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Which improves welfare more:
A nominal or an indexed bond?w
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Summary. Economists have long argued that loan contracts should be in-
dexed to remove the risks arising from fluctuations in the purchasing power
of money: indexation however while eliminating one risk, substitutes an-
other, arising from fluctuations in relative prices of goods. We present a
theoretical framework which permits the relative merits of a nominal versus
an indexed bond to be assessed in a general equilibrium setting.
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1 Introduction

Despite economists’ long standing arguments in favor of systematic in-
dexation of loan contracts to remove the risks associated with fluctuations in
the purchasing power of money (Jevons [12], Marshall [15, 16], Fisher [6],
Friedman [8]), surprisingly few loan contracts are indexed in most Western
Economies. In the United States even thirty year corporate and government
bonds are not indexed. The situation is however different in many Latin
American countries where indexing is widely used as a way of coping with
high and variable inflation rates. What seems difficult to explain is that it
takes high variability in inflation rates before private sector agents shift from
unindexed to indexed contracts. The object of this paper is to provide a
theoretical framework for explaining this phenomenon.

The first formal analysis of the demand for nominal and indexed bonds in
an equilibrium framework was given by Fischer [5]: he used the continuous-
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time, Brownian-motion version of the one-good CAPM model, in which
there are price level fluctuations and in which agents can trade a nominal
bond, a perfectly indexed bond and an equity contract. As Modigliani [17]
pointed out, since the indexed bond permits the riskless transfer of income
and since the two-fund separation theorem holds, in Fischer’s model there is
no trade in the nominal bond in equilibrium: with perfect indexation, an
indexed bond will always drive out the nominal bond. This result, while
providing a formalization of the classical argument in favor of indexation,
does not provide a model that explains why in practice so few indexed loans
are traded.1

To move out of this cul de sac the analysis must be posed in the fra-
mework of a multigood model where the imperfections of indexation can be
made explicit. To provide a coherent equilibrium framework, the model
should in addition incorporate money, since fluctuations in the purchasing
power of money are fundamentally of monetary origin; furthermore, to
permit the relative benefits of nominal versus indexed bonds to be assessed,
the financial markets on which agents trade should be incomplete. Thus the
model we use is a variant of the two-period general equilibrium model with
incomplete markets (GEI), in which the purchasing power of money de-
pends on a (broadly defined) measure of the amount of money available for
transactions, and on an index of real output. The model is sufficiently
simple to permit the welfare of agents in equilibrium to be expressed ex-
plicitly as a function of the payoffs of the securities traded on the financial
markets, and yet is sufficiently rich to capture some of the imperfections of
indexation.

More precisely, we make assumptions on the characteristics of the
economy, the agents’ preferences and endowments and the security structure
(described in section 2) which ensure that:

(i) the multigood model can be mapped into a purchasing power economy
(essentially a one-good economy) in which there are well-defined (utility-
based) indices of the purchasing power of money and aggregate output;

(ii) an efficient equilibrium is obtained if agents can trade a bond whose
purchasing power payoff is constant;

(iii) if there is no such (real) riskless bond, but only a risky bond, then the
loss in welfare depends on the distance (in the appropriate probability me-
tric) of the financial market subspace from the riskless income stream;

(iv) if the future payoff of a bond could be indexed on the value of a state-
dependent bundle of goods, then an indexed bond with a constant pur-
chasing-power payoff could be obtained. However a bond indexed on the
value of a state-independent reference bundle is imperfect, since its payoff
fluctuates not only with the price level (its virtue), but also varies with
changes in the relative prices of the goods (its defect).

1 A step in this direction was made by Viard [19], using Fischer’s model with constant relative
risk aversion preferences: he argued that for some values of the parameters the welfare gains
from introducing an indexed bond are small, once the nominal bond is traded.
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We capture the imperfections of indexation by requiring that the re-
ference bundle be non-contingent: this avoids relying too much on the spe-
cific structure of the model – after all when agents have preferences that are
more heterogeneous than those that we consider, even a state-dependent
reference bundle that leads to a perfect index does not exist – and it corre-
sponds to the standard practice of indexation: in order that indexed contracts
be enforceable, they must be indexed on officially computed price indices
such as the Consumer Price Index (CPI) whose reference bundle, for reasons
of practicality and credibility, is seldom changed.

