + ay —71%), by=7V(—HyJj.
The relation (a;+ib;)=(p;+iv;)? implies
1 /b; 0 —_—
% =ﬁ<72)) vj =j%—, 0; =+ —a; +4a% + b
which in turn implies

i =gV s vy = V7).
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when (z;, z) are cyclical, where 3% =y} +62.
Proor. In view of (18) the eigenvalues of (.#’) are given by
! — .
Leosy=m+y=7), J=1es(%).

Two of these eigenvalues are negative, for each j, if and only if (20) holds when
(zj, zj») are monotone. The real parts of a complex conjugate pair are negative,
for each j, if and only if (21) holds when (z;, z;) are cyclical. O

REMARK. (zj, z;;) are completely unstable if and only if
(22) VW& + @) =) +VE = Jap)? =y <o
when (z;, z;)) are monotone, if and only if

(23) V& + i < 13

when (z;, z;) are cyclical.

ReEMARK. If k* is symmetric ;=0 and by (17), (z;, z;) are monotone j=
1,... (%) In view of (15), (20) is equivalent to the condition

2 2
&J—<%> =7Tj>0, &J'—‘<g—> =7le>0 j=1,...,(—’22*>

which is the result of Proposition 1. Equilibria are always symmetric when n=1
so in this case z is monotone and the stability condition reduces to

= — (L + 0L) > 0.
RemArk. Let k*e &' 1If k* is an asymmetric equilibrium point then a

sufficient condition for I" to have the form (16) is that the matrices in (10) have
the block-diagonal form

‘4, 0

) I:ajl ajZ} 5 [bn bJZJ v [”11 "12:l
i= » By = » V= ’
ajrl aj'2 bj’l bj’2 fljrl nj'z
, n
]=1,...,(—>
2

the last of each of the block-diagonal elements A(g), B(%), and N @) reducing to

scalars when n is odd.

RemARK. In this case the stability conditions (20) and (21), stated in terms of
the derived parameters (&;, &;; y;), are readily transformed into conditions on
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the original matrices (A;, B;; N;), by noting that the matrix of eigenvectors W
is block-diagonal,

w0
0 M)

so that |WB,W,|=|W,]?|B;|=1 implies |W,|=1/\/|B;] and y;=|W,lg;=g,//IB,|
where g;=(n;,—n;;). Furthermore, recalling (12),

SRR NI (5 )

D} = ajlbj'l =+ aj,zbjl - 2aj2bj2.

b

ProposITION 3. Let k*e&", k* an asymmetric equilibrium point. If
&, =08,=-=0a,=0a* then the solution of (+") in a neighborhood of k* is locally
cyclical. Let®

2
denote the eigenvalues of I', where y,+1 =0 if n is odd and let n*=a*— (%) ,
2
then k* is locally asymptotically stable if and only if
() = La(3)

(24) (1 >(2 ) j=1,..., 5 )

Proor. In view of the assumption & =@&,=---=&,=&*, o =a*] so that the
eigenvalue problem for (£")
(25) WPI-TL—FWw=0

reduces to an eigenvalue problem for I'

(5=

2 . g%

T /v \2 .
Let A=pu+iv then _7“—=iyj implies p= i\/&*~(%’> s v:<7_21_>_ Thus
the eigenvalues of (25) are given by

Sl e

and the eigenvalues of (#") are given by

e R R E)

9 Recall that the eigenvalues of a skew-symmetric matrix are pure imaginary (Gantmacher,
[1960, p. 285]).
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from which the result follows at once. O

5. INTERPRETATION OF STABILITY CONDITIONS

The stability conditions (20)-(24) may be given a simple geometric interpre-
tation which brings to light more clearly the underlying economic conditions
under which a hyperbolic equilibrium point is stable. To this end let

(26) o(t) = egtz(t) so that  x(1) = Wu(t).

Thus the degree of stability of v(f) at an equilibrium point is the same as the
degree of stability of x(¢). Let v=(v, vys..., (s v(g)r). We may construct
a stability diagram (Figure 1) for the components (v(f), v;(t)) of v(?) in the non-
negative orthant of the space (\/&;, \/; ).

Consider Figure 1. VW and V'W’ represent the lines (/&;—/d;=F|y;l. In
the region between these lines (v)(f), v;(t)) are cyclical (equation (17)). VV’
represents the line \/&;+./& =ly,l, the boundary of the feasible (/& \/&;)
values implied by the strict concavity Assumption 1’ (equation (19)). QQ’
represents the line /&;+./@;=|7;| which partitions the region in which (v (?),

I3

»
!
' y ~C
0 ST 17! va;

Figure 1. Stability diagram for (v,(t), v;-(t)).
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;(t)) are cyclical into a stable and an unstable region (equations (21) and (23)).
QS and QS’, which represent equation (20) with an equality sign, partition the
region in which (v,(?), v;(?)) are monotone into a stable and an unstable region.
QT and Q'T’, which represent equation (22) with an equality sign, lead to the re-
gions QT and V'Q'T’ in which (v(t), v;(?)) are completely unstable.

