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STABILITY OF REGULAR EQUILIBRIA AND THE CORRE-
SPONDENCE PRINCIPLE FOR SYMMETRIC
VARIATIONAL PROBLEMS*

By MICHAEL J. P. MAGILL AND JOSE A. SCHEINKMAN!

1. INTRODUCTION

This paper gives a complete characterization of the local stability of regular
equilibria for a relatively broad class of dynamic systems arising in mathematical
economics. The completeness of the characterization depends upon an assump-
tion of symmetry on the integrand of the basic variational problem.

We show that there is a single scalar valued function which first locates all the
equilibria. The equilibria are precisely the positions where the function attains
an extremum. The nature of the local stability properties of each regular equi-
librium point is then determined by the nature of the extremum at that point.
In particular if the function attains a local maximum (minimum), then the equi-
librium is locally asymptotically stable (unstable).? We thus obtain a remarka-
bly complete picture of the behavior of the dynamic system in a neighborhood of
each regular equilibrium point (Sections 2, 3).

To cope with the long-run evolution of a dynamic system along the lines
suggested by Magill [1977a] and to further extend the analysis, we introduce a
vector of exogenous parameters into the integrand of the basic variational problem
and consider the family of extremum problems induced in this way. We introduce
an equilibrium manifold in the parameter-state space which reveals the
equilibria for each value of the exogenous parameter.® We show that the as-
sumption of symmetry implies that the eigenvalues of the dynamic system are
real. This in turn implies that the local stability properties of regular equilibria
may be deduced from simple geometric properties of the equilibrium manifold.

* Manuscript received June 20, 1977; revised January 23, 1978.

1 The first author is grateful to the Department of Economics of the University of Chicago
for the award of a Milton Friedman Fellowship which made possible the joint research that led
to this paper. This research was also supported by Grants from the National Science Foun-
dation, SOC 76-16838 and SOC 74-19692. We thank William Brock, Ivar Ekeland and the
participants at the 1977 MSSB Conference on Dynamic Economics at Holderness, New Hamp-
shire, for helpful discussions.

2 This result is closely related to Lagrange’s classical theorem on stability: if the potential
Sfunction of a conservative dynamical system attains a minimum (maximum) at a position of equi-
librium then the motion in a neighborhood of this equilibrium point is stable (unstable). See
Lagrange [1888, pp. 69-76] and Liapunov [1967, pp. 62, 377-386].

3 The idea of considering the potential function of a dynamical system as a function not only
of the state of the system but also of an exogenous parameter was introduced by Poincaré who
simultaneously laid the foundations for the theory of bifurcation of equilibrium [1952, pp. 43-55].
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298 M. J. P. MAGILL AND J. A. SCHEINKMAN

Thus critical equilibria at which an exchange of stability can take place are
those for which the tangent hyperplane to the equilibrium manifold projects
degenerately onto the parameter space. We show that such critical parameter
values form a closed set of measure zero in the parameter space. The analysis
here is closely related to the earlier important work of Debreu [1970].

We show in addition that if a rank and boundary condition on the parameter
are satisfied, then the equilibrium manifold consists of a unique connected com-
ponent, while if a rank and boundary condition on the state are satisfied then
there is a unique equilibrium point of the same degree of stability for each
feasible parameter value. This analysis is contained in Section 5, which may
also be viewed as a preliminary attack on the problem of bifurcation of equilibri-
um. In a complete analysis we expect the bifurcation diagram for the equilibria
of the dynamic system to be revealed by the bifurcation diagram of the basic scalar
valued function that characterizes the equilibria. This would lead to a remarkable
unification of the basic theory of the dynamic system.

Samuelson’s Correspondence Principle [1947] is concerned with the relation-
ship between the stability of equilibrium and infinitesimal changes in the equi-
librium as the exogenous parameters are varied. As Brock [forthcoming] has
recently pointed out, the difficulties associated with obtaining meaningful theorems
in Arrow-Debreu-McKenzie general equilibrium theory on the basis of the
Correspondence Principle arise in essence from two causes:* the first is the
Sonnenschein [1972]-Mantel [1974]-Debreu [1974] theorem, by which, under
standard axioms on the utility functions of agents, any continuous vector valued
function from R" to R" can be generated as a market excess demand function for
an economy with n+1 commodities, while the second is the fact that general
equilibrium theory lacks any explicit dynamics. In a large class of dynamic
optimization problems the latter difficulty is automatically eliminated, while the
former may be circumvented by imposing sufficient structure on the dynamic
system. With this in view Brock [forthcoming] and Burmeister-Long [1977]
have recently proposed a rehabilitation of Samuelson’s Correspondence Principle
for a class of dynamic optimization problems. Indeed Burmeister-Long viewed
the Correspondence Principle as a vehicle for resolving certain paradoxes connected
with the Cambridge Controversy in capital theory and the associated Hahn
problem, if the latter is interpreted within the framework of a centralized econo-
my.> As Brock points out, such a move to rehabilitate the Correspondence
Principle was implicit in the earlier work of Lucas [1967] and Mortensen [1973]
in the context of an adjustment cost model of the firm and in the Liviatan-Samuel-