The objective of the analysis is to compare two second-best situations, in
which in addition to a given security structure, there is either a nominal bond
which has the risks induced by fluctuations in the purchasing power of
money or an indexed bond which has the risks induced by relative price
fluctuations. In order to make such a comparison, we begin by studying how
the welfare of agents in an equilibrium of the purchasing power economy is
increased when a bond with a given payoff structure is added to an existing
collection of securities (the equity contracts of firms). In general, adding a
bond to an existing market structure has two effects. The first is the direct
effect of increasing the span of the financial markets: this always increases the
welfare of agents. The second is the indirect effect of changing spot and
security prices: this can either increase or decrease agents’ utilities. When the
indirect effects are strong enough, they can more than offset the gains from
increasing agents’ trading opportunities (see Cass-Citanna [2] and Elul [4] for
a complete local analysis of the combined effects). In this paper all indirect
effects are absent by virtue of the specification of agents’ preferences, so that
introducing a bond always increases agents’ utilities.

The welfare gain attributable to a bond is measured by the extent to
which it reduces the riskiness of the financial market opportunity set: more
precisely, the gain is measured by how much closer the financial market
subspace moves to the riskless income stream. The welfare gain is expressed
by a function, which we call the statistical gains function, since it depends on
the statistical properties of the bond’s real payoff, its standard deviation per
unit of expectation and its vector of correlation coefficients with the existing
securities.

A complete analysis of the properties of the gains function (Propositions
3 and 4) is the main mathematical contribution of the paper: this is a ne-
cessary preliminary for determining which type of bond (nominal or indexed)
leads to higher welfare. It follows from the properties of this function that
either a low variability of the bond’s (real) income stream or a strong (po-
sitive or negative) correlation of its payoff with the payoffs of the other
securities (or a combination of the two) permits a high proportion of the
potential welfare gains to be captured: a low variability directly creates a
security without much risk, while a high correlation permits a hedge port-
folio of the bond and the underlying securities to reduce risk.

In the multigood economy, three groups of factors influence the real
payoffs of the indexed and nominal bonds. The first are sectoral shocks
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which affect the relative output of the different sectors (goods) and hence the
relative prices of the goods: these shocks determine the variability of the
payoff of the indexed bond. The second are economy-wide shocks which
affect aggregate output, and the third are monetary shocks which influence
the ‘‘amount’’ of purchasing power: the ratio of these two magnitudes de-
termines the purchasing power of money, which is the payoff of the nominal
bond. In Proposition 5 it is shown that in an economy in which inflation and
output are positively correlated and sectoral shocks lead to relative price
fluctuations, there is a critical level of fluctuations in the purchasing power of
money below (above) which the nominal (indexed) bond is preferred. Thus in
the framework of this model, it is the existence of sectoral shocks, in con-
junction with a relatively strong positive correlation between inflation and
output, characteristic of the Phillips curve, which serve to explain the lack of
indexation.

2 The economy

In this section we present a variant of the general equilibrium model with
incomplete markets (GEI) which leads to a tractable study of the issue of
indexation of nominal bonds. Consider a two-period �t � 0; 1� economy with
S � 2 states of natures �s � 1; . . . ; S� at date 1; for convenience we include
date 0 as state 0 and write s � 0; 1; . . . ; S. There are I agents; each agent i is
characterized by an initial endowment consisting of a vector
xi
� �xi

0;x
i
1; . . . ;x

i
S� of L goods in each state and a utility function

Ui
: R

L�S�1�
�

ÿ!R reflecting his preferences for the goods across the states.
Agents can trade on two types of markets. Goods can be bought and sold on
spot markets, the vector of spot prices ps � �ps1; . . . ; psL� in state s being
expressed in units of money. Let p � �p0; p1; . . . ; pS� denote the vector of spot
prices. In addition agents can trade (at date 0) on a system of financial
markets. To provide a convenient framework for analyzing the potential
benefits of indexing a bond, we consider a family of J � 1 securities. Security
zero, which is the bond that may or may not be indexed, has a date 0 price q0

and a date 1 payoff stream
A � �A1; . . . ;AS�

The remaining J securities have prices �q1; . . . ; qJ � at date 0 and date 1
payoffs summarized by an S � J matrix

Y �

Y 1
1 . . . Y J

1

.

.

.

.

.

.

