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Abstract We develop an alternative approach to the general equilibrium analysis
of a stochastic production economy when firms’ choices of investment influence the
probability distributions of their output. Using a normative approach we derive the
criterion that a firm should maximize to obtain a Pareto optimal equilibrium: the cri-
terion expresses the firm’s contribution to the expected social utility of output, and is
not the linear criterion of market value. If firms do not know agents utility functions,
and are restricted to using the information conveyed by prices then they can construct
an approximate criterion which leads to a second-best choice of investment which, in
examples, is found to be close to the first best.
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2 M. Magill, M. Quinzii

1 Introduction

Just as there are two ways of analyzing a random variable, so there are two approaches
to modeling a production economy under uncertainty. The first approach introduces
a set of states of nature with fixed probabilities of occurrence and lets firms’ actions
influence the quantities of the goods produced in each state: this is the approach intro-
duced by Arrow (1953) and Debreu (1959), which constitutes the reference model of
general equilibrium. The second approach introduces a probability distribution over
possible outcomes, and lets firms’ actions influence the probabilities of the outcomes:
this approach has not been systematically explored in general equilibrium1 and is the
focus of this paper. While the first approach is analogous to modeling a random vari-
able as a map from a state space to the real line, the second studies a random variable
through the probability distribution it induces on the outcome (range) space. Since the
real-world financial contracts which share the risks and direct investment activity of
firms are typically based on outcomes and not on primitive states of nature, we argue
that the latter approach is a natural candidate for a general equilibrium analysis of a
production economy under uncertainty.

As far as the description of production possibilities is concerned, the state-space
representation is more general. Given a probability representation in which investment
affects the probabilities of the outcomes, there exists a state-space representation with
fixed probabilities for the states in which investment influences the quantity of output
in each state, and in which the induced probability distribution on outcomes coin-
cide with the probability representation.2 A simple example suffices to illustrate the
construction.3 Consider a firm with two possible outputs yL < yH and two possible
investment levels aL < aH . The probability approach models the probability p of the
high outcome as a function of investment, for example p(aL) = 1

4 and p(aH ) = 1
2 ,

reflecting the fact that investment in higher grade personnel or equipment makes
the probability of the high output yH more likely. The same production possibilities
can be described by a model with four states of nature and a production function
f (aL) = (yL , yL , yL , yH ), f (aH ) = (yL , yL , yH , yH ) in which the probability of
each state is 1

4 independent of the firm’s investment: investment now affects the quan-
tity produced in each state. In both models the probability of a high outcome is 1

4 if
investment is low and 1

2 if investment is high, and the two models are equivalent for
an investor with expected utility preferences.

1 There is a general equilibrium literature with moral hazard which uses the probability approach (Prescott
and Townsend 1984a,b; Kocherlakota 1998; Bisin and Gottardi 1999; Lisboa 2001; Zame 2007). Since
in these papers it is assumed that there is a continuum of agents or firms of each type who are subject
to independent shocks, probabilities become proportions and uncertainty in essence disappears. Thus the
issues related to risk aversion and aggregate uncertainty, which we study and which arise when there are
finitely many agents and firms, are not studied in these papers.
2 Roughly speaking this is a modified version of Kolmogorov’s extension theorem which states that given
a probability representation of a random variable by a distribution function F : R → [0, 1], there exists a
probability space (�, F , P) such that the random variable can be viewed as a map from � to R and the
probability distribution induced by P coincides wih F .
3 We thank a referee for suggesting this example as a simple way of showing the relation between the
state-of-nature and the probability representation.
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The probability approach to general equilibrium 3

If description of production possibilities were the only criterion for the choice of a
model, then the choice would be clear: the state-of-nature model, being more general,
should be the reference model. However the description of production possibilities is
only half the model. The other half describes the contracts (markets) which are used to
share risks and direct investment. A state-of-nature model assumes that contracts are
contingent on the exogenous states of nature, and in a model with production, essen-
tially the only case which yields a well-defined objective for a firm is when markets are
complete with respect to the states of nature. In the probability model, states of nature
are left unspecified and the contracts are assumed to be contingent on the possible out-
comes of the firms’ investment. Implicit in this approach is the assumption that even if
in principle with “sufficient knowledge” the outcome of each firm’s investment could
be traced back to primitive causes—states of nature whose probability of occurrence
is independent of firms’ actions—these states are too difficult to describe and/or to
verify by third parties to permit contracts based on their occurrence to be traded.4 That
this assumption is realistic seems to be confirmed by the striking fact that the contracts
which are used to finance investment and share production risks—bonds, equity and
derivative securities—are either non contingent or based on realized profits and prices,
rather than on exogenous events with fixed probabilities.

These security markets have undergone a remarkable development in the last thirty
years with the introduction of more and more derivative contracts. We will use this
observation to justify our assumption that the markets are sufficiently rich to span the
uncertainty in the outcomes of the firms: this means that it is possible (at a cost) to
find a portfolio of bonds, equity contracts and derivatives whose payoff is one unit
if a given outcome for the firms is realized, and nothing otherwise. As Ross (1976)
showed, in a two-period model this is always possible if a sufficient number of options
are introduced. In this paper we assume that this full spanning assumption is satisfied.
In the formal model the full spanning assumption appears as the assumption that for
each possible outcome there is a contract which delivers one unit of income if this
outcome is realized and this contract has a well defined price at the initial date.

The full spanning assumption in a probability representation of a production econ-
omy is typically much less restrictive than the assumption of complete markets in the
associated state-space representation. If contracts are based on outcomes and there is
full spanning, then the number of independent securities is equal to the number of
outcomes. If the probabilities of outcomes are influenced by investment, but the prob-
abilities of the states are to remain independent of investment, then any state-space
representation must have more states than outcomes, so that markets are necessarily
incomplete in the sense of GEI. In the simple example given above, although it is
convenient to choose a representation with four equiprobable states, we could make
do with three states, but no less: in order that the probability of the high output is

4 The difficulty of using the state-of-nature approach has mainly been discussed in the context of insurance
(Erlich and Becker 1972; Marshall 1976). Marshall argues that the typical reason that the approach cannot
be used is because it would be “too costly” for insurance companies to specify precisely in a contract
ex-ante, and to verify ex-post, the states of nature that can lead to an accident and whose probabilities are
independent of the actions of the insured agent. Actual insurance contracts are written directly on the “value
of the loss”, an economic outcome which is typically easy to describe and verify, and whose probability of
occurrence is almost certain to be influenced by the actions of the insured agent.
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4 M. Magill, M. Quinzii

different when the investment levels differ, there must be at least one state in which
high investment results in the high outcome and low investment results in the low
outcome. Thus there must be more states than outcomes and markets are incomplete.

Since there is no satisfactory resolution of the choice of the objective function for
firms when markets are incomplete, if we take as a stylized fact that contracts depend
on outcomes, then there is no point in adopting a state-space representation of a pro-
duction economy. It is better to proceed directly to a new analysis of equilibrium using
the probability representation.

We consider therefore a simple two-period model of a production economy in which
firms make investment decisions at date 0 which influence the probability distribution
of their output at date 1. If we anticipate that under favorable conditions an equilibrium
will be Pareto optimal, then the first task is to derive what firms “should do”, namely
the criterion that they should adopt to lead the economy to Pareto optimality: we can
then discuss whether firms will have an incentive to adopt such a criterion. The first-
order conditions for Pareto optimality lead to a nonlinear criterion which expresses a
firm’s contribution to the social utility of date 1 output, net of the cost of investment
at date 0.

Let us try to explain in an intuitive way why such a criterion emerges when we
use the probability approach, and why it differs from the standard market-value crite-
rion when the state space representation is used. Note first that when the distribution
of aggregate output among consumers is efficient and agents have Von-Neumann-
Morgernstern preferences, the social utility of date 1 consumption (output) is of the
form

∑
s∈S ps�(Ys) where (ps)s∈S are the probabilities, (Ys)s∈S is aggregate output

and � is a social utility function. If we adopt a state-space representation, then S is the
set of states of nature, for each s ∈ S the probability ps is fixed, and firms’ investments
influence the quantity of output in each state: the marginal social benefit of increasing

firm k’s investment ak is
∑

s∈S ps�
′(Ys)

∂Ys
∂ak

. Since ∂Ys
∂ak

= ∂yk
s

∂ak
, where yk is the output

of firm k, and since the prices are the marginal social utilities (ps�
′(Ys))s∈S , the mar-

ginal revenue of firm k coincides with the marginal social benefit of investment. Thus
when markets are complete maximizing the present value of profit (the market value
of the firm) leads to an efficient choice of investment. If on the other hand we adopt
the probability representation, then S denotes the the set of possible date 1 outcomes
of the firms, and the firms’ investment decisions a influence the probabilities ps(a):
the marginal social benefit of increasing firm k’s investment is then

∑
s∈S

∂ps
∂ak

�(Ys).
Thus with the probability representation it is social utility rather than marginal utility
which defines a firm’s investment criterion.

Applying a normative approach to the probability representation of production
thus leads to a concept of equilibrium, which we call a strong firm-expected-utility
(SFEU) equilibrium, in which investors (consumers) share risks on markets, and firms
choose investment to maximize the expected social utility criterion. The qualifier
“strong” refers to the strong informational assumption required to implement such an
equilibrium: to know the social utility function, firms must know all the individual
agents’ utility functions—in particular their risk aversion. So at first sight with the
probability representation, prices seem to have lost their fundamental role of con-
veying all the requisite information to firms. However all is not lost. For what firms
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The probability approach to general equilibrium 5

need to know to make socially efficient investment decisions are differences in social
utility associated with different outcomes, and this, or at least an estimate of it, can be
obtained by “integrating” the marginal utilities whose values are given by the prices.
Thus in the end firms can back out an estimate of the social utility function from the
prices, so that prices once again convey the requisite information to firms.

To formalize this informational role of prices we introduce a new concept of con-
strained optimality: this is a Pareto optimum constrained by the condition that the
“planner” does not have access to more information regarding agents’ utility func-
tions than that conveyed by the prices, and we call this a second-best optimum. The
concept of equilibrium which satisfies the first-order conditions for second-best opti-
mality is then called an FEU equilibrium. In such an equilibrium each firm constructs
an estimate of the social utility function using the information on marginal utilities
contained in the prices, and then chooses its investment to maximize its contribution
to expected social welfare using this estimated social utility function.

As Arrow (1983) pointed out, when a stochastic production model departs from
the state-of-nature representation, lack of convexity may present problems. In Sect. 6
we examine the convexity (concavity) assumptions needed to obtained existence and
(constrained) optimality of equilibrium. Unlike in the state-of-nature model, with the
probability model the convexity assumptions needed to prove existence of an equilib-
rium are weaker than those needed to obtain optimality. To get existence, it suffices to
have a stochastic version of decreasing returns to scale for the investment of each firm.
This however is not sufficient to imply the joint concavity assumption on the upper-
cumulative distribution function of aggregate output needed to prove optimality of
equilibrium.

The paper is organized as follows. Section 2 presents the model of a production
economy using the probability approach. Section 3 contains the first-best analysis
which leads to the expected utility criterion for each firm and the associated concept
of a strong FEU equilibrium. Section 4 introduces the concept of second-best optimal-
ity where agents’ utility functions are not known, and Sect. 5 studies the related weaker
concept of an FEU equilibrium in which firms only need to know prices. Section 6
establishes the normative properties of an FEU and a strong FEU equilibrium, and
gives conditions under which an equilibrium exists. Section 7 concludes with some
remarks on directions for future research.

2 Probability approach to production economy

This section presents the basic model of a production economy using the probability
approach. To contrast the properties of this model, in which actions influence prob-
abilities of outcomes with the properties of the standard state-of-nature production
model, we focus on the simplest model of a two-period finance economy in which
agents have separable Von-Neumann-Morgenstern utilities and the only risks to which
they are exposed are those which come from the production sector.

Consider therefore a two-period economy (t = 0, 1), with a single good (income)
and a finite number of agents (i = 1, . . . , I ) and firms (k = 1 . . . , K ). Each firm
makes an investment at date 0 which leads to a probability distribution over a finite
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6 M. Magill, M. Quinzii

number of possible outcomes (output levels) at date 1. Let ak ∈ R+ denote the invest-
ment (action) of firm k at date 0 and let yk denote the date 1 random output which
can take the Sk values (yk

1 , . . . , yk
Sk

), ranked in increasing order. With a slight abuse
of notation we let Sk denote the index set for the possible output levels of firm k as
well as the number of its elements.5 A typical element of Sk is denoted by sk , and
sk > s′

k implies yk
sk

> yk
s′
k
. The outcome space for the economy is S = S1 × · · · × SK

which describes all the possible outcomes for the K firms of the economy. Thus if
s = (s1, . . . , sK ) is an element of S, then the associated vector of outputs of the K
firms is ys = (y1

s1
, . . . , yK

sK
). Using standard notation for a vector of random vari-

ables, let y = (ys)s∈S denote the finite collection of possible outputs for the firms at
date 1 and let Y = ∑

k∈K yk denote the associated aggregate output. For s ∈ S, let
ps(a) denote the probability of outcome s when the investment levels of the firms are
a = (a1, . . . , aK ) ∈ RK+ : we assume ps(a) > 0 for all s ∈ S and a ≥ 0.

Assumption FS (full support) The function p(a) = (ps(a))s∈S is differentiable6 on
RK+ and for each investment level a ∈ RK+ , the support of p(a) = (ps(a))s∈S is equal
to S.