4 See also Arrow and Hahn [1971], Gordon and Hines [1970], Quirk and Saposnik [1946].

5 There is a danger of confusing rwo distinct causes of instability of equilibrium: in the first case
the equilibrium is unstable because the optimality (transversality) conditions are not satisfied, in
the second case the equilibrium is unstable when the transversality conditions are satisfied. Hahn
doubts that a decentralized market system provides a mechanism by which the transversality
condition associated with convergence to the steady state is satisfied. This is the first case. But
we are in essence interested in the second case.
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son [1969] analysis of a one-sector model of aggregated growth with joint pro-
duction.

Brock [forthcoming] and Magill [1977a, Section 5] showed how sufficient con-
ditions for local stability of regular equilibria lead to qualitative statements about
infinitesimal changes in such equilibria with respect to changes in the parame-
ters.® In Section 4 we show, under the assumption of symmetry, that such
results may be deduced directly from the local stability or instability of each
regular equilibrium point.” Such a result is possible because the basic matrix
that characterizes the local stability properties of regular equilibria is precisely
the matrix that determines the qualitative changes in the equilibrium with respect
to the parameters. We apply this result to an integrand in which the parameters
enter additively to obtain a generalization of the earlier results of Mortensen
[1973]. We show furthermore that it is precisely at critical equilibria that the
Correspondence Principle breaks down.

Liviatan-Samuelson [1969] characterized the local stab111ty of each regular
equilibrium in a one-sector model of growth in terms of the derivative of the
own-rate of return of the capital good at the equilibrium point. We generalize
this result to the n-dimensional case by showing that the local stability of each
regular equilibrium may be characterized by the Jacobian of the vector of own-
rates of return at the equilibrium point.

This paper is essentially an extension of the earlier results of Magill [1977a,
Section 5] and the related paper of Scheinkman [1978]. All of this work
may in turn be viewed as part of the extensive recent research by Brock-Magill
[forthcoming], Brock-Scheinkman [1976], Cass-Shell [1976], McKenzie [1976],
Magill [1977a, 1977b], Rockafellar [1976], Samuelson [1972] and Scheinkman
[1976, 1978], that attempts to develop a general theory of the dynamic systems
that arise in mathematical economics.

2. SYMMETRIC VARIATIONAL PROBLEMS

Let & denote a compact convex subset of R*, n=1. We consider a vector
of exogenous parameters o.=(f, 0)e of =Ly x L;SR?, 521,

DerINITION. For fixed (ko, @) € #” x o7, the class of absolutely continuous
functions

(1) k(1) = k(t; ko, ): [0, 00) —> "

where 4 denotes the interior of ", is called the class of feasible paths and is
denoted by &#.

6 See also Arrow-Hahn [1971, Chapter 10].

7 The results of this paper thus suggest that the negative conclusions of Arrow and Hahn with
respect to the Correspondence Principle [1971, pp. 320-321] seem to have been somewhat over-
stated since we are able, at least in the symmetric case, to make qualitative statements about
comparing equilibria directly from the assumption of local stability (instability).
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We consider real valued functions
2) L(k, k5 B): o x R* x oty —> R
where L € Cr, r=2, which satisfy the following:

AssumpTiON 1 (Concavity). L(-, B) is a concave function in (k, k) for all
(k, kye o x R, for all e st;.

We consider feasible paths (1) induced by (2) through the following

VARIATIONAL PROBLEM. Find k(f) e & such that
(2. sup (" L(K(D), k(D); pe-va.
k(t)eFJO
DEFINITION. £, is called a symmetric variational problem if
(3) Lk, k; B) = Lk, k3 ) forall (k, k)ed x R*,  forall Best,
The Euler-Lagrange equations for £, are givgn by
4 Liik + Ligk — (L + L) = 0.

DEFINITION. A path k() e # with k(t)sO for all te [0, o0), which satisfies
(4), is called an equilibrium point (stationary state).

AssuMmPTION 2 (Existence of equilibrium point).  For every a=(f, §) e
there exists at least one k* ed satisfying
(5) Ly(k*, 0; B) + SL;(k*, 0; B) = 0.

DEFINITION. & = {(k*, a)| L, (k*, 0; B) + OL;(k*, 0; B) = 0} is called the equi-
librium set for the variational problem £,.