Y 1
S . . . Y J

S

2

6
4

3

7
5

the payoff of security j in state s being Y j
s . Let

q � �q0; q1; . . . ; qJ �; �A Y �

denote the vector of prices of the J � 1 securities and their combined date 1
payoff matrix. The payoffs of the securities can be either real (dependent on
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the spot prices) or nominal (independent of the spot prices) and in both cases
are denominated in units of money. When security zero is indexed (unin-
dexed) its payoff is real (nominal). The payoffs on the remaining securities
can be either real or nominal, but will be required to satisfy certain spanning
conditions (Assumption S) which imply that some of these securities are real
(in essence, that they be equity contracts). To simplify notation, we omit the
explicit dependence of the securities’ payoffs on the spot prices.

If zi
� �zi

0; zi
1; . . . ; z

i
J � 2 RJ�1 denotes the portfolio of the J � 1 securities

purchased by agent i and if xi
� �xi

0; xi
1; . . . ; x

i
S� 2 R

L�S�1�
�

denotes his con-
sumption stream of the L goods, then the agent’s budget set is given by

B�p; q;xi
� � xi

2 R
L�S�1�
�

p0�xi
0 ÿ xi

0� � ÿqzi
; zi

2 RJ�1

ps�xi
s ÿ xi

s� � �As Ys�zi
; s � 1; . . . ; S

�
�
�
�

� �

where �As Ys� denotes row s of the matrix �A Y �.
One of the interesting properties of the GEI model with nominal secu-

rities is that price levels affect the real equilibrium allocation. This result can
either be interpreted as exhibiting the indeterminacy of equilibrium alloca-
tions when there are no forces determining price levels (Balasko-Cass [1],
Geanakoplos-Mas-Colell [9]) or as exhibiting the fact that fluctuations in the
purchasing power of money ( ppm) induced by monetary policy have real
effects (Magill-Quinzii [13]). In this paper we adopt the latter interpretation.
The general idea is to draw on the logic of the quantity theory: agents use
money for transactions and a combination of a private sector banking system
and a monetary authority determines the quantity of money that is available
for making transactions. If ps

PI
i�1 xi

s is the demand for money in state s and
Ms is the quantity of money made available, then the price level in state s is
determined by the monetary equation

ps

XI

i�1

xi
s � Ms; s � 0; 1; . . . ; S

For the sake of interpretation we suppose there is a monetary authority with
some (in certain cases very little) control over M � �M0;M1; . . . ;MS� and we
call M the monetary policy. If U � �U1

; . . . ;UI
� and x � �x1

; . . . ;xI
�, then

E�U ;x;A; Y ;M� denotes the economy with agents’ characteristics �U ;x�,
financial structure �A; Y � and monetary policy M . The exogenously given
random variables �x;M� which describe the underlying real and monetary
sides of the economy, can have a very general stochastic dependence. This
permits a wide class of economies to be considered which can differ not only
in the way in which monetary policy or shocks intervene, but also in the way
money and output are correlated.

2.1 Definition: An equilibrium of the economy E�U ;x;A; Y ;M� is a pair of
actions and prices

ÿ

��x;�z�; ��p; �q�
�

=
ÿ

��x1
; . . . ;�xI

;�z1
; . . . ;�zI

�; ��p; �q�
�

such that

(i) �xi
2 arg max Ui

�xi
� j xi

2 B��p; �q;xi
�f g and �zi finances �xi, i � 1; . . . ; I
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(ii)
PI

i�1
��xi

ÿ xi
� � 0

(iii)
PI

i�1
�zi
� 0

(iv) �ps
PI

i�1
�xi

s � Ms; s � 0; 1; . . . ; S.

The abstract model presented above is capable of covering many different
types of financial securities, in particular, two important classes of securities
which are used to finance many activities in an economy – bonds and equity
contracts. Equity contracts are readily included by adapting the abstract
exchange economy to represent a production economy in which firms have
fixed production plans. The initial ownership of the K firms in the economy is
distributed among the I agents, di

k of firm k being owned by agent i. Agent i
then has initial resources in the abstract economy consisting of two com-
ponents

xi
� xi

�
�

XK

k�1

di
kyk

�1�

where xi
�
2 R

L�S�1�
�

is a proxy for the agent’s labor income and yk is the
production plan of firm k. If the financial markets include a stock market on
which the equity contract of each firm is traded, then there is a security with
payoff in state s �s � 1; . . . ; S� given by