Assumption (FS) implies that all outcomes (yk
sk

)sk∈Sk of firm k are possible for any
level ak of investment: this may seem restrictive since it excludes the case of certainty
where the output of a firm is a deterministic function of its input, or the case where only
some of the values (yk

sk
)sk∈Sk are possible with a certain level of investment. These

cases can however be approximated by placing positive but very small probability on
the appropriate part of the fixed support S. When we analyze the investment decision
of a particular firm k, it is often convenient to write the outcome s as s = (sk, s−k)

where s−k = (s1, . . . , sk−1, sk+1, . . . , sK ), and use the same convention for the firms’
investment decisions a = (ak, a−k).

Each agent i ∈ I has initial resources consisting of an amount wi
0 of income at

date 0, and initial ownership shares δi = (δi
k)k∈K of the firms: agents have no initial

endowment of income at date 1, so that all consumption at date 1 comes from the
firms’ outputs.

Assumption IN (initial endowments) For each i ∈ I , agent i’s endowment is (wi
0, δ

i )

∈ R+ × RK+ , and
∑

i∈I wi
0 > 0,

∑
i∈I δi

k = 1, for all k ∈ K .

Assumption (IN) implies that agents have no idiosyncratic risks and that all the
risks in the economy are production risks: agents’ consumption streams will thus
only vary with the outputs of the firms. Let xi = (xi

0, (xi
s)s∈S) denote a consumption

stream for agent i . We assume that agent i’s preferences, represented by the utility
function Ui , are separable across time and have the expected utility form for future
risky consumption. To avoid boundary solutions which are not natural in a one-good
(income) model, we assume that the marginal utility of consumption tends to infinity
when consumption tends to zero: we say that a function f : R+ → R satisfies the
Inada condition if lim f (x) = +∞ when x → 0+.

5 In this paper we use the same capital letter for a set and the number of its elements: thus I is the number
as well as the set of agents, K is the number as well as the set of firms, ....
6 For brevity, we use the convention that “differentiable” means “continuously differentiable”.
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The probability approach to general equilibrium 7

Assumption EU (expected utility) For each i ∈ I , there exist increasing, differen-
tiable, strictly concave functions (ui

0, ui
1): R+ → R, satisfying the Inada condition,

such that

Ui (xi ; a) = ui
0(xi

0) +
∑

s∈S

ps(a)ui
1(xi

s)

An agent’s utility Ui (xi ; a) depends not only on the consumption stream xi but
also on the probability p(a) of the outcomes, which is determined by the investments
a made by the firms at date 0. It is convenient to let E(U, w0, δ, y, p) summarize
the above economy, in which the agents’ utility functions are U = (Ui )i∈I , their
endowments are w0 = (wi

0)i∈I and δ = (δi )i∈I , and the production possibilities are
represented by the firms’ outcomes y and the probability function p.

3 First-best analysis and strong FEU equilibrium

In this section we show how the first-order conditions for Pareto optimality lead to
the first concept of equilibrium for the probability model of a production economy.
Let Ys = ∑

k∈K yk
sk

denote the aggregate output of the firms in outcome s, s ∈ S. An
allocation (a, x) is feasible if

∑

i∈I

xi
0 +

∑

k∈K

ak =
∑

i∈I

wi
0,

∑

i∈I

xi
s = Ys, s ∈ S (1)

An allocation (ā, x̄) is Pareto optimal if and only if, for some weights µ = (µi )i∈I ∈
RI+\0, it is a solution to the problem of maximizing social welfare

max
a∈RK+ , x∈R(S+1)I

+

∑

i∈I

µi

(

ui
0(xi

0) +
∑

s∈S

ps(a)ui
1(xi

s)

)

(2)

subject to the feasibility constraints (1).
If (λ̄0, (λ̄s)s∈S) are the Lagrange multipliers associated with the feasibility con-

straints, the FOCs for an interior solution to the maximization problem (2) are

µi u
i ′
0 (x̄ i

0) = λ̄0, µi ps(ā)ui ′
1 (x̄ i

s) = λ̄s, s ∈ S, i ∈ I (3)
∑

s∈S

∂ps

∂ak
(ā)

∑

i∈I

µi u
i
1(x̄ i

s) = λ̄0, k ∈ K (4)

The FOCs (3) express the equalization of the marginal rates of substitution of the
agents required for an efficient distribution of output among agents: these conditions
will be satisfied if markets are used to allocate the available output of firms to the
agents. Since the FOCs (4) for investment involve the agents’ utility functions, they
do not coincide with the first-order conditions for maximizing firms’ profits. The FOCs
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8 M. Magill, M. Quinzii

can be written in an equivalent form which is useful for our analysis by exploiting the
separability of agents’ preferences.

For fixed x̄0 = (x̄ i
0)i∈I , the function �x̄0 : R+ → R defined by

�x̄0(η) = max

{
∑

i∈I

ui
1(ξi )

ui ′
0 (x̄ i

0)

∣
∣
∣
∣
∣
ξi ≥ 0, i ∈ I,

∑

i∈I

ξi = η

}

(5)

is called the sup-convolution of the I functions

(
ui

1

ui ′
0 (x̄ i

0)

)

i∈I

. �x̄0(η) is the maxi-

mum social welfare that can be attained by distributing η units of good to I agents
with utility functions (ui

1)i∈I , when the weight of agent i in the social welfare function
is 1/ui ′

0 (x̄ i
0). Using the first-order conditions and the properties of ui

1, it is easy to see
that (ξ∗

i )i∈I � 0 is solution of (5) if and only if
∑

i∈I ξ∗
i = η and there exists a scalar

π∗ > 0 such that

ui ′
1 (ξ∗

i )

ui ′
0 (x̄ i

0)
= π∗, i ∈ I

Using the envelope theorem it is then easy to see that �′̄
x0

(η) = π∗ (see e.g Magill
and Quinzii 1996 for properties of the sup-convolution function).

The FOCs (3) are equivalent to the existence of a vector π̄ = (π̄s)s∈S � 0, with

π̄s = λ̄s
ps (ā)λ̄0

, such that

ui ′
1 (x̄ i

s)

ui ′
0 (x̄ i

0)
= π̄s, ∀s ∈ S, ∀i ∈ I (6)

Such a common vector of marginal rates of substitution between date 0 consumption
and consumption in outcome s at date 1 is called a vector of stochastic discount fac-
tors. Given the properties of the function �x̄0 just described, the FOCs (3) imply that,

for all s ∈ S, �x̄0(Ys) = ∑
i∈I

ui
1(x̄ i

s )

ui ′
0 (x̄ i

0)
, so that the FOCS (3) and (4) are equivalent to

the existence of a vector π̄ of stochastic discount factors satisfying (6) and

∑

s∈S

∂ps

∂ak
(ā)�x̄0(Ys) − 1 = 0, k ∈ K (7)

To find a concept of equilibrium which leads to Pareto optimal allocations, note
that the first-order conditions (7) will hold if each firm k chooses ak to maximize the
objective function V k(ak, ā−k) defined by

V k(ak, ā−k) =
∑

s∈S

ps(ak, ā−k)�x̄0(Ys) − ak (8)
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The probability approach to general equilibrium 9

V k(ak, ā−k) is the contribution of firm k to the (discounted) expected social utility
when its investment is ak and the investments of other firms are ā−k . The utility func-
tion in firm k’s objective depends on the preferences of all agents7 through (5) and
depends on aggregate output rather than just the output of firm k: this is because the
social value of firm k’s output depends of the output of the other firms to which it
is added. Let Y −k

s−k denote the output produced by firms other than k in outcome s,

i.e. Y −k
s−k = ∑

k′ 	=k yk′
sk′ . If the firms’ outputs are independent random variables so that

ps(a) = ∏
k∈K pk

sk
(ak), then V k can be written as

V k(ak, ā−k) =
∑

sk∈Sk

psk (ak)
∑

s−k∈S−k

ps−k (ā−k)�x̄0(yk
sk

+ Y −k
s−k ) − ak

or

V k(ak, ā−k) =
∑

sk∈Sk

psk (ak)	
k(yk

sk
; ā−k) − ak

where the utility function 	k for the output of firm k is the average value of the social
utility obtained by adding yk to the output of other firms—an average which depends
on the probability of the total output of the other firms, and thus on these firms’ invest-
ments. If the outcomes are correlated rather than independent, 	k will also depend
on ak since it will be a conditional expectation rather than a simple expectation of
�x̄0(yk + Y −k).

As usual it is helpful to decompose the equilibrium of a production economy into
two parts—an equilibrium in the allocation of consumption among agents which takes
place through markets, and an equilibrium in the choice of investment by the firms.
Consider first an equilibrium in the allocation of consumption: since the investment
of firms is taken as given, we may call this a consumption equilibrium with fixed
investment. Let P = (P0, (Ps)s∈S) denote the vector of prices at date 0 for delivery of
income at date 0 and in the different outcomes at date 1: thus Ps (resp P0) is the price
at date 0 of a promise to deliver one unit of good (income) at date 1 in outcome s (resp
at date 0). It is natural to normalize the prices so that P0 = 1. We let P1 = (Ps)s∈S)

denote the vector of present-value prices for income at date 1. Thus P = (1, P1).

Definition 1 (x̄, P̄) ∈ R
I (S+1)
+ × RS+1+ is a consumption equilibrium with fixed

investment ā ∈ RK+ , for the economy E(U, w0, δ, y, p), if

(i) each agent i ∈ I chooses consumption x̄ i which maximizes ui
0(xi

0) + ∑
s∈S ps

(ā)ui
1(xi

s) subject to the budget constraint

P̄xi ≤ wi
0 +

∑

k∈K

δi
k(P̄1 yk − āk) (9)

7 This is the main difference between the expected utility criterion which emerges in our approach from
the first-order condition for optimality, and the objective postulated in Radner (1972). Radner assumed that
each firm maximizes the expected utility of its profit, but did not link the exogenously given utility function
of the firm to the preferences of the consumers/shareholders.
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10 M. Magill, M. Quinzii

(ii) markets clear:
∑

i∈I x̄ i
0 +∑

k∈K āk = ∑
i∈I wi

0,
∑

i∈I x̄ i
s = ∑

k∈K yk
sk

, ∀s ∈ S

A consumption equilibrium with fixed investment is a standard competitive equilib-
rium of an exchange economy in which agents have preferences Ui (xi , ā) and initial
resources (wi

0 −∑
k∈K δi

k āk ,
∑

k∈K δi
k yk). It can also be interpreted as an equilibrium

in which agents trade Arrow securities based on the firms’ outcomes or, equivalently,
as the reduced form of an equilibrium in which agents have initial equity in the firms
and trade securities whose payoffs are based on the profits of the firms—equity con-
tracts, bonds, options, indices on options—which are sufficiently rich to span the
outcome space S. Thus implicit in Definition 1 is the assumption that the securities
in the extensive-form equilibrium satisfy the full spanning condition with respect to
outcomes.

Note that in Definition 1, from the point of view of investors the firms’ outcomes
play exactly the same role as the states of nature in the standard GE model. Since
investors take the firms’ investment decisions ā as independent of their trades, the
probabilities (ps(ā)) are fixed and the exchange part of the model is an Arrow–Debreu
economy in which uncertainty is modeled by the “states” s ∈ S. Thus while the dis-
tinction between states of nature and outcomes is crucial for a production economy in
which firms’ actions influence outcomes, it is irrelevant for an exchange economy.8

We now extend this concept of equilibrium to include the choice of investment
by firms. Since firms maximize an expected utility criterion and since this concept
leads under appropriate assumptions to first-best optimality, we call it a “strong firm-
expected-utility” (SFEU) equilibrium.

Definition 2 (ā, x̄, P̄) ∈ RK+ × R
I (S+1)
+ × RS+1+ is a strong firm-expected-utility

equilibrium (SFEU equilibrium) for the production economy E(U, w0, δ, y, p) if

(i) (x̄, P̄) is a consumption equilibrium with fixed investment ā
(ii) for each firm k ∈ K the investment āk maximizes the expected social utility of

its investment

V k(ak, ā−k) =
∑

s∈S

ps(ak, ā−k)�x̄0(Ys) − ak

where �x̄0 is the social utility function defined by (5).

The expected utility criterion V k seems rather far removed from the standard cri-
terion for a firm: let us show however that when firms are infinitesimal, it essentially
coincides with the standard market-value (present-value-of-profit) criterion.

Marginal firms: convergence of V k to market value Consider the case where firm
k’s output is “small” in a sense made precise below and where its investment does not
affect the probability of the other firms’ outcomes. We formalize this latter no-exter-
nality condition in the following assumption:

8 This probably explains why finance, which takes the payoffs of securities as given when studying asset
pricing and portfolio theory, is based on the state-of-nature model.

123



The probability approach to general equilibrium 11

Assumption NE (no externality) For all a ∈ RK+ and s ∈ S, the probability that the
firms different from k have a realization s−k does not depend on ak

∑

sk∈Sk

p(sk ,s−k )(ak, a−k) = ps−k (a−k)

Firms’ outcomes can be stochastically dependent because they are subject to com-
mon shocks even though the investment of any firm has no direct effect on the prob-
ability of other firms’ outcomes. Suppose for example that there is a vector γ of
unobservable common shocks, with distribution function H , which affects the prob-
abilities of the firms’ outcomes and that, conditional on γ , the firms’ outcomes are
independent. Then

ps(a) =
∫

p1
s1

(a1, γ ) · · · pK
sK

(aK , γ ) dH(γ )

and Assumption NE is satisfied even though the firms’ outcomes are stochastically
dependent.