DerINITION. Let (k*, @) &. The local coordinates around an equilibrium
point k*=k*(a) are defined by the transformation

(6) x =k — k*.

The variational equations associated with (4) in a neighborhood of an equilibrium
point k*=k*(«) are given in terms of the local coordinates (6) by

(7 Lf% + (L — Ly — OLFD% — (L + 0Li)x = 0

where the asterisk denotes evaluation at (k*, 0) for a fixed aes/. For a
symmetric variational problem (7) reduces to

(8) L% — OLfi% — (L& + Lg)x = .

DEFINITION. An equilibrium point k*=k*(«), where (k*, a)e &, is said to
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be regular (critical) if 1,;#0, i=1,...,2n (4;=0 for some i) where 4; is a root
of the characteristic polynomial

©) D(%) = IL§i2% + (Lie — Lk — SL{A + (L + SLE)| = 0.

A parameter value o € 7 is regular (critical) if all (at least one) of the associated
equilibria k*(x) are regular (is critical).

DEFINITION. We let &7 (£°) denote the set of regular ‘(critical) equilibria
in &. Similarly we let &7 (&7¢) denote the set of regular (critical) parameter
values in /.

ProrosiTION 1 (Regular equilibria). Let k*=k*(x) where (k*, a)e& then
k* e & (¢°) if and only if

(10) 4 = |Ly(k*, 0; B) + SL;(k*, 0; B)| # 0 (= 0).
Proor. Let A,,..., 4,, denote the roots of (9) then for some y+0,
2D — -2 Ga—
thus
4= (=1 PO = (= 1rdy ey #0 (= 0
according as k* e &7 (é’“) O

Remark. An equilibrium point k* is said to be isolated if there is a neighbor-
hood of k* containing no other equilibrium points than k*. (10) and the implicit
function theorem imply that regular equilibria are isolated.

Remark. An equilibrium point k*(e) is a point of intersection of the n, (n—1)-
dimensional surfaces

(11) L, (k*, 0; B) + 6L; (k*, 0; B) = 0, i=1,.,n
in R*. The equilibrium point k*(a) is regular if and only if the gradients
(12) (L¥ s, + OLEhreos LE g, + OLE k) i=1,.,n

are well-defined at k*(«) and are linearly independent. If the surfaces (11)
are smooth, an equilibrium point k*(«) is critical if and only if the gradients (12)
are linearly dependent. At such an equilibrium point one of the eigenvalues A;
in (9) is zero.

Remark. Let aessm and let pw(4*(a)) [u(4™(«))] denote the number of equi-
libria, at the parameter value o for which 4>0[4<0]. Let C denote a subset
of & with boundary 0C. The following classical theorem of Kronecker-Poincaré
[1951, Chapter 18] gives very general conditions under which the existence of at
least one regular equilibrium point is. assured. Suppose a €./’ and suppose
there exists a subset C =24 which is diffeomorphic to an open ball of radius r>0
in R", if there are no equilibria on 0C and if



302 M. J. P. MAGILL AND J. A. SCHEINKMAN

v(k)'(Li(k, 0; B) + 6Li(k, 0; B)) <O for all keadC
where v(k) denotes the outward normal of 0C, then
u(4*(@) = w(d=~(0) = (= 1)".

There is thus at least one regular equilibrium point.

AssuMPTION 3 (Strong concavity at equilibrium point). For each (k*, a)eé&
) { Lt Li }
L Li
is negative definite.
Under Assumption 3, (8) may be written as
(14) % — 0% — (LF) ML¥ + 6Lf)x = 0.

If we let v=x then (14) reduces to the first order system

X 0 1 X
CE N N
D (Lii)~ (L + 6Lgy) oI v

A€¥ and (w, z)e ¥" x ¥" are an eigenvalue and associated eigenvector of (15)
if and only if z=Aw and

(16) (= LE)W(L¥ + SLE)w = A6 — Dw.

The analysis of the stability of equilibrium will depend in a crucial way on the
information contained in equation (16).

3. STABILITY OF REGULAR EQUILIBRIA
Consider the real-valued function
Po(k*, 0): A x & —> R
induced by the following line integral
k*
an Bk, o) = I{" [LGk, 03 ) + SLi(k, 03 P dk
where I' denotes the line-segment joining k and k* for some fixed ke #" and any
k*ex.

LemMmAa 1 (Existence of equilibrium potential). If L(-; f)e C? and if there
exist constants M;<M;, j=1,..., n such that Li(k, 0; p) is symmetric for all
ket y={keR"M;<k;<Mj, j=1,..,n}SA" for all Be sy, then there exists
a function ¢(k*, o), given by (17), such that

(18) du(k*, @) = Li(k*, 0; ) + SLi(k*, 0; B)
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for all k* e Ay, for all Be ;.