Y k
s � psyk

s ; k � 1; . . . ;K

If hi
k is the amount of equity k purchased by agent i (at date 0), then

zi
k � hi

k ÿ di
k is the agent’s net trade in the kth equity contract. As a class of

contracts, bonds are typically designed to be less risky than equity contracts:
modulo the problem of default, a bond promises a stable nominal payoff
across the states of nature, while equity contracts have payoffs which fluc-
tuate directly with the contingencies that affect the performance of individual
firms. However, the stable nominal payoff of a bond only translates into a
stable real payoff if there are no fluctuations in the purchasing power of
money. The fact that variations in ppm introduce risks into securities
designed to be essentially riskfree has long been viewed by economists as
introducing an inefficiency that should be avoided. Hence the idea that
monetary policy should seek, as far as possible, to achieve a stable ppm or, if
imperfections in the control of the monetary transmission mechanism or
political factors make this unfeasible, that bonds should be indexed.

Our objective is to find a way of formalizing these ideas. We will not try
to address the general problem of indexing a family of nominal securities.
Rather, we shall focus on the benefits and costs of indexing the least risky
nominal bond – namely the default-free bond. To do this, we need to give
more specific structure to the characteristics of the economy – basically as-
sumptions on agents’ endowments and preferences and on the security
structure which ensure that agents would really benefit from the presence of a
bond with a riskless real purchasing power. We want to show that, in a
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multigood setting, indexing is not the universal panacea for neutralizing
fluctuations in ppm that is often suggested: indexing inevitably introduces the
risks of relative-price fluctuations, and in some cases these risks may exceed
the risks arising from fluctuations in ppm. The first assumption places a
restriction on agents’ preferences which implies that spot prices are in-
dependent of the income distribution and are thus independent of agents’
choices on the financial markets. This eliminates a feedback between the spot
markets and the financial markets, and greatly simplifies the analysis of the
model.

Assumption H: Agents have separable-homothetic utility functions of the
form

Ui
�xi
� � ki

0h�xi
0� �

XS

s�1

csf
iÿh�xi

s�
�

; i � 1; . . . ; I

where c1; . . . ; cS are strictly positive probabilities of the states,
ki

0 > 0; h : RL
�
ÿ!R; f i

: Rÿ!R, both h and f i are increasing, strictly con-
cave and differentiable and h is homogeneous of degree 1.

In an equilibrium, the maximum problem of each agent can be decom-
posed into two steps: the first is a choice of a portfolio �zi

� on the financial
markets, the second is the choice of a vector of consumption �xi

� on the spot
markets. The choice of a portfolio by agent i generates an income stream
across the states

mi
0 � p0x

i
0 ÿ qzi

mi
s � psx

i
s � �As Ys�zi

; s � 1; . . . ; S

Given the income stream mi
� �mi

0;m
i
1; . . . ;m

i
S�, the separability of the

utility function Ui implies that the agent’s optimal choice of consumption is
the solution of S � 1 separate choice problems

max
�

h�xi
s� j psxi

s � mi
s; xi

s 2 RL
�

	

; s � 0; 1; . . . ; S

At the optimal choice xi
s (unique by strict concavity of h) the gradient rh�xi

s�

is collinear to the spot price vector ps. By homogeneity of degree one of h, the
gradient vectors rh�xi

s� are collinear if and only if the consumption vectors
are collinear. Thus at an equilibrium each agent’s consumption xi

s is some
proportion of the aggregate endowment ws �

PI
i�1 xi

s in state s and the
equilibrium vector of spot prices is proportional to the gradient of h at the
aggregate endowment. Using the Euler identity rh�ws�ws � h�ws� and
writing the monetary equations as psws � Ms; s � 0; 1; . . . ; S leads to the
equilibrium spot prices

�ps �
Ms

h�ws�
rh�ws�; s � 0; 1; . . . ; S �2�

which are independent of the financial choices of the agents. Since agent i’s
share of aggregate output must be his share �mi

s=Ms� of aggregate ex-
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penditure Ms � psws, his equilibrium consumption vector can be deduced
once the expenditure stream mi

� �mi
0;mi

1; . . . ;m
i
S� is known

xi
s �

mi
s

Ms

� �

ws; s � 0; 1; . . . ; S

Substituting this expression into the utility function Ui
�xi
� in Assumption H

and exploiting the homogeneity of degree 1 of h, gives the utility of agent i as
a function of his expenditure stream mi

eui
�mi

� � ki
0m0mi

0 �
XS

s�1

csf
i
�msmi

s� �3�

where

ms �
rh�ws�ws

Ms
�

h�ws�

Ms
; s � 0; 1; . . . ; S �4�

is a utility index of the purchasing power of money. The numerator in (4) is an
ideal (utility based) index of aggregate output in state s. The aggregate output
ws` of good ` in state s is weighted by its social (representative agent) marginal
utility in state s, @h�ws�

@ws`
, and the index2 measures the representative agent’s

utility h�ws� at the total output ws. The purchasing power ms is the utility that
can be obtained by optimally spending one unit of money in state s.