Two interesting limiting cases are shown in Figure 2(a) and (b): the symmetric
case y;=0 and the undiscounted case §=0.

Unfeas
Region

i

]
1
1
1)
1
]
H
o3 %ol

%‘: e

(@) 7,20 (b) 8=0

Figure 2. The symmetric and undiscounted cases.

As we know from the theorem of Magill-Scheinkman, stable symmetric equi-
libria are characterized by the fact that steady state profit rates (n;, m;), j=

1,y (—Z—) are positive: unstable symmetric equilibria are characterized by

the fact that at least one steady state profit rate is negative. As we see from
the stability conditions (20)-(24) and in particular from Figure 1, asymmetric
equilibria can be unstable even though the steady state profit rates are positive,
when the solution of (¥) is locally cyclical (region O'PP’). Asymmetric equi-
libria can be stable even though some steady state profit rate is negative (regions
SQPR and S'Q'P'R’).

Consider a symmetric equilibrium point. Suppose we introduce skew-sym-
metry, how does this affect the stability of equilibrium? Figure 3 provides an
answer in the case where the skew-symmetry has the form (16). Let (\/a7, \/aJ)
denote the parameter values for a symmetric equilibrium (y;=0). In view of

(19) we may consider the impact of increasing [y;|, provided [y;| is restricted to the
interval

0= Iyl < byl =&y + Jag..
In Figure 3(a) the curve FO'F’ represents the locus of the points Q and Q' in

Figure 1, as |y;| is increased. (vj(t)ﬂj,(t))_are completely unstable, unstable of
degree 1 and stable according as (/aJ, /@) lies in the regions 00'Y’, R'0'Y’,
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ZO'R’, where without loss of generality we restrict the analysis to the region below
00'Z.

»/5?

(a) (b)

Figure 3. Analysis of effect of increase in skew-symmetry on stability of symmetric
equilibrium.

Suppose the parameter value of the symmetric equilibrium lies in the region
00’Y’. Then it starts in the region B’ in Figure 3(b) and passes into C’ as the
skew-symmetry |y;| is increased. A parameter value which lies in F'O'Y" starts
in A, passes into B’ and then into C’. If the parameter lies in F’'O’R’, then it
starts in A, passes into B, then into C and then into C’. Finally a parameter
value which lies in ZO'R’ starts in B, passes into C and ends in C’.

Thus if the parameter value of a symmetric equilibrium lies in F'O'R’ then
an increase in skew-symmetry |y;| can lead to stability. However for every
symmetric equilibrium a sufficient increase in skew-symmetry leads to instability
(increasing |y;| ultimately leads the parameter value into the region C’).

Two further results follow from our analysis in terms of Figures 1 and 3. If
the steady state profit rates are negative then an increase in skew-symmetry
does not affect the complete instability of the symmetric equilibrium point.
If the trajectory v(t) is monotone and if the steady state profit rates are positive
then the equilibrium point is locally asymptotically stable. These results are
likely to hold under quite general conditions.

It is clear from the equation (.£") that there are two forces at work in deter-
mining the stability of equilibrium. The first is summarized in & and the second
inT. Inview of (15) the information contained in o is summarized in the steady
state profit rates (my,..., m,). When L§; #L§;, so that the effect of invest-
ment in one capital good (j) on the marginal product of a second capital good
(i) is asymmetric, a skew-symmetric mairix

(Li = LE) = — (Lix — L)
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(since LY, =(L};)") is induced leading to the matrix C in (") and I' in (£").
I thus summarizes the asymmetries present in the capital-investment matrix
L.

The forces induced by 7 in the equations of motion (£”) are symmetric.
The forces induced by I' are rotational. Tt seems that the rotational forces
ultimately affect the stability of equilibrium as follows. When the eigenvalues
of I' are increased cyclical motion arises about the equilibrium point. This
cyclical motion in turn slows down the rate at which z(¢) converges to equilibrium.
A sufficient increase in the magnitude of the eigenvalues of I' slows down the
rate at which z(#) converges to such an extent that v(¢) and hence x(t) become un-
stable.

6. SAMUELSON’S CORRESPONDENCE PRINCIPLE

The basic idea that underlies Samuelson’s Correspondence Principle [1947] is
that only stable equilibria can be observed. If we impose a similar condition
on the parameter value then we are led to the following

DerinITION.  Let (k% «) e &, then (k*, «) will be called an observable equi-
librium if « € o and k* is locally asymptotically stable.