Proor. The result follows at once from the standard theorem for the existence
of a potential function (Apostol [1957, pp. 293-297]) since Ly(k, 0; B) is sym-
metric for all ke )y, for all fe oz, Od

Remark. In the analysis that follows we assume for simplicity that S, =2¢".
Thus for a symmetric variational problem the equilibrium points k*=k*(x)
associated with a given value of the exogenous parameter o € &/, are the extrema
of an equilibrium potential function ¢(k*, o) viewed as a function of k*.

In view of (18), (16) becomes

(19) (— LE) 'dfw = A6 — Aw
where ¢f = ¢ (k*, o) is a symmetric matrix. We need the following

LeEMMA 2. Let A, B be nxn symmetric matrices with real coefficients, B
positive definite, then BA has real eigenvalues and BA has the same number of
positive, negative and zero eigenvalues, respectively, as A.

Proor. Since B is positive definite, its positive definite square root \/B=C
exists, so that BA is similar to C"!BAC=CAC. Thus BA has the same eigen-
values as CAC whose eigenvalues are real. Let

B, =9I+ (1 —7y)B

then B, is positive definite for 0<y<1, By=B, B;=1. Let C,= /B, then as
before B,A is similar to C,AC,, and rank(B,4)=rank (4) for 0<y<1. Hence
rank (C,AC,)=rank (4) for 0<y<1. Since a continuous change in coefficients
leads to a continuous change in the eigenvalues of a symmetric matrix, the differ-
ence between the number of positive and the number of negative eigenvalues
(the signature of the matrix) only changes when some eigenvalue changes its
sign. But if an eigenvalue changes sign it must pass through zero, leading to a
change in the rank of the matrix. Thus signature(C,AC,)=signature(4)
implying that BA has the same number of ‘positive (negative) ((zero)) eigenvalues
as A. O

Applying Lemma 2 to (19) we find that v=A(6—4) is real for each eigenvalue
A of (15). This leads at once to the following

LemMA 3. If A is an eigenvalue of (15) and Assumption 3 holds, then A is
real.®

Proor. The variational equations (15) are the Euler-Lagrange equations for
the problem, max S L°(x, x)e~%tdt, where L°(x, X) is the quadratic form generated
by the matrix (13). If we introduce the mirage variable £= e 3t x (Magill

8 For a statement of more general conditions under which the eigenvalues in (9) are real see
Magill [1977b].
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[1977a, Section 4]), then the problem becomes, max S‘” L°(%, £)dt where L°(%, £) is
negative definite. - Now if A is an eigenvalue of (15)? then pu=1— > is an eigen-

value of the mirage system. But Assumption 3-and the result of Levhari-Liviatan
[1972] imply Re (W) #0. Hence Re (/l);é 5 Since v=A(6—2) is real, the result
follows O

- DEFINITION. The degree of stability of (15) is the number of negative eigen-
values of (15).

ProrosITION 2 (Characterization of stability by ¢(k*, «)). (i) The degree of
stability of (15) at (k*, a)e & is equal to the number of negative eigenvalues
of du(k*, ). (i) The number of zero eigenvalues of (15) is equal to the number .
of zero eigenvalues of ¢(k*, o). (111) The number of positive eigenvalues of
qﬁkk(k* a) is equal to the number of positive eigenvalues of (15) minus n.

Proor. Let 4,,..., 4 denote the k negative eigenvalues of (15), so that 6—4;
>0 and 1(6—4;)<0, i=1,..., k. Thus for each 4, there is a negative eigenvalue
of (—Lf,;)‘lgb,’f,‘. By Lemma 2 the number of negative eigenvalues of (=Lt
@iy is the same as the number of negative eigenvalues of ¢jy. Conversely if
Ui i=1,..., k' are the negative eigenvalues of ¢¥,, then there exist eigenvalues
v, i=1,..., k' which are the negative eigenvalues of (—L};) '¢¥. But v,=

A6~ A) for some eigenvalue A; of (15). Hence 4,(60—4;)<0. By Kurz [1968],
/l, and d0—A; are both eigenvalues of (15). By Lemma 3 either 4; or d—4; is
negative. - The proofs of (ii) and (iii) are identical. O

Remark. Proposition 2 implies that the stability properties of regular
equilibria, (k*, u)e&”, are determined by ¢fi(k*, «). In particular we have
the following

CoROLLARY. If (k*, a)€ &", then ¢(k*, o) attains
(i) a local maximum if and only if k*(a) is locally asymptotically stable
(i) a local minimum if and only if k*(«) is completely unstable.