Purchasing power economy. Since agents’ preferences over expenditure
streams are expressed by (3), the analysis of the equilibrium problem for the
economy E�U ;x;A; Y ;M� can be reduced to the analysis of the equilibrium
of a finance economy in which all quantities (income and expenditure
streams, security payoffs) are converted to real (i.e. purchasing power) va-
lues. To this end, define each agent’s real income and expenditure stream
�i � 1; . . . ; I�

ei
s � mspsx

i
s; li

s � msmi
s; s � 0; 1; . . . ; S

and let

ui
�li
� � ki

0l
i
0 �

XS

s�1

csf
i
�li

s�

denote the utility to agent i of the real expenditure stream li
2 RS�1

�
. If we

define the real prices and payoff streams of the securities � j � 0; 1; . . . ; J�

q0j � m0qj; as � msAs; v j
s � msY j

s ; s � 1; . . . ; S

then the financial problem of agent i reduces to choosing a portfolio
zi
2 RJ�1 which maximizes ui in the budget set

2 If h is the Cobb-Douglas utility function then the index of output in state s is the geometric
mean of the L components of aggregate output �ws1; . . . ;wsL�, the weight assigned to good `

being its coefficient in the Cobb Douglas function. The purchasing power of money ms is then
obtained by dividing the index of aggregate output by the money supply Ms.
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B�q0; ei
� � li

2 RS�1
�

li
0 � ei

0 ÿ q0zi
; zi

2 RJ�1

li
s � ei

s � �as Vs� zi
; s � 1; . . . ; S

�
�
�
�

� �

where V � �v1
. . . vJ

� is the matrix of real payoffs of securities j � 1; . . . ; J and
Vs is the row corresponding to state s. Let ei

� �ei
0; ei

1; . . . ; e
i
S�, e � �e1

; . . . ; eI
�

denote the real values of agents’ endowments, u � �u1
; . . . ; uI

� their utility
functions for real income and a � �a1; . . . ; aS� the real payoff stream on the
default-free bond, then we call E�u; e; a; V � the purchasing power economy
induced by the monetary economy E�U ;x;A; Y ;M�.

The next assumption permits explicit calculations to be made of the
welfare consequences of alternative real payoff streams a for the bond, de-
pending on whether the nominal payoff A is indexed or unindexed; fur-
thermore the welfare comparisons have a natural economic and geometric
interpretation. The assumption requires that agents have mean-variance
preferences – a convenient (if crude) first approximation for describing the
way agents evaluate risks.

Assumption Q: For each agent the function f i
: Rÿ!R in Assumption H is

quadratic

f i
�l� � ÿ

1
2
�ai

ÿ l�2
; i � 1; . . . ; I

where ai
> h�ws�; s � 1; . . . ; S.

Finally we include a spanning assumption on the security structure Y
which ensures that in the purchasing power �pp� economy the riskless real
income stream 1 � �1; . . . ; 1� becomes a reference income stream for mea-
suring the losses due to fluctuations in ppm and the potential gains from
indexation. For when the security structure Y is well-adapted to the agents’
endowment risks ��psxi

s�
S
s�1, then in the pp economy the most important

missing security is the riskless real bond 1 and welfare losses or gains can be
expressed in terms of the distance of the market subspace h�a V �i from 1. We
use the following notation: for any vector x � �x0; x1; . . . ; xs�,
x1 � �x1; . . . ; xS� denotes the vector of date 1 components.