To simplify the analysis that follows I assume that there exists a set & <o/
such that aew and (k*, a)e & implies k*e¢". Consider a parameter value
gegﬂﬂ&ﬁ”. By the implicit function theorem there exist a neighborhood 4,
of o and m Cr! functions, m< w

Yio): Ny — 2, i=1,.,m
such that
Ey=8ENH x Ny ={(}(a), 0), a€Ny i=1,..., m}
where &, #@ in view of Assumption 2. Let i/ be ordered so that
WH(e),..., Y2(@)) and  (p7"(),..., Y™(2))
denote the observable and the unobservable equilibria, respectively. If we let
g(k*, ) = L(k*, 0; ) + SLi(k*, 0; B)

and let k*i=yi(a), then if o#0, Samuelson’s Correspondence Principle leads us
to consider, by a second application of the implicit function theorem

(y) WZ(Z) = - [gk*(k*i’ g)]_lga(k*ia 9‘.)7 i= 15"'9 g

where
- [gk*(k.*i9 g)]_l = [ka(k*is 0;_/_))) + éLl.ck(_k_*is 0;__:[_3)]_19 i= 1,"', g.

REMARK. The number of positive (negative) eigenvalues of —[gp(k*i, ®)]™!
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is the same as the number of positive (negative) steady state profit rates
nl(k*iy g):-"a nu(k*is g.)
of the local steady state profit function n(x; k*, o) at (k*, «).1°

REMARK. If an observable equilibrium (k*, &) is known to be symmetric,
then by the theorem of Magill-Scheinkman it is necessary for —mn(x; k™, &) to
attain a maximum at k**: this forces the matrix —[g(k*t, 2)]7! to be positive
definite. If an observable equilibrium (k*!, ) is asymmetric, as we must allow
it to be in general, then Samuelson’s Correspondence Principle ceases to yield
such a precise qualitative result: the dynamic skew-symmetric forces no longer
make it necessary for —mn(x; k*, &) to attain a maximum at k*t, but rather only
a maximin, a condition that carries with it a correspondingly weaker condition
on the basic qualitative matrix —[gu(k*, )]

In particular the results of Sections 4 and 5 lead to the following.

ProrosiTiON 4. If (k*,a)e &, i=1,...,0 are observable equilibria then
for eachi=1,..., 0

(1) there exist matrices I' for which at least 13<n;1 if nis 0dd> of the
eigenvalues of —[g(k*!, )]~ are negative -
(i) if T satisfies (16), then at least <%> of the eigenvalues of —[g(k*!, 2)]!

are positive.

I will consider but one application and refer the reader to Magill-Scheinkman
for further applications.

ExampLE. In the dynamic theory of the firm in a stationary environment
(Lucas [1967], Mortensen [1973]), the firm is viewed as maximizing the present
value of the future stream of profit (in real terms)

S:(f (k(7), k(1)) — wk(z) — qk(z))e % dt

where

w=(1) a=(%) kO = ke k.

The output price Pe R'*, the rental and purchase prices of capital equipment
(W, Q)e R*" x R** and the interest rate 6 € R'* are taken as parameters deter-
mined on competitive markets independent of the actions of the firm, and the
production function

f(k, k): R"* x R"* — R

10 See Proposition 2 in Magill-Scheinkman.
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is taken to satisfy Assumption 1. Let the parameter space be o ={we R"*|
w=w+4dq} then

& = {(k*, w)e R"™ x R |fi(k*, 0) + dfi(k* 0) — @ = 0}

defines the firm’s steady state demand correspondence for capital inputs. If
we make Assumption 2 with 2" =R"*, assume the existence of a subset o < R+
such that w e & and (k*, w)e & implies k* € # and consider w eg; n &7, then
there exist a neighborhood 4, and m C*~1 steady state input demand functions
V() such that

Eo= {Y(0), w), 0eN g, i =1,...,m}.
If 0 #0 then we may consider (%) which becomes

Pi @) = [ [k, 0) + ofiu(k*, 0)]71, i=1,.,0
where k*!=y/{(w) are observable equilibria.

REMARK. [If (k*', w) is known a priori to be symmetric (f,i(k*i, 0)=
fin(k*t, 0)), then the Jacobian matrix Yi(w) is negative definite.

This is the well-known result of Mortensen [1973] which extends the familiar
result in the static case. However (k*!, ) is not in general symmetric, as Mor-
tensen recognized. Our stability analysis in conjunction with Samuelson’s
Correspondence Principle thus leads to the following conclusion. In the dynamic
theory of the firm in a stationary environment the classical result of the static
theory ceases to hold: the possible presence of asymmetric dynamic capital-
investment interaction terms fi;j(k*, 0) no longer makes it necessary for the
Jacobian matrix Yi(w) of the steady state input demand function Y (w) to be
negative quasi-definite. Under quite general conditions inputs k% can exist for
which an increase in the rental price w; leads to an increase in the steady state
demand.!!

Northwestern University, U.S.A.
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