‘We can in fact obtain an even more precise picture of the motion in a neighbor-
hood of a regular equilibrium point. To this end we introduce the following

DEFINITION. Let A, B be n x n matrices, B positive definite, symmetric. We
say that v; is an eigenvalue of A in the metric of B and w'e R*, w30 is an as-
sociated eigenvector if Aw!=v;Bw’. :

Let v,,..5, v, and wl,..., w* denote the eigenvalues and associated eigenvectors
of ¢¥, in the metric of (— L)

.:DEFINITION. Vy;..., ¥, Will be called the curvature coefficients of ¥, since
they yield measures of the curvature of ¢F, in the directions w!,..., w", in the
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metric induced by (— L)

Remark. (19) implies that the curvature coefficients of ¢F, are related to the
eigenvalues of the variational equations (15) in the following way

(20) v = A8 — 1) i=1,..n
so that

_ s AL o
(21) A= > + «/<7> v i=1,..,n

It is clear from (16) and (19) that the eigenvectors for the system (15) may be
derived from the eigenvectors wl,..., w" of ¢¥ in the metric of (—Lj;). But
as is well-known, if we assume without loss of generality that v, <---<v,, then
Viseees ¥, and wi,..., w* may be characterized as the solutions of the following
sequence of n constrained extremum problems (Gantmacher [1960, pp. 317-320])

X x - wioFw? S , :
v; =m1n ¢kk = Picx i=1,...,n

seli x'(—Li)x - wi'(—Liw!

(22)
={xeR", x#0|x'(—Liwi =0, j=1,.,i—1}

(21) and (22) give the most complete general expression for the eigenvalues of
the system (15) that we can expect to obtain. When n=1 we obtain the standard
explicit expression for the eigenvalues, with v reducing to

¢fkr
(= Lii)
since there is then no minimization to be carried out.
It is well-known from the theory of pencils of quadratlc forms® (Gantmacher

[1960, pp. 310-312]) that the .n x n matrix of eigenvectors W=[w!..-w"], where
wl,..., w* denote n column vectors, may be chosen in such a way that

V=

vi O
A 0 v,

The nonsingular transformation to principal coordinates y=(y,..., J)
x =Wy
reduces the variational equations (8) to the normal form
W'(= LE)W§ — SW'(— L)WY + W oHWy = 3§ =6y + Ny =0

so that the equations of motion break up into n separate one-sector models

 The reader is referred to the paper of McKenzie [1968] for an interesting related use of the
theory of pencils of quadratic forms. :
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Vi 0 1 Vi
(23) j; —0y;+viy;=0 or { ={ { i=1,.,n
Z‘i -V; o Z;

where the latter equations represent (15) in principal coordinates. (21) are just
the eigenvalues for the n one-sector systems (23). In view of Assumption 3 and
the assumption of regularity, each one-sector system in (23) has one of two phase
portraits in the space (y;, y;), a saddlepoint if v,<0 and an unstable node if
v;>0. If v;<O0 the standard transversality condition shows that y,=2;y;, where
A;<0, is the locally optimal path.'® When v;>0 it seems reasonable to con-
jecture that y,=J1,y, is again a locally optimal path, for one of the two positive
A; in (21), but global considerations of the phase portrait outside a neighborhood
of the equilibrium point are needed to check that the associated path satisfies a
transversality condition (see Liviatan-Samuelson [1969, Section 5J).

Remark. In a model of capital accumulation with n capital goods (Magill
[1977a, Section 6]) x'¢f¥.x is a measure of the loss induced by the deviation x of
the state from the equilibrium point. x'(—¢¥,)x is thus a measure of the benefit
generated by the equilibrium point. x'(—L};)x, on the other hand, is a measure
of the cost of reaching the equilibrium point. (22) shows in a very precise way
the benefit-cost calculations that underlie the local motion in the neighborhood
of an equilibrium point.

4. THE CORRESPONDENCE PRINCIPLE

Samuelson’s Correspondence Principle [1947] relates the local stability proper-
ties of the dynamic system to the local properties of &”. In view of Proposition
1 and (18)

& = {(k*, a) € &||Ppulk*, )| # O}.
Thus by the implicit function theorem if (k*, &) € &* there exists a neighborhood

A of (k*, «) and a C' function k*(«) such that (k, «)e #"n&" if and only if
k=k*(x) and

*
@4 I | = bulRr, DT dulkr, 9.
In view of Proposition 2 and (24), the stability properties of (15) are closely
related to the properties of d;: The propositions that follow will attempt to

explore this relationship without, however, any pretense to completeness. -
PrROPOSITION 3. Let L(k, k; B)=u(k, k)—wk— pk, a=(w, p), then

dk* dk* dk*

(25) dw > “dp ’ dow+op)

10 See for example Magill [1977a].
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are symmetric matrices, with as many negative eigenvalues as the degree of
stability of (15).