Assumption S: For each agent i � 1; . . . ; I

��p1x
i
1; . . . ; �pSx

i
S� 2 hY i ()ei

1 2 hV i

If the agents’ endowments have the form given in (1), then the spanning
assumption amounts to requiring that Y contains the equity contracts of the
corporate firms and enough additional securities to permit agents to share
their personal income risks ��psxi

�s �
S
s�1 – or equivalently, that their private

sources of income (for example their wage income or their income from in-
dividually owned firms) are subject to the same shocks as the corporate sector.
However we assume that the security structure is incomplete in that the
subspace hV i of the pp economy does not contain 1 and has dimension less
than S ÿ 1 (there are no securities which provide direct insurance against
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monetary shocks and it would take more than one additional bond to com-
plete the markets). For convenience we add two purely technical conditions:
real payoff streams are non-redundant and have positive expected values.

Assumption I: (i) 1 =2 hV i (ii) rank V � J (iii) J � S ÿ 2 (iv) E�v j
� > 0; j � 1;

. . . ; J :

Assumption H reduces the analysis of the multigood economy
E�U ;x;A; Y ;M� to the analysis of the purchasing power economy
E�u; e; a; V �. Under Assumptions Q; S and I, this pp economy satisfies the
assumptions of the Capital Asset Pricing Model (CAPM), in which however,
if a is risky (or more precisely if 1 =2 ha; V i�, the riskless transfer of income is
not possible. If a � 1 or 1 2 ha; V i, then by a standard result, the equilibria of
E�u; e; a; V � are Pareto optimal; when a is risky there is a loss relative to the
ideal situation a � 1. If A is the default-free nominal bond, then its nominal
payoff is AN

� 1 and its real payoff is just the purchasing power of money
aN

� m � �m1; . . . ; mS�: the greater the fluctuations in ppm, the greater the risks
of aN . On the other hand if A is indexed on the value of a reference bundle of
goods b � �b1; . . . ; bL� 2 RL, then its nominal payoff stream is
AR

� ��p1b; . . . ; �pSb�, and in view of (2) and (4), its real payoff stream is
aR

� �rh�w1�b; . . . ;rh�wS�b�. While aR is isolated from fluctuations in ppm,
it does however vary with fluctuations in rh�ws� i.e. those induced by un-
derlying real shocks which affect the relative aggregate supplies of the goods.
In order to explain the conditions under which the agents are better off using
the nominal or the indexed bond, we need to understand how the welfare of
the agents in an equilibrium depends on the characteristics of the income
stream a – its variability and the way it covaries with the other securities in
the economy summarized by V .

3 Welfare and the statistical characteristics of the bond

A geometric approach to the welfare analysis of equilibria of an economy in
which agents have mean-variance preferences can be obtained using pro-
jections under the probability induced inner product on RS defined by

��x; y�� �
XS

s�1

csxsys � E�xy� � E�x�E�y� � cov �x; y� �1�

and its associated norm

k x kc�
XS

s�1

csx
2
s

 !1
2

� E�x2
�

ÿ �1
2
� �E�x��2

� var x
� �1

2
�2�

Two vectors x; y 2 RS are said to be c-orthogonal if ��x; y�� � 0: For a sub-
space W � RS , let W?? denote the c-orthogonal complement, namely the
subspace of vectors c-orthogonal to all vectors in W. Since RS can be de-
composed as a direct sum RS

�W�W??, any vector x 2 RS can be written
uniquely
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x � x� � x0; x� 2W; x0 2W??

x� (resp. x0) is called the c-orthogonal projection of x onto W (resp. onto
W??) and we write x� � projWx, x0 � projW??x. The c-projection x� onto W
is the vector in the subspace W which lies closest to x in the c-norm i.e. it
solves the problem

x� � arg min k x ÿ y kc y 2Wj

� 	

�3�

If W is the subspace of RS spanned by the k linearly independent columns of
an S � k matrix W (i.e. W � hW i and rank W � k) then the matrix which
represents the c-projection (in the standard basis) is

BW � W �W T
�c�W �

ÿ1W T
�c� �4�

where

�c� �

c1 0
.

.

.

0 cS

2

6
4

3

7
5

is the diagonal matrix of probabilities. The matrix BW in (4) can be readily
derived by solving the problem (3) and showing that x� � BWx. Note that if
x 2W then BWx � x.

If W is the payoff matrix of k securities in a one-good two-period econ-
omy E�u; e;W � in which agents’ utility functions are linear-quadratic

ui
�xi
� � ki

0xi
0 ÿ

1
2

XS

s�1

cs�a
i
ÿ xi

s�
2
; i � 1; . . . ; I �5�

then the welfare of the agents at an equilibrium can be expressed as a
function of the subspace W � hW i. The expression is simplified when the
date 1 initial endowments of the agents lie in the market subspace i.e. when
ei
1 2W; i � 1; . . . ; I .