Since aggregate output is the sum of firm k’s output and the output of all other
firms, Ys = yk

sk
+ Y −k

s−k , the objective function V k can be expressed using the Taylor

formula around Y −k : there exists (θk
s )k∈K ,s∈S with 0 ≤ θk

s ≤ 1 such that

V k(a) =
∑

s−k

∑

sk

p(sk ,s−k )(ak, a−k)
(
�x̄0(Y

−k
s−k ) + �′̄

x0
(Y −k

s−k ) yk
sk

+1

2
�′′̄

x0
(Y −k

s−k + θk
s yk

sk
)(yk

sk
)2

)

− ak (10)

Let m denote the bound on the the relative risk aversion.

−ξ �′′̄
x0

(ξ)

�′̄
x0

(ξ)
≤ m

of the utility function �x̄0 , for ξ lying in the range of values taken by Y −k and Y ,
where we assume that these random variables take values bounded away from 0. We
say that firm k is marginal if there exists an ε > 0 sufficiently small (see below) such

that
yk

sk

Y −k
s−k

< ε for all sk ∈ Sk , s−k ∈ S−k . For such a firm the quadratic term in (10)

satisfies ∣
∣
∣
∣
1

2
�′′̄

x0
(Y −k

s−k + θk
s yk

sk
)(yk

sk
)2

∣
∣
∣
∣ ≤ 1

2
m ε �′̄

x0
(Y −k

s−k ) yk
sk

(11)

By Assumption NE the first term on the right side of (10) does not depend on ak and
can thus be omitted from the objective of firm k. In view of (11) if ε is sufficiently
small, the quadratic term in (10) is negligible relative to the linear term which can be
written as

Ea(�′̄
x0

(Y −k) yk) = Ea(�′̄
x0

(Y −k))Ea(yk) + cova(�′̄
x0

(Y −k), yk)
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12 M. Magill, M. Quinzii

Since ε is small and Y −k
s−k ≤ Y −k

s−k + yk
sk

≤ Y −k
s−k (1 + ε), Ea(�′̄

x0
(Y −k)) is close to

Ea(�′̄
x0

(Y )) = 1
1+r̄ , where r̄ is the interest rate implied by the price vector P̄ . Thus

for a marginal firm the criterion V k can be replaced by the criterion

V̂ k(a) = Ea

(
�′̄

x0
(Y −k) yk

)
− ak = Ea(yk)

1 + r̄
+ cova

(
�′̄

x0
(Y ), yk

)
− ak (12)

Removing the quadratic term in (10) implies that firm k does not worry about its
own risk in its choice of investment, but only takes into account the covariance of its
output with the stochastic discount factor. The criterion V̂ k is similar to the criterion
which leads to optimality in the state-of-nature approach with complete markets: for
V̂ k(a) = ∑

s∈S ps(a)π̄s yk
s − ak , so that V̂ k is just the present value of the profit of

firm k, or equivalently its market value.

4 Non-marginal firms and second-best analysis

One of the powerful conclusions of the Arrow–Debreu state-space approach is that
profit maximization leads to efficiency, regardless of the size of the firms which are
considered, provided the firms are price takers and do not seek to manipulate prices.
One may discuss whether the price-taking behavior is realistic for large firms but, in the
setting of capital markets, taking security prices as given is widely regarded as a good
approximation, even for large corporations. Under these conditions, when the Arrow–
Debreu state-space approach is applied to capital markets, all firms, both marginal
and non-marginal, should seek to maximize market value. An important corollary of
this conclusion is that a firm needs no further information about the preferences and
technology of other consumers and firms than that contained in the prices. If, with
current and anticipated prices, profit cannot be increased, then the firm’s investment
is optimal both for its shareholders and for the economy as a whole.

In the probability model the criterion V k for a firm, which comes from the normative
analysis, requires knowing the social welfare function �x̄0 and this in turn requires
knowing the utility functions of the consumers. This is a demanding requirement,
since revelation of preferences is problematic both because of the amount of informa-
tion that needs to be transmitted and because of the distortions typically created by
incentives. Do prices in the probability model loose all their usefulness for conveying
the information about the preferences of consumers? Intuitively this should not be the
case since what firms need to know are utilities, or more precisely as we shall see,
differences in utilities, and prices signal marginal utilities.

To study the the information that can be conveyed by prices in the probability
model, we explicitly introduce the assumption that firms do not know agents’ utility
functions, but seek to maximize a criterion which is their best estimate of the criterion
V k . To show how such a criterion can be found, we first introduce the concept of a
second-best optimum which explicitly takes into account the informational constraint
that agents’ utility functions are not known. In the next section we show how to derive
the approximate criterion by analyzing the FOCs for a constrained efficient allocation.
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The probability approach to general equilibrium 13

To describe the ‘best’ outcomes that can be achieved when firms do not know the
utility functions of consumers, we need to modify the usual concept of Pareto opti-
mality to take this constraint into account. While firms do not have access to direct
information on the utility functions (Ui )i∈I , they do know something about con-
sumers’ preferences since they can observe the prices associated with a consumption
equilibrium (x, P), and this gives information on the common marginal rates of substi-
tution of the consumers at the equilibrium consumption x . We are thus led to consider
allocations (a, x, P) in which the consumption component x can be achieved, for
some characteristics of the consumers, by trading on markets at prices P when invest-
ment is fixed at a. We call such allocations (a, x, P) “constrained feasible” because
they incorporate the constraint that the consumption component x is achieved through
trading on markets at prices P .9 When the firms’ investment a is fixed, the utility
function Ui (xi , a) of an agent satisfying EU is characterized by the pair (ui

0, ui
1): we

write Ui = (ui
0, ui

1) and let U = (Ui )i∈I denote the profile of utility functions of the
I consumers. This leads to the following definition.

Definition 3 (a, x, P) is a constrained feasible allocation if for some profile of util-
ity functions U satisfying EU, and of endowments (w0, δ) satisfying IN, (x, P) is a
consumption equilibrium with fixed investment a.

In the consumption equilibrium (x, P) with fixed investment a, the first-order con-

ditions of the maximization problem of the consumers are
ps(a)ui ′(xi

s)

ui ′(xi
0)

= Ps , s ∈ S,

so that the stochastic discount factor π associated with the equilibrium is given by

πs = Ps

ps(a)
, s ∈ S (13)

The following monotonicity properties of a consumption equilibrium play an impor-
tant role in the second-best analysis. Let xi

1 = (xi
s)s∈S denote the date 1 part of the

agent’s consumption stream xi .

Proposition 1 (monotonicity) Let (x, P) be a consumption equilibrium with fixed
investment a and let π be the associated stochastic discount factor. Then

(i) each agent’s date 1 consumption vector xi
1 is comonotone with date 1 aggregate

output Y , i.e. Ys′ ≥ Ys implies xi
s′ ≥ xi

s , and Ys′ > Ys implies xi
s′ > xi

s , for all
s, s′ ∈ S

(ii) the stochastic discount factor π is antimonotone with date 1 aggregate output Y ,
i.e. Ys′ ≥ Ys implies πs′ ≤ πs , and Ys′ > Ys implies πs′ < πs , for all s, s′ ∈ S.

These are well-known properties of Pareto optimal allocations in economies with
separable preferences (see e.g. Magill and Quinzii 1996): when risk markets are com-
plete, in particular when there are no uninsurable idiosyncratic risks, all agents con-
sume more when aggregate output is high than when aggregate output is low. However

9 Introducing prices in the definition of a constrained feasible allocation is also used in the state-of-nature
general equilibrium model with incomplete markets (GEI) to study the best that can be achieved under the
constraint that financial markets are incomplete (see Geanakoplos and Polemarchakis 1986; Geanakoplos
et al. 1990 and the ensuing literature).
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14 M. Magill, M. Quinzii

the variability of an agent’s consumption depends on his/her risk-aversion, the con-
sumption of a risk-tolerant agent varying more than that of a more risk-averse agent.
This monotonicity property implies that, for given production of other firms, if firm k
produces more, all agents consume more.

Given the Second Theorem of Welfare Economics, the statement that (a, x, P) is a
constrained feasible allocation can be replaced by the statement that (a, x) is a feasible
allocation and that, for some utility functions, the agents’ stochastic discount factors
at x are equal to the stochastic discount factor induced by P via (13). We may thus
equivalently write a constrained feasible allocation (a, x, P) as the triple (a, x, π). For
x ∈ R

(S+1)I
++ and π ∈ RS++, let U(x, π) denote the set of utility profiles U = (Ui )i∈I

such that for all i ∈ I , Ui satisfies Assumption EU and agent i’s stochastic discount
factor at xi is equal to π ,

U(x, π) =
⎧
⎨

⎩
(Ui )i∈I = (ui

0, ui
1))i∈I

∣
∣
∣
∣
∣
∣

Ui satisfies EU
ui ′

1 (xi
s)

ui ′
0 (xi

0)
= πs, ∀ s ∈ S

⎫
⎬

⎭
(14)

Proposition 2 (a, x, π) is a constrained feasible allocation if and only if

(i) it is feasible with investment a, i.e,
∑

i∈I xi
0+∑

k∈K ak = ∑
i∈I wi

0,
∑

i∈I xi
s =

Ys, s ∈ S
(ii) U(x, π) 	= ∅.

Proof The result follows from the First and Second Welfare Theorems. �

In the standard definition of an efficient allocation, a fictitious planner is assumed

to examine the current allocation to consider if there is another feasible allocation
which is preferred by all consumers: thus to decide whether or not the current allo-
cation is efficient, the planner must know the utility functions of all agents. If firms
do not know the preferences of agents—or more precisely, do not know more about
consumers’ preferences than that they are consistent with the observed stochastic dis-
count factor π—then to obtain a consistent definition of “constrained efficiency” the
planner should be restricted to the same limited information regarding consumers’
utility functions. Since the planner knows less about the utility functions of consum-
ers than in the standard setting, the concept of an inefficient allocation needs to be
weakened: an allocation (a, x) with observed stochastic discount factor π is said to
be inefficient if there exists another feasible allocation (ã, x̃) which dominates the
allocation (a, x) for all conceivable utility functions consistent with the observed π ,
i.e. for all U ∈ U(x, π). More precisely

Definition 4 A constrained feasible allocation (a, x, π) is inefficient if there exists an
allocation (ã, x̃) with

∑
i∈I x̃ i

0 + ∑
k∈K ãk = ∑

i∈I wi
0,

∑
i∈I x̃ i

s = Ys, s ∈ S, such
that, for every profile of utility functions (Ui )i∈I = (ui

0, ui
1)i∈I ∈ U(x, π)

ui
0(x̃ i

0) +
∑

i∈I

ps(ã)ui
1(x̃ i

s) > ui
0(xi

0) +
∑

i∈I

ps(a)ui
1(xi

s), ∀ i ∈ I
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The probability approach to general equilibrium 15

A constrained feasible allocation which is not inefficient is said to be constrained
Pareto optimal.

This definition incorporates the constraint that the planner only has limited infor-
mation regarding the preferences of the agents when he seeks to change the current
allocation to one that improves the welfare of all agents: he must be sure to improve the
allocation for all potential utility functions consistent with the observed vector of prices
P (or equivalently stochastic discount factor π ) at the current consumption allocation
x . Since for fixed a, by the First Welfare Theorem, the distribution of output among
agents is efficient, the only possible source of inefficiency is an inappropriate choice of
investment at date 0. Note that only a standard feasibility constraint is imposed on the
dominating allocation: the planner does not need to respect market prices or agents’
budget constraints in reallocating goods. Also, since agents have strictly monotone
preferences, w.l.o.g. a social improvement is defined as a strict improvement for every
agent in the economy.

We will see that some similarity in the use of information by firms is needed to
achieve a constrained Pareto optimal allocation: otherwise firms’ investment choices
are only efficient in the following weaker sense.

Definition 5 A constrained feasible allocation (a, x, π) is firm k-inefficient if there
exists an allocation (ã, x̃) with ãk′ = ak′ if k′ 	= k,

∑
i∈I x̃ i

0 + ∑
k∈K ãk = ∑

i∈I wi
0,

∑
i∈I x̃ i

s = Ys, s ∈ S, such that, for every profile of utility functions (Ui =(ui
0, ui

1), i ∈
I ) ∈ U(x, π)

ui
0(x̃ i

0) +
∑

i∈I

ps(ã)ui
1(x̃ i

s) > ui
0(xi

0) +
∑

i∈I

ps(a)ui
1(xi

s), ∀ i ∈ I

A constrained feasible allocation which is not firm k-inefficient is said the be firm
k-efficient.

An allocation is k-inefficient if it is possible to improve on it by changing the invest-
ment of firm k and the allocation to the consumers, leaving the investments of all other
firms unchanged.

5 Estimated social utility and FEU equilibrium

Constrained efficient allocations cannot be found by maximizing a social welfare
function since this would require knowing the utility functions of the agents. We thus
proceed directly by studying whether there are marginal changes (da, dx) from a
constrained feasible allocation which can increase the utilities of all agents, for all
possible profiles of their utility functions consistent with the observed prices, i.e. for
all U in U(x, π).