Proof. The result follows from (24) and Proposition 2. Od

COROLLARY. At a regular equilibrium the matrices (25) are negative (posi-
tive) definite if and only if the equilibrium point is locally asymptotically
stable (completely unstable).

Remark. This is a generalization of part of Theorem | of Mortensen [1973].
The proof of the following result is also immediate.

ProrosiTioN 4. If k* is a regular equilibrium and if k* is locally asymp-
totically stable (completely unstable) then

(- Liks,0; ) 22 <0 (> 0).

Remark. In capital theory the shadow prices of the capital goods aré given by
p=—Li(k, k; B). Thus Proposition 4 tells us that if a regular equilibrium is
locally asymptotically stable (completely unstable), a rise in the rate of interest
causes a fall (rise) in a price weighted average of the capital stocks. The index

w dk*
Pm s
it to stability properties of an equilibrium. Of course when n=1, the sign of this
index is precisely related to the stability of an equilibrium. It is clear however
that such an index cannot be used to characterize the stability of equilibria in the
general case n> 1, since it is in essence a scalar index. For symmetric variational
problems we will introduce a matrix index which precisely reveals the stability
properties of regular equilibria. To this end we make

was introduced by Burmeister-Turnovsky [1972] who attempted to relate

AssUMPTION 4 (Strict free disposal). At every equilibrium point p*= — L;(k*,
0; B) is a strictly positive vector.

DEerFINITION. We call

_ Ly (k,0;B)
k) = =k, 0: B)

the (static) own-rates of return.

Remark. Under Assumption 4 the own-rates of return are well defined in a
neighborhood of an equilibrium point.

a"t(k)

{ "11(k) "1n(k) :I
and r(k) =

nl(k) rnn(k)

ProrosITION 5. Under Assumptions 1-4 the degree of stability of (15) at
an equilibrium point k* is equal to the number of negative eigenvalues of the
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matrix r(k*), furthermore the number of zero eigenvalues of (15) is equal to the
number of zero eigenvalues of r(k*).

Proor. It follows from r;;(k*)= —‘mj(*ﬁ, i, j=1,..., n that
(rl;(k*)---r'lp(k*) Lo |[ @K@ (K7)
. : P1 : .

(26) : . : :

P : DRI :
Lnl(k*)-'-rnn(k*) pr L @ni(K*)- b, (k*)
Since the first matrix on the right-hand side is positive definite, we can show
as in the previous section that the number of negative (zero) eigenvalues. of r(k*)
is the same as the number of negative (zero) eigenvalues of ¢, (k*). The result
then follows from Proposition 2. O

0

Remark. Proposition 2 may be interpreted as asserting that the degree of
stability of an equilibrium point is characterized by the following price-weighted
own-rate of return matrix

piria(k*) - p¥ry(k*)
(27) : : .
Prtus(K*) -+ prrn,(k*)
Remark. If a regular equilibrium point k* is locally asymptotically stable
(completely unstable) then the own-rates of return satisfy

ru(k*) < 0(> 0) i=1,..,n.

Remark. The characterization of the stability of equilibrium in terms of (26)
or (27) may be viewed as a natural generalization to the case of an arbitrary
number of capital goods of the earlier result of Liviatan-Samuelson [1969] for
the case n=1.

Remark. Consider the Kronecker-Poincaré theorem of Section 2. Let C be
replaced by the subset

{kex|0<k;<k <k,i=1,..,n}
and let the condition v'(L,+ dL;) <0 be replaced by
pj(kl""’ kj""’ kn) > 0

(28) forall kie(k, k), i#j
Pikyyes Kjyeey k) < 0

where . pi(k) = rik) — 4, j=1,...,n
then there exists at least one regular equilibrium point k* ed for which p(k*)
=0 and k} e (k;, k;), j=1,..., n.

(28) is a natural economic condition on the net own-rates of return p;(k).
For each capital good j, p (k) must be positive (negative) when the-endowment
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of this capital good is sufficiently small (large), independent of the endowments
of the other capital goods (i# ).

5. THE EQUILIBRIUM MANIFOLD

The analysis of a dynamic system whose trajectories are bounded reduces in
essence to an analysis of its w-limit sets. To the extent that equilibria are im-
portant components of the w-limit sets, an analysis of the equilibria is an important
ingredient towards understanding the dynamic system. With this in mind we
develop certain general properties of the equilibrium set & which, under a rank
condition, becomes an equilibrium manifold. The main qualitative results are
not restricted to cases where the equilibria are derivable as the extrema of a
potential function. It is only when stability considerations enter that this
assumption is required.