The analysis will make repeated use of the following relation which is the discrete
equivalent of integration by parts. Let X be a discrete random variable taking values
(X1 < X2 < · · · < X S) with probabilities (ps)s∈S , and let F and G = 1 − F denote
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16 M. Magill, M. Quinzii

the associated distribution function and upper cumulative distribution function

F(x) =
∑

{s∈S|Xs≤x}
ps, G(x) =

∑

{s∈S|Xs>x}
ps

It is easy to verify that if h : R → R is a real valued function

E(h(X)) =
∑

s∈S

psh(Xs) = h(X1) +
S−1∑

s=1

G(Xs) (h(Xs+1) − h(Xs)) (IP)

which we will refer to as the integration by parts relation.
The analysis also makes use of the monotonicity properties of a constrained feasi-

ble allocation with respect to aggregate output described in Proposition 1. To exploit
these monotonicity properties it is useful to order the outcome space S = ∏K

k=1 Sk by
increasing values of the date 1 aggregate output Y = ∑

k∈K yk . More precisely the
random variable Y induces a partition of the outcome space S into equivalence classes
on which the aggregate output is constant

s ∼ s′ if Ys =
∑

k∈K

yk
sk

=
∑

k∈K

yk
s′
k

= Ys′

Let 
 denote the set of distinct values of Y : for any σ ∈ 
, s, s′ ∈ S lie in the same
equivalence class (s, s′ ∈ σ ) if Ys = Ys′ = Yσ . Without loss of generality we can
order the elements of 
 in increasing order for Y : σ > σ ′ �⇒ Yσ > Yσ ′ . We let Y
and Y denote the smallest and the largest values of Y respectively: Y = ∑

k∈K yk
1 ,

Y = ∑
k∈K yk

Sk
.

The probability that aggregate output is equal to Yσ when the firms’ vector of
investment is a is

pσ (a) =
∑

{s∈S | Ys=Yσ }
ps(a), σ ∈ 


Let F(η, a) and G(η, a) denote the distribution function and upper distribution func-
tions of Y given a defined by

F(η, a) =
∑

{σ∈
|Yσ ≤η}
pσ (a), G(η, a) = 1 − F(η, a)

Consider a constrained feasible allocation (ā, x̄, π̄). Since (x̄, P̄), with P̄s =
ps(ā)π̄s , is a consumption equilibrium with fixed investment, by Proposition 1, x̄

and π̄ only depend on σ : Ys = Ys′ = Yσ �⇒ x̄s = x̄s′ def= x̄σ , π̄s = π̄s′ def= π̄σ , and x̄
increases with σ while π̄ decreases with σ . The consumption equilibrium (x̄, P̄) has
associated with it a social welfare function W : RI (S+1)

+ × RK+ → R
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The probability approach to general equilibrium 17

W (x, a) =
∑

i∈I

W i (xi , a), W i (xi , a) = 1

ui ′(x̄ i
0)

Ui (xi , a), i ∈ I

which is maximized at x̄ when a = ā. To see whether it is possible to make a marginal
improvement from (ā, x̄) by changing firm k’s investment, consider a marginal change
dak followed by a reallocation (dxi )i∈I of the agents’ consumption streams: such a
change is feasible if

∑
i∈I dxi

0 +dak ≤ 0,
∑

i∈I dxi
s ≤ 0. If there is a feasible change

(dak, (dxi )i∈I ) such that dW i > 0, for all i and every profile (Ui )i∈I ∈ U(x̄, π̄),
then (ā, x̄, π̄) is constrained inefficient.

There is no loss of generality in assuming that the date 1 change dxi
1 = 0 for all

agents since the date 1 aggregate resources do not change and these resources are
shared efficiently at x̄ : there is no possibility of increasing the utility of all agents by
redistributing date 1 output. Then

dW i = dxi
0 + 1

ui ′
0 (x̄ i

0)

∑

σ∈


∂

∂ak
pσ (ā)ui

1(x̄ i
σ )dak

which, in view of the (IP) relation , can be written as

dW i = dxi
0 +


−1∑

σ=1

Gak (Yσ , ā)
ui

1(x̄ i
σ+1) − ui

1(x̄ i
σ )

ui ′
0 (x̄ i

0)
dak

where Gak denotes the partial derivative of the upper cumulative function G with
respect to ak . Given the monotonicity properties of x̄ , even though the planner does
not know Ui he can use the stochastic discount factor to obtain bounds on the differ-

ence
ui

1(x̄ i
σ+1)−ui

1(x̄ i
σ )

ui ′
0 (x̄ i

0)
. Since ui

1 is concave and ui
1(x̄ i

σ+1) − ui
1(x̄ i

σ ) =
∫ x̄ i

σ+1

x̄ i
σ

ui ′
1 (t) dt ,

it follows that

π̄σ+1(x̄ i
σ+1 − x̄ i

σ ) <
ui

1(x̄ i
σ+1) − ui

1(x̄ i
σ )

ui ′
0 (x̄ i

0)
< π̄σ (x̄ i

σ+1 − x̄ i
σ ) (15)

Let W i
ak

and W i
ak

respectively denote the supremum and the infimum of W i
ak

for all

admissible utility functions Ui satisfying Assumption EU and such that the stochastic
discount factor at x̄ i is π̄ . To find W i

ak
and W i

ak
, we use (15) and define the two subsets

of 



+ = {σ ∈ 
 | Gak (Yσ , ā) > 0}, 
− = {σ ∈ 
 | Gak (Yσ , ā) < 0} (16)

where for simplicity we omit the dependence of the sets on k, since firm k is fixed
for this local analysis. 
+ is the set of outcomes σ such that a marginal increase dak

in the investment of firm k from āk increases the probability that the production is
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18 M. Magill, M. Quinzii

greater than or equal to Yσ , while 
− is the set of outcomes for which the inequality
is reversed. If, for example, increasing the investment of the firm leads to a first-order
stochastic dominant shift in the distribution of its output, then 
+ = {1, . . . , 
 − 1},
and 
− = ∅. If increasing investment ak only leads to a second-order stochastic dom-
inant shift in the distribution of its output then both 
+ and 
− may be non empty.
With this notation,

W i
ak

=
∑


+
Gak (Yσ , ā)π̄σ (x̄ i

σ+1 − x̄ i
σ ) +

∑


−
Gak (Yσ , ā)π̄σ+1(x̄ i

σ+1 − x̄ i
σ )

W i
ak

=
∑


+
Gak (Yσ , ā)π̄σ+1(x̄ i

σ+1 − x̄ i
σ ) +

∑


−
Gak (Yσ , ā)π̄σ (x̄ i

σ+1 − x̄ i
σ )

The bounds on the marginal benefit of agent i from a marginal change (dak, dx) are
then

dxi
0 + W i

ak
dak < dW i < dxi

0 + W i
ak

dak if dak > 0 (17)

dxi
0 + W i

ak
dak < dW i < dxi

0 + W i
ak

dak if dak < 0 (18)

Suppose that
∑

i∈I W i
ak

≥ 1. Consider a change with dak > 0, dxi
0 = −W i

ak
dak (so

that dxi
0+W i

ak
dak = 0). Since 0 = ∑

i∈I dxi
0+∑

i∈I W i
ak

dak ≥ ∑
i∈I dxi

0+dak , the

change is feasible and, from (17), dW i > 0 for all i . In the same way, if
∑

i∈I W i
ak

≤ 1,

consider a change with dak < 0, dxi
0 = −W i

ak
dak . The change is feasible and from

(18), dW i > 0 for all i ∈ I . We have thus proved the following proposition:

Proposition 3 (FOC for CPO) Let (ā, x̄, π̄) be a constrained feasible allocation, let

+ and 
− denote the subsets of the aggregate outcomes 
 defined by (16), and let

Wak =
∑


+
Gak (Yσ , ā)π̄σ (Yσ+1 − Yσ ) +

∑


−
Gak (Yσ , ā)π̄σ+1(Yσ+1 − Yσ )

Wak =
∑


+
Gak (Yσ , ā)π̄σ+1(Yσ+1 − Yσ ) +

∑


−
Gak (Yσ , ā)π̄σ (Yσ+1 − Yσ )

If (ā, x̄, π̄) is constrained Pareto optimal, then

Wak < 1 < Wak (19)

Wak represents the minimal present value of the social gain in expected utility of
consumption at date 1 from an additional unit of investment by firm k at date 0. If
this minimal present-value gain exceeds its marginal cost, which is 1, then it is worth-
while to increase investment: hence the inequality Wa < 1 in (19). Wa is the maximal
present value of the social gain in expected utility of consumption at date 1 from an
additional unit of investment by firm k at date 0 or, in absolute value, the maximal
present value of social loss in expected utility of consumption associated with one unit
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The probability approach to general equilibrium 19

decrease in its investment. If this loss is less that the marginal reduction in cost, then
it is worthwhile to decrease investment: hence the inequality 1 < Wa in (19).

As we saw in Sect. 3 the market-value criterion is close to the FEU criterion (8)
when firms are marginal. The inequality (19) is sufficient to give the sign of the bias
in investment when the market-value criterion is used by a non-marginal firm in place
of the expected social utility criterion (8). Let

M(ak, ā−k) =
∑

s∈S

ps(ak, ā−k)π̄s yk
sk

− ak (20)

denote the firm’s market value viewed as a function of its investment ak . The natural
competitive assumption for this model is that the firm takes the investment ā−k of
the other firms as given as well as the stochastic discount factor π̄ . We show that if
there are no external effects among firms (Assumption NE of Sect. 3) and if each
firm’s investment is productive in the sense of first-order stochastic dominance, then
maximization of market value leads to underinvestment.

Assumption FOSDk (first-order stochastic dominance) Let psk (ak | s−k, a−k)

= p(sk ,s−k )(ak, a−k)

ps−k (a−k)
denote the conditional probability of sk given (s−k, a−k). For

fixed (s−k, a−k), an increase in ak leads to a first-order stochastic dominant shift in
the conditional probability of sk , i.e.

ãk > ak �⇒
∑

{sk |yk
sk

>α}
psk (ãk | s−k, a−k) >

∑

{sk |yk
sk

>α}
psk (ak | s−k, a−k),

∀ α ∈
[

yk, yk
)

Proposition 4 (market value not CPO) Under Assumptions NE and FOSDk, if
(ā, x̄, π̄) is a constrained feasible allocation such that āk is positive and maximizes
the market value M(ak, ā−k), then Wak > 1.

Proof see Appendix.

As we saw above, Wak > 1 implies that a marginal increase in ak , with an appropriate

distribution of the additional date 0 cost among the agents (dxi
0 = −W i

ak
dak, i ∈ I )

increases the utility of all agents for every possible profile of utility functions in
U(x̄, π̄). Thus Proposition 4 asserts that market-value maximization leads to under-
investment.

Estimated social utility Can we find a criterion for the firms, which uses only available
information, and which when maximized leads to a constrained efficient investment?
Such a criterion must incorporate the information on preferences conveyed by the sto-
chastic discount factor π̄ at a constrained feasible allocation. By Proposition 1, π̄σ is
decreasing in σ . Thus there exists a continuous decreasing function φk : [Y , Y ] → R

of aggregate output which coincides with the discount factor π̄σ for each value Yσ in
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[Y , Y ], i.e. φk(Yσ ) = π̄σ , σ ∈ 
. The simplest example of such a function is the
linear interpolation

φk(η) = π̄σ + η − Yσ

Yσ+1 − Yσ

(π̄σ+1−π̄σ ) if η ∈ [Yσ , Yσ+1], σ = 1, . . . , 
−1 (21)

If firm k chooses its investment āk so as to maximize the objective function

Ṽ k(ak, ā−k) =
Y∫

Y

G(η, ak, ā−k)φk(η) dη − ak (22)

then condition (19) for a constrained optimal choice of investment will be satisfied.
For āk will satisfy the first-order condition

1 =
Y∫

Y

Gak (η, āk, ā−k)φk(η) dη =

−1∑

σ=1

Gak (Yσ , ā)

Yσ+1∫

Yσ

φk(η) dη

where we have exploited the property that G is constant on each interval [Yσ , Yσ+1).
Since π̄σ+1 < φk(η) < π̄σ whenever η ∈ (Yσ , Yσ+1), it follows that

π̄σ+1(Yσ+1 − Yσ ) <

Yσ+1∫

Yσ

φk(η) dη < π̄σ (Yσ+1 − Yσ ), σ = 1, . . . , 
 − 1

which implies that inequality (19) is satisfied. To express the objective function Ṽ k in
a more recognizable form, let us integrate φk to obtain the function

�k : [Y , Y ] → R, �k(η) =
η∫

Y

φk(t) dt (23)

which is normalized so that �k(Y ) = 0. �k is a differentiable, concave, increasing
function of aggregate output. Using the (IP) relation, the objective function (22) can
be written as

Ṽ k(ak, ā−k) =

−1∑

σ=1

G(Yσ , ā)
(
�k(Yσ+1) − �k(Yσ )

)
− ak

=
∑

σ∈


pσ (ak, ā−k)�k(Yσ ) − ak (24)

Thus if āk has been chosen to maximize (22), then the firm has chosen its investment
to maximize its contribution to the expected discounted utility �k of date 1 aggregate
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output, net of the cost of investment. Using the relation pσ (a) = ∑
s∈σ ps(a) and

Ys = Yσ for s ∈ σ , the function (24) can be expressed equivalently as an expected
utility on the outcome space S

Ṽ k(ak, ā−k) =
∑

s∈S

ps(ak, ā−k)�k(Ys) − ak (25)

Ṽ k is firm k’s estimate of the expected social utility of its investment in the follow-
ing sense. When agents’ utility functions are not known, the sup-convolution �x̄0 of

the utility functions

(
ui

1
ui ′

0 (x̄ i
0)

)

i∈I
is not known, but its derivative at the output levels

Yσ , σ ∈ 
, is equal to the known discount factor (π̄σ )σ∈
 . Firm k chooses a function
φk which coincides with these known values πσ at the points Yσ , φk(Yσ ) = π̄σ =
�′̄

x0
(Yσ ), “filling in” for the unknown values of the derivative of the social utility

on the intervals (Yσ , Yσ+1). This estimate φk of the derivative is then integrated to
obtain an estimate of the social utility function �x̄0 . There are of course many ways of
passing a continuous decreasing function through the points ((Yσ , π̄σ ), σ ∈ 
) and
each will lead to a different estimate �k of �x̄0 . The non-uniqueness of �k implies
that there can be many possible “second best” investment levels.