The equilibrium manifold is of especial interest for a dynamic system whose
eigenvalues are real, for when the eigenvalues are complex the stability of equi-
librium can change by a pair of complex conjugate eigenvalues crossing the
imaginary axis, and such a change of stability cannot be deduced from geometric
properties of the equilibrium manifold, since stability can change without passing
through a critical parameter value.

AssumPTION 5 (Rank condition). The matrix
[hudk*, @) Pra(k*, )]
has rank n for all (k*, 2)e &.

Remark. The following is a result of the implicit function theorem: under
Assumption 5, & is a Cr~! s-dimensional manifold. Thus & cannot have the
form shown in Figure 1.

ProPOSITION 6.  Under Assumption 5, oZ¢ is a set of measure zero in <.

FIGURE | FIGURE 2
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PrOOF. Assumption S asserts that ¢, (k*, o) is transversal to 0. The result
then follows from the Transversal Density Theorem (Abraham-Robbin [1967,
p. 48]; Dierker [1974, p. 91]). O

ProposSITION 7. Let A be a subset of «# with the property that (k*, a)eé&,
ae A implies k*e K=, for K compact, then &€ is closed in A.

Proor. Consider a, € .27° N A, o,—d, then there exist k} € K such that ¢,(k¥,
o) =0, |¢(k¥, ¢,)|=0. Since K is compact there exists a subsequence k} — k*
and since ¢, ¢, are continuous ¢, (k*, &)=|p(k*, @)|=0 so that ae <. [

ProrosiTioN 8. Let A</ be as in Proposition 7. If «o e Anar, then
there exist a neighborhood (&) and m, C™! functions Yy(),..., Y™(c), where
Vi(e): N (&)~ , such that for all w e A(&), &(a) consists of the m distinct points
YH),..., Y™(«).

ProoF. The result follows from the implicit function theorem. O

Remark. For a compact subset of parameters (such as the interval [0, a] in
Figure 2) such that all equilibria associated with these parameter values lie in a
compact set (say the interval [b, b']) the equilibrium manifold must consist of
finitely many connected components. As yet nothing prevents the existence of
a closed curve of equilibria E as in Figure 2. It is also clear that in general
& need not consist of a unique connected component for arbitrary parameter
sets (as is evident by selecting the subset [a’, a”] in Figure 2). A special condition
must also be imposed to eliminate the folds F, F’, G, G’ in Figure 2. Proposition
9 will eliminate closed curves such as E, while Propositions 10 and 11 give condi-
tions under which the latter two properties hold.

PROPOSITION 9. Let Ao/ be as in Proposition 7, A#@ and let rank (¢y,)
=n, then no connected component of & is compact in 4 x A.

PrOOF. Suppose E is a connected component of & which is a compact subset
of # x A. Let k be such that there exists an & with (k, &) € E and | k|| =sup {| k|||
(k, o) e E, for some a € Ao}. Such a k must exist since E is compact and projection
preserves compactness. Since @,(k, @ has rankn there exist neighborhoods
N(&), 4 (k) and a map y: #(k)— (&) such that for all ke.#z(k) if a=y(k)
then (k, a)e &. Let k,—k be a sequence such that |k,|> | k| and k,e.#(k).
Since ¥ is C™1, (k,, W(k,))—(k, @). Since E is a connected component of &, for
large n, (k,, ¥(k,)) € E which is a contradiction. O

ProrosiTION 10 (Unique component). Let A be an open ball of finite radius
r>0 with Ac. If there exists

(i) a compact set K< such that o€ A and (k, a) € & implies ke K

(ii) a function y: dA—K such that (k, o) € & if and only if k=y(a)
and if
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(iii) rank ¢y (k, @)=n for all (k, a) e & with a € A4,
then & n (A" x A) has a unique connected component.

Proor. Note that  in (ii) must be continuous, for if a,—a, since Y(a,) € K
there exists a subsequence ¥(a, )~ ke K. By continuity of ¢, (k, & e&. Hence
kE=y(a@). Thusif s>1, &n(# xdA) has a unique connected component that is
the graph of a continuous function ¥ which is defined on a connected set. For
s=1, & N (A x 0A) consists of two points.

Suppose W is a connected component of & n (o x A) such that there exists
aed, ke K with (k,«)e W. In view of Proposition 9, W is not compact in
A x A. By the continuity of ¢, and compactness of K if «,€ A, a,~a€ A and
k,—k, (k,, a,) € W, then (k, ®)e W. Hence there exists a sequence (k,, a,)€ W
with a,—»& € dA. By the continuity of ¢, and compactness of K there exists k € K
with (k, &) W=é&. Hence by (ii), k=y(z). Thus for s>1 any connected
component possesses a point in common with the unique connected component
at the boundary. Hence there exists only one such connected component.