Under Assumption NE, Ṽ k can be expressed as an expected utility of firm k’s output

Ṽ k(ak, ā−k) =
∑

sk∈Sk

psk (ak)	
k(yk

sk
; ak, ā−k)

the function 	k being defined by

	k(yk
sk

, ak, ā−k) =
∑

s−k

p(s−k, ā−k |sk, ak)

psk (ak)
�k(yk

sk
+ Y −k

s−k )

	k evaluates the average social utility obtained from the firm’s output yk
sk

, when it is
added to the total output Y −k of the other firms.

We are thus led to a concept of equilibrium in which firms are not required have
more information than that which can be deduced from the equilibrium prices.

Definition 6 Let E(U, w0, δ, y, p) be an economy with K firms satisfying Assump-
tions FS, EU, and IN. (ā, x̄, P̄) is an firm-expected-utility (FEU) equilibrium if

(i) (x̄, P̄) is a consumption equilibrium with investment ā and associated discount
factor π̄

(ii) each firm k ∈ K chooses its investment āk to maximize its estimate of the
expected social utility of its investment

Ṽ k(ak, ā−k) =
∑

s∈S

ps(ak, ā−k)�k(Ys) − ak
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where �k : R+ → R is a concave, increasing, differentiable function such that
�k′(Ys) = π̄s for all s ∈ S.

In a strong FEU equilibrium each firm uses the same social utility function �x̄0

which is the sup-convolution function of the known utility functions

(
ui

1(ξi )

ui ′
0 (x̄ i

0)

)

i∈I
,

while in the second-best setting, since firms do not know agents’ utilities, each firm
derives its estimate �k of the social utility �x̄0 to form its expected utility criterion Ṽ k .
The different estimates �k of the social utility function, which in essence correspond
to the different profiles of utility functions in U(x̄, π̄) that agents could have, generate
the upper and lower bounds Wak and Wak on the marginal benefit of firm k’s invest-
ment which appear in the necessary condition (19) for constrained optimality. The
finer the partition 
 of the interval [Y , Y ], the smaller the possible differences in the
estimated social utility functions �k , and the closer an FEU equilibrium will lie to an
SFEU equilibrium. If the random variable Y were continuous instead of discrete, and
there were a continuum of markets indicating the value of the discount factor π̄(Y )

for every value of Y , then no estimation would be necessary and the function �x̄0

could be constructed from the observed equilibrium prices. To avoid the unrealistic
assumption of a continuum of markets we have adopted a discrete model to study the
properties of an economy in which investment affects probabilities.

Will firms use the objective function ˜V k? An FEU equilibrium has two parts to it:
agents’ choices of consumption x̄ and firms’ choices of investment ā. The choices
in these two components use market prices differently: we can suggestively write
(x̄, P̄) and (ā, (�k)k∈K ) to indicate that consumption choices are made in a standard
way using prices P̄ , while investment choices use the estimated social utility func-
tions (�k)k∈K constructed from the prices P̄ . Can these two distinct uses of prices
in consumption and investment be a source of tension? After all, a firm’s choice of
investment determines not only how probability is spread across date 1 outcomes, but
also the profit paid to its shareholders—perhaps initial owners would prefer that the
firm focus on market value rather than on the expected social utility of its investment.

Let (ā, x̄, P̄) be an FEU equilibrium with associated stochastic discount factor π̄ .
To study the impact on a typical agent of a small change in firm k’s investment, let

xi (a) = argmax

{

Ui (xi , a)

∣
∣
∣
∣
∣

xi
0 +

∑

s∈S

ps(a)π̄s xi
s = wi

0 +
∑

k∈K

δi
k Mk(a)

}

denote the optimal consumption viewed as a function of a, where

Mk(a) = P̄1 yk − ak =
∑

s∈S

ps(a)π̄s yk
sk

− ak

is the market value of firm k, k ∈ K , and let Ui∗(a) = Ui (xi (a), a) denote the agent’s
optimized utility. If λ̄i denotes the multiplier associated with agent i’s budget con-
straint in the FEU equilibrium, and if we use the competitive assumption that agents
(like firms) do not perceive the effect of a change in investment on π̄ , then, by the
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Envelope Theorem, the derivative of Ui∗(a) with respect to ak is

Ui∗
ak

(ā) =
∑

s∈S

∂ps

∂ak
(ā)ui (x̄ i

s) − λ̄i

(
∑

s∈S

∂ps

∂ak
(ā)π̄s x̄ i

s −
∑

k′∈K

δi
k′ Mk′

ak
(ā)

)

where Ui∗
ak

and Mk′
ak

denote the partial derivative of the utility function Ui and the

market value Mk′
with respect to ak . To simplify the discussion, assume that firms’

outcomes are independent (an assumption stronger than NE) and that increasing invest-
ment in firm k leads to a first-order stochastic dominant shift in the distribution of its
output and thus of aggregate output (FOSDk). In this case a change in ak does not
affect the market value of other firms Mk′

ak
= 0 for k′ 	= k. Since in equilibrium

ui ′(x̄ i
s) = λ̄i π̄s , the change in welfare can be written as

Ui∗
ak

(ā) =
∑

s∈S

∂ps

∂ak
(ā)Hi (x̄ i

s) + λ̄iδ
i
k Mk

ak
(ā)

where Hi (ξ) = ui
1(ξ) − ui ′(ξ)ξ , for ξ ∈ R+. Note that Hi is an increasing function

since Hi ′(ξ) = −ui ′′(ξ)ξ > 0. By Proposition 1, Ui∗
ak

can be written as

Ui∗
ak

(ā) =
∑

σ∈


∂pσ

∂ak
(ā)Hi (x̄ i

σ ) + λ̄iδ
i
k Mk

ak
(ā)

=

−1∑

σ=1

Gak (Yσ , ā)
(

Hi (x̄ i
σ+1) − Hi (x̄ i

σ )
)

+ λ̄iδ
i
k Mk

ak
(ā) (26)

By FOSDk , Gak (Yσ , ā) is positive so that the first term in the decomposition of Ui∗
ak

is positive. As is shown in the proof of Proposition 5 in next section, there exist utility
functions Ui such that āk maximizes

∑
i∈I U i∗(ak, ā−k)/λ̄i . Since for these utility

functions
∑

i∈I U i∗
ak

(ā)/λ̄i is equal to zero, it follows that Mk
ak

(ā) < 0.
Thus for each agent the change in welfare from an increase in investment by firm

k involves a positive term—the expected utility of consumption at date 1 increases
faster than its cost—and, if the agent is an initial owner of the firm, a negative term—
increasing investment decreases the market value of the firm, and hence the income
that the agent receives as a shareholder. A consumption equilibrium with fixed invest-
ment (in Definition 1, or in part (i) of Definition 6) can be thought of as an equilibrium
on financial markets in which agents trade securities whose payoffs are based on the
observable outputs of the firms—securities such as bonds, equities, options—which
satisfy full spanning with respect to the outcomes. It follows from the monotonicity
property of the allocations in Proposition 1 that, after trade, every agent will hold a
positive share of each firm, so that all the agents can be considered as “new” (i.e. after
trade) shareholders of firm k in the sense of Drèze (1974), even if there are not initial
shareholders. For the particular profile of utility functions for which āk maximizes∑

i∈I U i∗(ak, ā−k)/λ̄i , if āk were announced before the trading phase and if unanim-
ity of the new shareholders is required to change the production plan, then āk would
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not be changed, since the “winners” from a change dak would need to spend all their
surplus to buy the votes of the agents in favor of the status-quo (i.e. to compensate
the loosers from the change). Thus if each agent had no more knowledge than the
firm regarding the preferences of other investors, there will not be a coalition of new
shareholders who can plan to convene a meeting of all shareholders and be sure to
obtain unanimity for a change in the investment plan.10

However if the investment decision has to meet with the approval of the initial
shareholders and if the initial ownership is not spread among all the agents, the sum∑

{i∈I |δi >0} Ui∗
ak

restricted to the initial owners is negative since some of the positive

terms
∑

σ Gak (Yσ , ā)
(
Hi (x̄ i

σ+1) − Hi (x̄ i
σ )

)
are missing. In this case there may be

unanimity among the initial shareholders to decrease investment and increase the mar-
ket value of the firm. This situation is however artificial since the initial situation is
qualitatively different from that in the equilibrium, where the ownership of firms is
spread among all agents of the economy. If the two-period model is viewed as a sim-
plified description of a “slice” of an on-going economy, it is more natural to consider
dispersed initial ownership than concentrated initial ownership for the type of public
corporations to which this study applies.11

This being said, the stability property of āk is rather weak. If the investment decision
is made by a subgroup of agents for whom the market-value terms in (26) dominate
the terms in Hi , the firm is more likely to maximize market value than the expected
social utility of its profit. Thus an FEU equilibrium is probably better interpreted as
a normative benchmark for what firms “should do” rather than a positive description
of what they will do in practice. If this is the case, then the analysis of this paper
highlights circumstances where subsidization of the investment of some firms may be
welfare improving for the economy.

6 Normative properties and existence of FEU equilibrium

Without making any further assumptions it can be shown that an FEU equilibrium is
firm-k optimal, for any firm k ∈ K : additional assumptions are needed to prove that
it is constrained Pareto optimal. The proofs of these normative properties are based
on the following Lemma, which asserts that if a feasible allocation has the property
that each agent’s consumption stream is co-monotone with aggregate output, then any
concave increasing function of aggregate output can be decomposed into the sup-con-
volution of utility functions (vi )i∈I such that, for these utility functions, the allocation
is the optimal distribution of the aggregate output among the agents.

10 The criterion (25) has the same stability property than the Drèze criterion for the GEI model with
incomplete market (Drèze 1974): since it is derived from constrained optimality, it maximizes the surplus
of the agents who consume the production of the firm, and there cannot be unanimity of these agents in
favor of a change, even if transfers payments are allowed (see Magill and Quinzii 1996 for a more developed
exposition of this stability property).
11 The model with concentrated initial ownership and diffuse “new” ownership corresponds to the moment
where the firm goes public. At this exceptional time in the life of the firm, market value maximization is
more likely to be applied than expected utility maximization.
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Lemma 1 Let 	 : R+ → R be a concave, increasing, differentiable function satis-
fying the Inada condition. Let x̄ = (x̄1, . . . , x̄ I ) be I vectors in RS++ with increasing
co-ordinates (s > s′ �⇒ x̄ i

s > x̄ i
s′ ) and let ys be defined by

∑
i∈I x̄ i

s = ys ,
s = 1, . . . , S. There exist I concave, increasing, differentiable functions vi : R+ → R

satisfying the Inada condition such that

(i) for all y ≥ 0, 	(y) = max{∑i∈I vi (xi )|xi ∈ R+,
∑

i∈I xi = y}
(ii) 	(ys) = ∑

i∈I vi (x̄ i
s).

Proof see Appendix.

Proposition 5 Under Assumptions FS, IN and EU, a firm-expected-utility equilibrium
allocation is firm-k optimal, for all k ∈ K .

Proof Let Ū denote the “true” profile of utility functions and let (ā, x̄, P̄) be an FEU
equilibrium of the economy E(Ū , w0, δ, y, p), with associated discount factor π̄ and
utility functions (�k)k∈K for the firms. Suppose (ā, x̄, π̄) is not firm k-optimal, then
there exists an alternative allocation (a, x) = (ak, ā−k, x) which is feasible, i.e.

∑

i∈I

xi
0 + ak +

∑

k′ 	=k

āk′ =
∑

i∈I

wi
0,

∑

i∈I

xi
s = Ys, s = 1, . . . , S

such that for all admissible utility profiles U in U(x̄, π̄) defined by (14)

ui
0(xi

0) +
∑

s∈S

ps(a)ui
1(xi

s) > ui
0(x̄ i

0) +
∑

s∈S

ps(ā)ui
1(x̄ i

s), i ∈ I (27)

To simplify notation, let z̄ = ∑
k′∈K āk′ denote the total investment in the FEU equi-

librium and let z = ak + ∑
k′ 	=k āk′ denote the total investment in the improving

allocation. For each i ∈ I , let x̃ i denote the conditional expectation of xi given 


defined by

x̃ i
0 = xi

0, x̃ i
σ =

∑

s∈σ

ps(a)

pσ (a)
xi

s, x̃ i
s = x̃ i

σ , s ∈ σ, ∀ σ ∈ 


(a, x̃) is feasible and, since each agent is risk averse, for all Ui satisfying Assump-
tion EU, Ui (̃xi , a) ≥ Ui (xi , a). Thus we may assume without loss of generality that
xi = x̃ i , i ∈ I , so that (27) implies

ui
0(xi

0) +
∑

σ∈


pσ (a)ui
1(xi

σ ) > ui
0(x̄ i

0) +
∑

σ∈


pσ (ā)ui
1(x̄ i

σ ), i ∈ I

for all utility profiles U in U(x̄, π̄)

Let Y0 = ∑
i∈I wi

0 denote the date 0 aggregate resources of the economy, and let
�0 : R+ → R be an increasing, concave, continuously differentiable function satis-
fying the Inada condition such that �′

0(Y0 − z̄) = 1. Applying Lemma 1 (with S = 1
and the date 0 allocation x̄0) there exist increasing, concave, differentiable functions
(ui

0)i∈I satisfying the Inada condition, such that
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(a) for all ζ ∈ [0, Y0), �0(Y0 − ζ ) = max{∑i∈I ui
0(xi

0) | x0 ∈ RI+,
∑

i∈I xi
0 =

Y0 − ζ }
(b) �0(Y0 − z̄) = ∑

i∈I ui
0(x̄ i

0).

Since �′
0(Y0 − z̄) = 1, for all i ∈ I , ui ′

0 (x̄ i
0) = 1. By Proposition 3 each agent’s

equilibrium date 1 consumption x̄ i
1 is a monotone increasing function of σ : apply-

ing Lemma 1 again, there exist concave, increasing, differentiable functions, (ui
1)i∈I

satisfying the Inada condition such that

(c) for all η ∈ R++, �k(η) = max{∑i∈I ui
1(ξ

i )|ξ ∈ RI+,
∑

i∈I ξ i = η}
(d) �k(Yσ ) = ∑

i∈I ui
1(x̄ i

σ ), σ ∈ 
.

Since ui ′
1 (x̄ i

σ ) = �′(Yσ ) = π̄σ for all i ∈ I and all σ ∈ 
 and ui ′
0 (x̄ i

0) = 1, the
utility functions (Ui )i∈I = (ui

0, ui
1)i∈I lie in U(x̄, π̄) so that the inequalities (27) are

satisfied for these I functions. Summing these inequalities over the agents and using
(a)–(d) gives

�0(Y0 − z) +
∑

σ∈


pσ (a)�k(Yσ ) ≥
∑

i∈I

ui
0(xi

0) +
∑

σ∈


pσ (a)
∑

i∈I

ui
1(xi

σ )

> �0(Y0 − z̄) +
∑

σ∈


pσ (ā)�k(Yσ ) (28)

Since �0 is concave, �0(Y0 − z) ≤ �0(Y0 − z̄) + �′
0(Y0 − z̄)(z̄ − z) and, since

�′
0(Y0 − z̄) = 1, it follows that

�0(Y0 − z) − �0(Y0 − z̄) ≤ āk − ak (29)

(28) and (29) imply

āk − ak ≥ �0(Y0 − z) − �0(Y0 − z̄) >
∑

σ∈


pσ (ā)�k(Yσ ) −
∑

σ∈


pσ (a)�k(Yσ )

contradicting the fact that āk maximizes the expected social utility Ṽ k given ā−k . �

To obtain further properties of an FEU equilibrium, assumptions of concavity with

respect to the investment of firms must be introduced. The following assumption
prevents discontinuities in the choice of investment by firms, which can lead to non-
existence of equilibrium.

Assumption Ck (concavity in ak) For all η ≥ Y and all a ∈ RK+

η∫

Y

G(t, ak, a−k) dt (30)

is concave in ak and continuous in a.
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This assumption was introduced in the principal-agent literature by Jewitt (1988)
(in the context of one firm) to ensure that the expected utility of the agent is concave
in effort. It has a natural interpretation in terms of decreasing returns to investment.
Although our analysis does not require it as an explicit assumption, the natural case to
consider is where increasing investment ak increases the probability of high outcomes
for firm k. Since the output of firm k is added to the aggregate output of the other firms,
this can be formalized as the property that an increase in ak leads to a second-order
stochastic dominant shift in the distribution of aggregate output, which is equivalent
to the property that the integral (30) is increasing in ak . Concavity of the function in
(30) with respect to ak is then the assumption of stochastic decreasing returns to scale
for second-order stochastic dominance.

Lemma 2 If Assumption Ck is satisfied, then for any concave differentiable utility
function �k the objective function Ṽ k(ak, a−k) is concave in ak and continuous in a.

Proof See Appendix.

By Lemma 2, Assumption Ck implies that firm k’s optimal choice of investment
is an upper-hemi continuous and convex-valued correspondence and this property is
used below to prove existence of an equilibrium. A stonger concavity assumption is
required to establish the constrained Pareto optimality of an FEU equilibrium.

Assumption C (concavity in a) For all η ≥ Y and all a ∈ RK+

η∫

Y

G(t, a) dt

is concave and continuous in a.

Assumption C is stronger than Assumption Ck for each k ∈ K , even if the firms’
outputs are independent random variables. Consider an example with two firms, firms
1 and 2, with independent outcomes, each with two possible outcomes, H and L. If
p1(a1) and p2(a2) denote the probabilities of the low outcomes, then Assumption Ck ,
for k = 1, 2, requires that the functions p1 and p2 are convex. In the Appendix we
show that Assumption C requires the product p1(a1)p2(a2) to be convex in (a1, a2).
A sufficient condition is that the functions p1 and p2 are log convex, i.e. log(pk(ak))

is convex in ak , for k = 1, 2.

Lemma 3 If Assumption C is satisfied, then for any concave differentiable utility
function � the function V (a) defined by

V (a) =
∑

s∈S

ps(a)�(Ys) −
∑

k

ak (31)

is concave and continuous in a, for a ∈ RK+ .

Proof See Appendix.
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To use Lemma 3 to prove constrained Pareto optimality of an FEU equilibrium we
need the additional assumption that firms use the same estimated social utility function
�.

Proposition 6 If (ā, x̄, P̄) is an FEU equilibrium of an economy E(Ū , w0, δ, y, p)

satisfying FS, IN, EU, and C, and if �k = �, for all k ∈ K , then (ā, x̄, π̄) is con-
strained Pareto optimal.

Proof Since (ā, x̄, P̄) is an FEU equilibrium, for each k ∈ K , āk maximizes

∑

s∈S

ps(ak, ā−k)�(Ys) − ak

Thus the first-order conditions for maximizing V (a) in (31) are satisfied at ā, and since
V is concave in a, ā is a global maximum of V . Let π̄ be the associated stochastic
discount factor and suppose (ā, x̄, π̄) is not CPO. Then there exists an alternative
feasible allocation (a, x) such that for all admissible utility profiles U ∈ U(x̄, π̄),
(27) is satisfied. Using the same argument as in the proof of Proposition 5, choose �0
such that �′

0(Y0 − ∑
k∈K āk) = 1 and use Lemma 1 to construct a profile of utility

functions U = (ui
0, ui

1)i∈I ∈ U(x̄, π̄) such that �0 is the convolution of (ui
0)i∈I and �

is the convolution of (ui
1)i∈I . Summing (27) over the agents for these utility functions

and using the properties of (�0,�) leads to a contradiction to the maximization of
expected social utility V (a) at ā. �


The assumptions needed to establish the constrained Pareto optimality of an FEU
equilibrium are strong. Joint concavity of the integral (30) is needed to ensure that
maximization with respect to each variable in V (a) implies global maximization. We
have not succeeded in finding a generalization of the condition for the two-firm two-
outcome case to a sum of independent random variables taking an arbitrary number of
values, so it is difficult to appreciate the strength of the assumption of joint concavity.
The case which we can solve suggests that the decreasing returns to investment by
each firm must be sufficiently strong. The assumption that �k is the same for all firms
may appear restrictive since there may be no obvious reason why all firms should “fill
in” the missing information on marginal utilities in the same way. However if there is
a conventional way of estimating a function which is only known at a finite number of
points—for example by linear interpolation—then all firms may use the same function
� to estimate social welfare.

Simplifying the proof of Proposition 6—using the “true” utilities (ūi
0, ūi

0) instead
of using Lemma 1 to find admissible utilities—leads to the Pareto optimality of a
Strong FEU equilibrium under Assumption C.

Proposition 7 If (ā, x̄, P̄) is a Strong FEU equilibrium of an economy E(U, w0, δ, y,

p) satisfying FS, IN, EU, and C, then (ā, x̄) is Pareto optimal.

Existence of equilibrium In an FEU equilibrium the “valuation” of a firm’s invest-
ment is made in two distinct ways. Its choice of investment ak is based on the expected
social utility criterion
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Ṽ k(ak, a−k) =
∑

s∈S

ps(ak, a−k)�k(yk
sk

+ Y −k
s ) − ak

In the budget equations of the investors, where the present value of a firm’s profit is
one of the sources of income for its shareholders, the valuation of a firm’s investment
enters through the market value

Mk(ak, a−k) =
∑

s∈S

ps(ak, a−k)πs yk
sk

− ak

These two valuations may not always be compatible, causing potential problems for
existence of an FEU equilibrium. For, while investors as a group benefit more from
the increase in expected utility obtained by maximizing the criterion Ṽ k than they
give up by not maximizing market value, maximizing Ṽ k may sometimes lead the
market value Mk to become negative. When this happens, an agent with a small initial
endowment wi

0 and a relatively large ownership share of the firm may end up with a
negative income, and this is incompatible with equilibrium.

There is a natural way of resolving this potential incompatibility. For the reason why
agents are better off when firm k maximizes Ṽ k rather than Mk is that its investment
has a positive externality on all agents via the probability term p(a) in their expected
utilities. If this external effect is strong enough to justify “overinvestment” to the point
where the firm’s market value becomes negative, then it seems natural to compensate
the initial owners by making transfers to the firm which ensure that its market value
remains non-negative. Such transfers would need to be financed by taxes: for sim-
plicity it is assumed that they are financed by a uniform tax rate on the endowments
wi

0 of all agents.12 This suggests modifying the concept of an FEU equilibrium by
introducing a tax rate τ on agents’ initial incomes and a vector of transfers t = (tk)k∈K

to the firms: for economies for which transfers are not needed, the resulting concept
is just an FEU equilibrium.

When the tax rate is τ on initial income and transfers to the firms are t , the budget
set of an agent becomes

B(P, wi
0, δ

i , a; τ, t) =
{

xi ∈ RS+1+

∣
∣
∣
∣
∣

Pxi = wi
0(1 − τ) +

∑

k∈K

δi
k(P1 yk − ak + tk)

}

This leads to the definition of an FEU equilibrium with transfers.

Definition 7 Let E(U, w0, δ, y, p) be an economy satisfying Assumptions FS, EU,
and IN. (ā, x̄, P̄; τ̄ , t̄) is an firm-expected-utility equilibrium with transfers (FEUT
equilibrium) if

12 The transfers could be chosen to ensure a minimum rate of return on the firm’s equity and/or the taxes
could depend on the level of income: under reasonable conditions this will not create difficulties for the
existence of an equilibrium.
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(i) each agent i ∈ I chooses x̄ i which maximizes Ui (xi , ā) in the budget set
B(P̄, wi

0, δ
i , ā; τ̄ , t̄)

(ii) each firm k ∈ K chooses the investment ak which maximizes its estimated
expected social utility Ṽ k(ak, ā−k).

(iii)
∑

i∈I x̄ i
0 + ∑

k∈K āk = ∑
i∈I wi

0,
∑

i∈I x̄ i
s = Ys, s ∈ S

(iv) τ̄
∑

i∈I wi
0 = ∑

k∈K t̄k

Adding taxes and transfers to a Strong FEU equilibrium leads in the same way
to a Strong FEUT equilibrium. Introducing taxes and transfers in this way, to cover
cases where firms can potentially have negative market values, allows us to establish
existence of equilibrium.

Proposition 8 If E(U, w0, δ, y, p) is an economy satisfying Assumptions FS, EU, IN
and Ck for all k ∈ K , then there exists an FEUT and a Strong FEUT equilibrium.

Proof see Appendix.