When s=1, let k=inf{k|(k, «)e W, a € A} then by the same reasoning as in
Proposition 9, (k, «)e W for some a¢edA. Similarly let k=sup {k|(k, @) e W,
aec A}, then (k, ¥) e W for some &€ dA. By (iii) k#k. Hence W must contain
the two points in & N (£ x 0A). O

The following result is a straightforward extension to the case of an arbitrary
number of parameters of Brock’s Jacobian condition for uniqueness (Brock
[1973, Theorem 17).

ProrosiTiON 11 (Unique equilibrium). Under the conditions of Proposition
8, if there exists

(i) a compact connected subset BcA

(ii) &e B such that k(&) is unique with (k(&), &) e &
and if

(iii) rank ¢k, )=n for all (k, &) € & with o€ B,
then for any o€ B there exists k(a), with (k(a), o) &. Furthermore k(a) is
unique and depends C™! on «.

Proor. By (iii) every o € B is regular. By Proposition 8, since B is compact
there exists a finite collection A47(a),..., #7(e,) that covers B. Since B is con-
nected the number m of solutions ¥/!(a),..., Y™(«) in Proposition 8 is the same for
all xet(a)) for j=1,..., n. The result follows from (ii). O

DEFINITION. An equilibrium point is hyperbolic if Re(4,)#0, i=1,..., 2n.

Remark. The theorem of Hartman-Grobman [1960] asserts that two hyper-
bolic equilibria of the same degree of stability are locally topologically
equivalent (i.e., there exist neighborhoods of each equilibrium point and a homeo-
morphism that transforms the trajectories around one equilibrium point into
trajectories around the other equilibrium point).
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DerINITION. Let o, o' € &7*. We say that « and o' have & equivalent phase
portraits if the number of distinct equilibria is the same and there exists an ordering
of the equilibria such that k*¥(«x) has the same degree of stability as k*¥(a').

Remark. By Proposition 8 if a, o' € /(&) then o and o' have & equivalent
phase portraits. Another way of saying this is as follows: a critical parameter
value & is a parameter value such that in an arbitrarily small neighborhood of &
there may exist parameter values « and o' with nonequivalent phase portraits.
If in an arbitrarily small neighborhood of & there exist parameter values o and o’
such that the phase portraits are nonequivalent, then & is said to be a bifurcation
point. Propositions 6 and 7 establish that the critical parameter values and
hence the bifurcation points are a negligible set in the parameter space .
Proposition 11 gives conditions under which the phase portraits are & equivalent
for all parameter values o€ B, the unique equilibrium point having the same
degree of stability for all a € B.

Remark. If we knew more about the family of potential functions ¢(k*, &)
generated by a given family of integrands e%*L(k, k; B) then it might be feasible
to use certain generic properties to establish more precise results about the
nature of the equilibrium manifold & and its associated set of bifurcation points.
Thus for example in the case where there are 5 or less parameters catastrophe
theory might be used to assert that the bifurcation sets consist of smooth surfaces
in o glued together in an appropriate way (Zeeman [1976]; Brocker [1975,
Chapters 15, 17]).

The reader is referred to the paper of Magill [1977a] for a simple example of
the application of catastrophe theory that involves a highly simplified version
of the results of this section. The example uses the Liviatan-Samuelson one
sector model with joint production. The same paper and the paper of Scheinkman
[1978] contain several other examples to which the theory of the present
paper is applicable. In particular when n=1 the symmetry condition is automati-
cally satisfied and the w-limit sets consist solely of equilibrium points. For this
case we thus have a complete theory (Magill [1977a, Section 5]).

6. FINAL REMARKS

In this paper we have established a fairly complete picture of the local phase
portrait of a dynamic system generated by a symmetric variational problem,
for all values of the underlying vector of parameters a€.«/. We have related,
at least in a preliminary way, the nature of these phase portraits to properties of
the equilibrium manifold &.

When n=2 it is well-known however that w-limit sets are not restricted to equi-
librium points. Thus when n=2, w-limit sets' may consist of equilibria, closed
orbits or limit continua (closed curves formed by a combination of orbits and
equilibria). For this reason when n>2 the local phase portrait for the equilibria
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may give a very incomplete picture of the global phase portrait of the dynamic
system. We have shown however, that the dynamic systems generated by sym-
metric variational problems behave in the neighborhood of each equilibrium
point like gradient systems. It is well-known that the w-limit sets of gradient
systems: consist solely of equilibria. Scheinkman [1978] established that if
L(k, k) is additively separable'! then there exists a k*e.# which is the w-
limit set of all positive semi-trajectories. It would be interesting to establish
general conditions under which the w-limit sets of a symmetric variational problem
consist solely of equilibrium points.

Northwestern University, U.S.A.
University of Chicago, U.S.A.
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