Example Consider an economy with I consumers and K = 2 firms, where each firm
has two possible outputs y1 = (y1

L , y1
H )= (400, 650), y2 = (y2

L , y2
H )= (500, 700) so

that the possible aggregate outcomes are (Y1, Y2, Y3, Y4)= (900, 1100, 1150, 1350).
Firms’ outcomes are independent, and firm k’s ability to shift probability away from
its low outcome by investment is given by pk(ak) = e−νkak , with ν1 = ν2 = 0.05.
Since the functions pk are log-convex, Assumption C is satisfied. Suppose agents have
identical homothetic preferences

U (xi , a) = log(xi
0) + β

∑

s∈S

ps(a) log(xi
s), i = 1, 2

and initial endowments (wi
0, δ

i ) such that
∑

i∈I wi
0 = 1000 and

∑
i∈I δi

k = 1, k =
1, 2. This is a representative agent economy, and if (a1, a2) is the investment of the
firms, then the prices in the consumption equilibrium with fixed investment are Pσ =
pσ (a)(

∑
i∈I wi

0 − a1 − a2)/Yσ , σ = 1, . . . , 4. Since prices are independent of the
distribution of income and each agent has a consumption stream proportional to the
aggregate output (

∑
i∈I wi

0 − a1 − a2, Y1, . . . , Y4), in what follows we omit the con-
sumption component x̄ = (x̄ i )i∈I of an equilibrium. The utility function �x̄0 in (5)
is, up to a constant, given by �x̄0(η) = (

∑
i∈I wi

0 − ā1 − ā2) log(η), so that (a∗
1 , a∗

2 )

is a Strong FEU equilibrium if

a∗
k = arg max

(
∑

i∈I

wi
0 − a∗

1 − a∗
2

)
4∑

σ=1

pσ (ak, a∗−k) log(Yσ ) − ak, k = 1, 2

For the choice of parameters given above

a∗ = (55, 46.8)

so that approximately 10% of date 0 income is devoted to investment. If the agents’
utility functions are not known and both firms use the same linear interpolation (21),
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then (ā1, ā2) is an FEU equilibrium choice of investment if

āk = arg max
4∑

σ=1

pσ (ak, ā−k)�k(Yσ ) − ak, k = 1, 2

with �1 = �2, �1(Y1) = 0, and �1(Yσ−1) = �1(Yσ ) + 1
2 (

∑
i∈I wi

0 − ā1 − ā2)

( 1
Yσ

+ 1
Yσ+1

)(Yσ+1 − Yσ ). The FEU equilibrium choice of investment is

ā = (55.1, 46.9)

which only marginally exceeds the first-best investment level.13

All the FEU equilibria correspond to investments (ã1, ã2) which are optimal given
estimated utility functions (�k, k = 1, 2) satisfying

∑
i∈I wi

0 − ã1 − ã2

Yσ+1
(Yσ+1 − Yσ ) < �k(Yσ+1) − �k(Yσ )

<

∑
i∈I wi

0 − ã1 − ã2

Yσ

(Yσ+1 − Yσ )

Suppose firm 1 adopts the “low estimate” �1 defined by �1(Y1) = 0, �1(Yσ+1) =
�1(Yσ )+ (

∑
i∈I wi

0 − ã1 − ã2)(0.01 1
Yσ

+0.99 1
Yσ+1

)(Yσ+1 −Yσ ), while firm 2 adopts

the “high estimate” �2 defined by permuting the weights 0.01 and 0.99, then the FEU
investment is

ã = (52.5, 49.8)

Firm 1 underestimates the increases in utility and thus invests less than in the first
best, while firm 2 overestimates the increases in utility and overinvests relative to the
first best. Is the investment ã constrained efficient? To answer this question we check
the value of the partial derivatives ∂

∂ak

∑4
σ=1 p(a)�λ,µ,ν(Yσ ), k = 1, 2, where the

functions �λ,µ,ν are such that �λ,µ,ν(Y1) = 0 and

�λ,µ,ν(Y2) − �λ,µ,ν(Y1) =
(

λ

Y1
+ 1 − λ

Y2

)

(Y2 − Y1)

(
∑

i∈I

wi
0 − ã1 − ã2

)

�λ,µ,ν(Y3) − �λ,µ,ν(Y2) =
(

µ

Y2
+ 1 − µ

Y3

)

(Y3 − Y2)

(
∑

i∈I

wi
0 − ã1 − ã2

)

�λ,µ,ν(Y4) − �λ,µ,ν(Y3) =
(

ν

Y3
+ 1 − ν

Y4

)

(Y4 − Y3)

(
∑

i∈I

wi
0 − ã1 − ã2

)

13 Since π(η) = (
∑

i∈I wi
0 − ā1 − ā2)/η is a convex function of η, φk (η) > π(η) for Yσ < η < Yσ+1.

The function chosen by the firms slightly exaggerates the increases in social welfare so that the investment
is marginally too high.
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for a grid of values (λ, µ, ν) ∈ [0, 1]3, and find that in all cases ∂
∂a1

∑4
σ=1 p(ã)�λ,µ,ν

(Yσ ) > ∂
∂a2

∑4
σ=1 p(ã)�λ,µ,ν(Yσ ) so that a marginal transfer of investment from firm

2 to firm 1 would improve social welfare for any admissible profile of utility functions.
Thus the assumption that firms use the same estimate �k of the social utility function
seems to be an unavoidable condition for the constrained Pareto optimality result of
Proposition 6. If instead firm 1 adopts the “high estimate” and firm 2 uses the “low
estimate” then the equilibrium investment is ã = (57.6, 44). This suggests that even
though there is a continuum of FEU equilibria, the equilibrium investment levels lie
in the relatively restricted intervals [52, 58] for firm 1 and [44, 50] for firm 2. Since
the market value of each firm is positive in each of these equilibria, no transfers are
required.

The difference between investment in the first-best equilibrium and in a market-
value maximizing equilibrium is much more pronounced. If firms behave “com-
petitively” and take the discount factor π̄ as given, then (â1, â2) is a market-value
maximizing choice of investment if

âk = arg max

(
∑

i∈I

wi
0 − â1 − â2

)
4∑

σ=1

pσ

(
ak, â−k

) yk
σ

Yσ

− ak, k = 1, 2

(â1, â2) = (36.9, 24.7), so that â1 is about 1/2 and â2 about 1/3 of the first-best
investment. If firms behave “non-competitively” and explicitly take into account the
effect of their investment on π̄ , then the market-value maximizing investment becomes
( ¯̄a1, ¯̄a2) = (25.8, 12.8): since increasing investment reduces π̄ , their investment is
reduced even further.

7 Conclusion

In this paper, we have studied a probability approach to modeling equilibrium in a
production economy under uncertainty in the setting of a one good economy in which
investment by firms influences the probability distributions of their outcomes. We
found that in such a model, the objective function that each firm “should” maximize
involves explicitly taking into account the effect of its investment on social welfare.
To understand the role that prices play in such an economy, we considered a setting
where firms do not know the agents’ utility functions. We showed how the information
contained in prices can be used to estimate the social utility function and to construct
objective functions which lead to second-best choices of investment.

In the simple calculated example of the previous section in which each firm con-
tributes about half the risk of the economy, the difference in investment between the
first-best and the market-value maximizing investment is substantial. However we
have shown that if a firm is marginal its objective is not far from market value. It
seems likely that in a calibrated model with a larger number of firms of more real-
istic sizes, the difference between first or second-best and market-value maximizing
investment will be much smaller. It should be remembered however that this paper is
based on the strong assumption that markets span all the uncertainty in outcomes and
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that agents have perfectly diversifiable risks. Intuitively, if agents have risks which are
directly linked to the random outcomes of the firms and if these risks are not perfectly
diversifiable—labor risks are a prime example—then the results of this paper suggest
that firms should explicitly take into account the risk consequences of their invest-
ment decisions for consumers, and that this could lead to investment which differs
substantially from market-value maximizing investment. In order to study these and
related questions, the model in this paper needs to be generalized to an environment
in which agents face nondiversifiable risks. We plan to address these issues in future
research.

Appendix

Proof of Proposition 4 We begin by showing that Assumption FOSDk implies

− = ∅. For any subset E of the outcome space S, let P(E, a) = ∑

s∈E ps(a)

denote the probability of event E . For any firm k, we can decompose the aggregate
output Y at date 1 into the sum of firm k’s output and the total output of the other firms:
Y = yk + Y −k . In view of NE, the upper-cumulative function of aggregate output can
be written as

G(η, a) = P
[
(yk + Y −k) > η; a

]
=

∑

s−k

P
[

yk > η − Y −k
s−k , y−k = y−k

s−k ; a
]

=
∑

s−k

p(s−k, a−k)Gk(η − Y −k
s−k ; s−k, ak, a−k)

where Gk is the upper-cumulative distribution function of yk with the conditional prob-
ability psk (ak |s−k, a−k). By FOSDk , Gk is an increasing function of ak and hence G,
as a positive linear combination of these functions, is an increasing function of ak .
Thus 
− = ∅ and

Wak =
∑


+
Gak (Yσ , ā)π̄σ+1(Yσ+1 − Yσ )

Consider the piecewise linear function � of aggregate output induced by the stochastic
discount factor π̄

�(η) =
⎧
⎨

⎩

0 if η ≤ Y
�(Yσ ) + π̄σ+1(η − Yσ ) if η ∈ [Yσ , Yσ+1], σ = 1, . . . , 
 − 1
�(Y ) if η ≥ Y

By construction

�(Yσ+1) − �(Yσ ) = π̄σ+1(Yσ+1 − Yσ ), σ = 1, . . . , 
 − 1 (32)
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so that Wak can be written (using the (IP) relation)

Wak =

−1∑

σ=1

Gak

(
Yσ , ā)(�(Yσ+1) − �(Yσ )

) = ∂

∂ak

∑

σ∈


pσ (ā)�(Yσ )

= ∂

∂ak

∑

s∈S

ps(ā)�(Ys)

since pσ (ā) = ∑
s∈σ ps(ā). Let Rk(ak) = ∑

s∈S ps(ak, ā−k)π̄s yk
sk

denote the present
value of firm k’s date 1 revenue. Since āk > 0 maximizes the market value M(ak, ā−k)

the first-order condition Rk
ak

= 1 must hold. As a result, showing that Wak > 1 is
equivalent to showing that

Wak − Rk
ak

= ∂

∂ak

∑

s∈S

ps(ā)(�(Ys) − π̄s yk
sk

)

= ∂

∂ak

∑

s−k

ps−k (ā−k)
∑

sk

psk (ā
k | s−k, ā−k)

×
(
�

(
yk

sk
+ Y −k

s−k

)
− π̄(sk ,s−k )yk

sk

)
(33)

is positive. When Y −k
s−k is fixed, two consecutive values of yk correspond to two con-

secutive values of the aggregate output Y . By (32)

�
(

yk
sk+1

+ Y −k
s−k

)
− π̄(sk+1,s−k )yk

sk+1
= �

(
yk

sk
+ Y −k

s−k

)
− π̄(sk+1,s−k )yk

sk

and by the antimonotonicity of π in Proposition 1, π̄(sk+1,s−k ) < π̄(sk ,s−k ), so that

�(yk
sk+1

+ Y −k
s−k ) − π̄(sk+1,s−k )yk

sk+1
> �(yk

sk
+ Y −k

s−k ) − π̄(sk ,s−k )yk
sk

Thus for s−k fixed, the function sk → �(yk
sk

+ Y −k
s−k ) − π̄(sk ,s−k )yk

sk
is increasing in

sk . The first-order-stochastic-dominance property FOSDk then implies

∂

∂ak

∑

sk∈Sk

psk (ā
k | s−k, ā−k)

(
�(yk

sk
+ Y −k

s−k ) − π̄(sk ,s−k )yk
sk

)
> 0

so that (33) is positive and the proof is complete. �

Proof of Lemma 1 Let hi : R+ → R be defined by

hi (y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y

y1
x̄ i

1 if y ∈ [0, y1]
ys+1 − y

ys+1 − ys
x̄ i

s + y − ys

ys+1 − ys
x̄ i

s+1 if y ∈ [ys, ys+1], s = 1, . . . , S − 1
y

yS
x̄ i

S if y ≥ yS
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hi is continuous, increasing, differentiable on the intervals (0, y1), (ys, ys+1), s =
1, . . . , S − 1, and (yS,∞), and satisfies

hi (ys) = x̄ i
s, ∀ s ∈ S, hi ′(y)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x̄ i
1

y1
if y ∈ (0, y1)

x̄ i
s+1− x̄ i

s

ys+1 − ys
if y ∈(ys, ys+1), s =1, . . . , S−1

x̄ i
S

yS
if y > yS

Note that

∑

i∈I

hi (y) = y,
∑

i∈I

hi ′(y) = 1, y ∈ R+

since
∑

i∈I hi ′(y) can be extended by continuity to R+.
Since hi is increasing, it can be inverted; let (hi )−1 denote the inverse function which

is also continuous, increasing, and differentiable on the intervals (0, y1), (ys, ys+1),
s = 1, . . . , S − 1, (yS,∞). For i = 1, . . . , I , define a function vi by

vi (ξ i ) =
ξ i

∫

x̄ i
1

	 ′((hi )−1(t)) dt (34)

We assume w.l.o.g. that 	(y1) = 0, so that we choose vi such that vi (x̄ i
1) = 0.

Note that since 	 ′ is decreasing and (hi )−1 is increasing, vi is concave. Consider the
maximum problem

max

{
∑

i∈I

vi (ξ i )

∣
∣
∣
∣
∣
ξ i ∈ R+,

∑

i∈I

ξ i = y

}

(35)

Since
∑

i∈I hi (y) = y and for all i , vi ′(hi (y)) = 	 ′((hi )−1(hi (y))) = 	 ′(y), i.e.
the derivatives of the functions vi are equalized at hi (y), the solution to the maximum
problem is ξ i = hi (y) for all i , and thus the value of the maximum is

∑
i∈I vi (hi (y)).

To show that
∑

i∈I vi (hi (y)) = 	(y), note that, by decomposing the integral in (34)
into a sum of integrals over the intervals (x̄ i

s, x̄ i
s+1) and performing the change of

variable z = (hi )−1(t) ⇐⇒ hi (z) = t �⇒ hi ′(z)dz = dt on each interval, one
obtains

vi (ξ i ) =
y∫

y1

	 ′(z)hi ′(z) dz, where y = (hi )−1(ξ i )
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Thus

∑

i∈I

vi (hi (y)) =
y∫

y1

	 ′(z)
∑

i∈I

hi ′(z) dz = 	(y)

since
∑

i∈I hi ′(z) = 1. Since x̄ i
s = hi (ys),

∑
i∈I vi (x̄ i

s) = 	(ys). Also, since by
(34) vi ′(ξ i ) = 	 ′((hi )−1(ξ i )), and since by construction of hi , (hi )−1(ξ i ) → 0 when
ξ i → 0, vi inherits the Inada property from 	, and the functions vi have the properties
asserted in Lemma 1. �

Proof of Lemmas 2 and 3 Let V (α, β) = ∑

s∈S ps(α, β)�(Ys)−α1 where � : R →
R is a concave, increasing, differentiable function, ps(α, β) is a probability distribu-
tion depending on parameters α ∈ Rn, β ∈ Rm , (Ys)s∈S is a real valued random
variable with minimum value Y and maximum value Y , and 1 is the unit vector in Rn .
Let 
 be an index set for the values of Y such that σ > σ ′ �⇒ Yσ > Yσ ′ , and for
σ ∈ 
, let pσ (α, β) = ∑

{s∈S|Ys=Yσ } ps(α, β), so that

V (α, β) =
∑

σ∈


pσ (α, β)�(Yσ ) − α1 (36)

If G denotes the upper cumulative distribution function of Y and �(Y ) = 0, then (IP)
implies that

V (α, β) =

−1∑

σ=1

G(Yσ , α, β)

Yσ+1∫

Yσ

φ(t) dt =
Y∫

Y

G(t, α, β)φ(t) dt

where φ denotes the positive, continuous, decreasing derivative of �. Being decreas-
ing it is differentiable almost everywhere and φ′(t) < 0. Let H(t, α, β) denote the

integral of G defined by H(t, α, β) =
∫ t

Y
G(τ, α, β) dτ . Integrating (36) by parts

leads to

V (α, β) = φ(Y )H(Y , α, β) −
Y∫

Y

H(t, α, β)φ′(t) dt (37)

Since H is concave in α, φ(Y ) > 0, −φ′(t) > 0, and the sum of concave functions
is concave, V is concave in α. It is also clear from (37) that if H is continuous in
(α, β), V inherits this property. Lemma 2 follows with n = 1, m = K − 1, α = ak

and β = a−k while Lemma 3 follows with n = K , m = 0 and α = a. �

Assumption C in the two-firm-two-outcome case Suppose each of two firms
(k = 1, 2) can produce either yk

L with probability pk(ak) or yk
H with probabil-

ity 1 − pk(ak), the outcomes of the two firms being independent. Without loss of
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generality we assume that

y1
L + y2

L < y1
H + y2

L ≤ y1
L + y2

H < y1
H + y2

H

It is easy to see that Assumption Ck is equivalent to pk being convex, for k = 1, 2 (with
two outcomes there is no difference between first-order and second-order stochastic
dominance). Let F(η, a1, a2) denote the (lower) cumulative distribution function of
Y = y1 + y2. Assumption C is equivalent to the convexity of the function

M(η, a) =
η∫

Y

F(t, a) dt

in a = (a1, a2) for all η ∈ [Y Y ]. Let I1 = [y1
L + y2

L y1
H + y2

L ], I2 = [y1
H + y2

L y1
L +

y2
H ], and I3 = [y1

L + y2
H y1

H + y2
H ]. Simple calculations lead to

M(η, a) =

⎧
⎪⎪⎨

⎪⎪⎩

(η − y1
L − y2

L) p1(a1) p2(a2) if η ∈ I1

(y1
H − y1

L) p1(a1) p2(a2) + (η − y1
H − y2

L) p2(a2) if η ∈ I2

(y1
H − y1

L) p1(a1) p2(a2) + (y1
L + y2

H − y1
H − y2

L) p2(a2) if η ∈ I3

+(η − y1
L − y2

H )(p(a2) + p(a1)(1 − p2(a2)))

Since the coefficient of p(a1)p(a2) in the expression for M when η ∈ I3 is

(y1
H − y1

L) − (η − y1
L − y2

H ) ≤ (y1
H − y1

L) − (y1
H + y2

H − y1
L − y2

H ) ≤ 0

convexity of p1(a1)p2(a2) in (a1, a2) is necessary and sufficient for the convexity of
M(η, a) in (a1, a2) for all η ∈ [ Y Y ].

If log(p(a1) and log(p(a2) are convex, then log(p(a1))+ log(p(a1)) = log(p(a1)

p(a2)) is convex, and p(a1)p(a2) is convex. �

Proof of Proposition 8 We prove existence of an FEUT equilibrium: a simple adap-
tation of the proof leads to the existence of a Strong FEUT equilibrium. To prove that
there exists (ā, x̄, π̄ , τ̄ , t̄) satisfying (i)–(iv), we use the Negishi approach, showing

that a correspondence �, (α, a, t)
�−→(α̃, ã, t̃) from a compact set (defined below) into

itself has a fixed point which is an FEUT equilibrium. α = (αi )i∈I is the vector of
weights associated with a Pareto optimal distribution of output, a = (ak)k∈K is the
vector of investments by firms and t = (tk)k∈K is the vector of transfers to firms. The
domain of the correspondence � is Dε = �I × DK

ε × DK
ε where

�I =
{

α ∈ RI+

∣
∣
∣
∣
∣

∑

i∈I

αi = 1

}

, DK
ε =

{

a ∈ RK+

∣
∣
∣
∣
∣

∑

k∈K

ak ≤
∑

i∈I

wi
0 − ε

}

with 0 < ε <
∑

i∈I wi
0: thus �I is the simplex in RI and DK

ε is the set of investments
by the firms which assure at least ε units of consumption for the agents at date 0. We
will show that when ε is sufficiently small, a fixed point of � is an equilibrium.
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For (α, a, t) ∈ Dε , let x(α, a, t) be the solution of the problem of maximizing
social welfare

x(α, a, t) = argmax
x∈R(S+1)I

+

{
∑

i∈I

αiU
i (xi , a)

∣
∣
∣
∣
∣

∑

i∈I

xi
0 +

∑

k∈K

ak

=
∑

i∈I

wi
0,

∑

i∈I

xi
s = Ys, s ∈ S

}

(38)

By Assumption EU, x(α, a, t) and the associated supporting price (1, P1(α, a, t))
(where P0 is normalized to 1) is unique and the map (α, a, t) → (x(α, a, t), P(α, a, t))
is continuous. Any Pareto optimal allocation of (

∑
i∈I wi

0 − ∑
k∈K ak, Y ) satis-

fies the monotonicity properties of Proposition 1, so that if πs(α, a, t) is defined by
Ps(α, a, t) = ps(a)πs(α, a, t) for s ∈ S , then π satisfies πs(α, a, t) = πs′(α, a, t),
for all s, s′ ∈ σ , where σ ∈ 
 is such that Ys = Yσ , for all s ∈ σ .

Let

τ(α, a, t) =
∑

k∈K tk
∑

i∈I wi
0

≤
∑

i∈I wi
0 − ε

∑
i∈I wi

0

< 1

and let ξ(α, a, t) be the excess expenditure map

ξi (α, a, t) = wi
0(1 − τ) +

∑

k∈K

δi
k(P1 yk − ak − tk) − Pxi , i ∈ I

where, for simplicity, the argument (α, a, t) of the functions x(α, a, t), P(α, a, t),
τ (α, a, t) has been omitted. By feasibility of x(α, a, t) and the definition of τ(α, a, t),∑

i∈I ξi (α, a, t) = 0.
The first component α̃ of the correspondence � is defined by

α̃i (α, a, t) = αi + max{ξi (α, a, t), 0}
1 + ∑J

j=1 max{ξ j (α, a, t), 0} , i ∈ I

Since πs(α, a, t) is 
-measurable, let πσ (α, a, t) = πs(α, a, t) for s ∈ σ , and let
φ(α,a,t) be the linear interpolation

φ(α,a,t)(Y ) = πσ + Y − Yσ

Yσ+1 − Yσ

(πσ+1 − πσ ), for Y ∈ [Yσ , Yσ+1], ∀σ ≤ 
 − 1

where again the argument (α, a, t) of π(α, a, t) has been omitted. φ(α,a,t)(Y ) and its
integral �(α,a,t)(Y ) are continuous functions of (α, a, t, Y ) for (α, a, t) ∈ Dε and
Y ∈ [Y , Y ], where �(α,a,t)(Y ) is defined by

�(α,a,t)(Y ) =
Y∫

Y

φ(α,a,t)(u) du (39)
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Since πσ (α, a, t) is positive decreasing in σ , φ(α,a,t)(Y ) is positive and decreasing
and �(α,a,t)(Y ) is an increasing, concave, differentiable function of Y . Consider the
set Âk of optimal investment choices for firm k (k ∈ K )

Âk(α, a, t) = argmax

{
∑

s∈S

ps(ζk, a−k)�(α,a,t)(Ys) − ζk

∣
∣
∣
∣
∣

0 ≤ ζk ≤
∑

i∈I

wi
0 − ε

}

when the investments of other firms are a−k and �(α,a,t) is firm k’s utility function. By
Assumption Ck and Lemma 2, Âk(α, a, t) is a convex-valued, upper hemi-continuous
correspondence. To ensure that the second component of � lies in DK

ε , we project
Â(α, a, t) = ∏

k Âk(α, a, t) onto DK
ε . The second component of the correspondence

� is thus

ã ∈ Ã(α, a, t) = projDK
ε
( Â(α, a, t))

and the third component is defined by

t̃k(α, a, t) = min{θk ∈ R+ | P1(α, a, t)yk − ak + θk ≥ 0}, k ∈ K

Since P1(α, a, t) yk > 0, t̃k(α, a, t) ≤ ak and since a ∈ DK
ε , t̃(α, a, t) =

(t̃k(α, a, t))k∈K lies in DK
ε .

By the Kakutani fixed point theorem, � has a fixed point (α∗, a∗, t∗). Let us show
that for ε sufficiently small, (a∗, x∗, π∗, τ ∗, t∗), where x∗ = x(α∗, a∗, t∗), τ ∗ =
τ(α∗, a∗, t∗), and π∗ = π(α∗, a∗, t∗), is an FEUT equilibrium in which the common
utility function of the firms is �(α∗,a∗,t∗), for all k ∈ K .

By construction properties (iii) and (iv) of an FEUT equilibrium are satisfied, so
that it remains to show that (i) and (ii) hold. To show that (i) is satisfied, we show
that ξi (α

∗, a∗, t∗) = 0 for all i . This, combined with the first-order conditions for the
maximum problem (38), implies that for all i , xi∗ is the solution of agent i’s maximum
problem (i).

Let ξ∗
i = ξi (α

∗, a∗, t∗), i ∈ I , and suppose that for some i , ξ∗
i > 0. Since∑

i∈I ξ∗
i = 0, there must exist an agent j for whom ξ∗

j < 0. Since

α∗
j

(

1 +
∑

i∈I

max{ξ∗
i , 0}

)

= α∗
j (40)

by the fixed-point property and since (1 + ∑
i∈I max{ξ∗

i , 0}) > 1, (40) implies that
α∗

j = 0. By monotonicity of preferences this implies that x j∗ = 0. Since τ ∗ < 1,

w
j
0 > 0 and the income from the firms are non-negative, the excess expenditure

ξ∗
j > 0, which is a contradiction. Thus ξ∗

i ≤ 0 for all i and since
∑

i∈I ξ∗
i = 0, ξ∗

i = 0
for all i ∈ I .

It remains to show that (ii) holds for the estimated social utility function �(α∗,a∗,t∗).
The only way this might not be satisfied is if a∗ is the projection of some â in
Â(α∗, a∗, t∗) onto Dk

ε which does not coincide with â. This would imply that
∑

k∈K a∗
k
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= ∑
i∈I wi

0 − ε: let us show that for ε sufficiently small this is impossible. If
∑

k∈K a∗
k = ∑

i∈I wi
0 −ε, since all marginal rates of substitution are equalized, date 1

consumption increases with aggregate output for all agents, no agent consumes more
than ε at date 0 and one agent consumes at least Y/I in the worst outcome at date 1,
the vector of discount factors associated with the fixed point of the correspondence �

with domain Dε is bounded by

π∗
s ≤ bε ≡ max

i∈I

ui ′
1 (Y/I )

ui ′
0 (ε)

, s ∈ S

This implies that φ(α∗,a∗,t∗) ≤ bε and �(α∗,a∗,t∗) ≤ bε(Y −Y ), ∀ Y ∈ [Y , Y ]. If an opti-
mal choice âk in Â(α∗, a∗, t∗) is such that âk > bε(Y − Y ) then

∑
s∈S ps(âk, a∗−k)

�(α∗,a∗,t∗) − âk < 0, while the objective of firm k is positive if ak = 0. Thus the
optimal choice is such that âk ≤ bε(Y − Y ). Since, when ε → 0, bε → 0, for ε

sufficiently small, â = (âk)k∈K ∈ Int�K
ε and coincides with its projection a∗ on DK

ε ,
contradicting the assumption that a∗ is on the boundary of DK

ε . Thus for all k ∈ K , a∗
k

is the solution of the maximum problem in (ii) when firm k’s estimated social utility
is �(α∗,a∗,t∗), and thus (a∗, x∗, P∗, τ ∗, t∗) is an FEUT equilibrium.

Note that in the case where the utility functions (Ui )i∈I are known the proof is
the same except that the interpolated function � in (39) is replaced by the known
sup-convolution function. �
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