Proposition 1 (equilibrium welfare of agents): Let E�u; e;W � be a one-good,
two-period economy in which agents have linear-quadratic utility functions (5)
and in which ei

1 2W; i � 1; . . . ; I . Then the welfare of the agents at the
equilibrium is given by

�ui
W �

1
2

ki
0

ai

ki
0

ÿ

a
k0

 !2

k projW1 k2
c �ki

; i � 1; . . . ; I �6�

where a �
PI

i�1 ai
; k0 �

PI
i�1 ki

0 and �ki
�

I
i�1 are constants depending on the

characteristics �ki
0; a

i
; ei
�

I
i�1 of the economy.

Proof: Let ��x1
; . . . ;�xI

;�z1
; . . . ;�zI

; �q� denote the equilibrium and let
e1 �

PI
i�1 ei

1 denote the date 1 aggregate endowment of the economy. A

Nominal versus indexed bond 11



straightforward calculation (see Magill-Quinzii [14, Exercise 5, Chapter 3])
shows that the equilibrium security prices are given by

�q �
1
k0

a1ÿ e1� �
T
�c�W �7�

the agents’ portfolio vectors are

�zi
� W T

�c�W
� �

ÿ1
W �c�

�

ai
ÿ

ki
0

k0
a
�

1ÿ
�

ei
1 ÿ

ki
0

k0
e1

�
� �

and their equilibrium consumption streams are

�xi
0 � ei

0 ÿ
1
k0

ai
ÿ

ki
0

k0
a

� �

�a1ÿ e1�
T
�c�BW1�

1
k0
�a1ÿ e1�

T
�c� ei

1 ÿ
ki

0

k0
e1

� �

�xi
1 �

ki
0

k0
e1 � ai

ÿ

ki
0

k0
a

� �

BW1; i � 1; . . . ; I

where we have used the equality BWei
1 � ei

1 implied by ei
1 2W. Inserting the

expression for �xi into the utility functions (5) leads to (6). h

Since there is a sufficiently rich structure of financial securities for agents
to share their endowment risks, the maximum welfare is obtained when, in
addition, the riskless transfer of income is possible �1 2W�; in this case,
kprojW1kc � k1kc � 1 and the equilibrium allocation is Pareto optimal, since
the allocation is the same as if the markets were complete �W � RS

�. When
the riskless transfer of income is not possible �1 =2W�, then kprojW1kc < 1

and if agents do not have identical preferences �a
i

ki
0
6�

a
k0

for some i�, there is a

loss of welfare. The smaller the c-distance of the market subspace W from 1,
the greater the norm kprojW1kc of the c-projection of 1 onto W, and the
greater the welfare of the agents.

Since the vector projW1 plays an important role in the analysis that
follows, it is useful to introduce the shorthand notation

gW � projW1

and to summarize its main properties.

Proposition 2 (properties of least risky security): The c-projection gW of 1 onto
W has the following properties:

(i) Under the c-inner product on RS
; gW represents the expectation operator

on W
E�gWy� � ��gW; y�� � E�y� for all y 2W

(ii) gW is the least risky income stream in the market subspace W in the
following two senses:
(a) geometrically, it is the vector in W which lies closest to 1

12 M. Magill and M. Quinzii



gW � arg min k 1ÿ y k2
c

�
�
� y 2W

n o

(b) statistically, it is the vector in W which has the minimum standard
deviation per unit of expected return

gW
E�gW�

� arg min r
y

E�y�

� ��
�
�
�
y 2W; E�y� 6� 0

� �

(iii) the minima in (a) and (b) lead to two measures of the riskiness of the
market subspace:

�a�0 1 ÿ E�gW� � k1ÿ gWk
2
c

�b�0
1

E�gW�
ÿ 1 � r2 gW

E�gW�

� �

Proof: (i) Since 1ÿ gW 2W??
; E�y� � ��1; y�� � ��gW; y�� for all y 2W. (ii)

(a) follows from (3). To prove (b), consider the problem: min fvar �y� j y
2W; E�y� � 1g and suppose that gW=E�gW� is not the solution. Then there
exists y0 2W with E�y0� � 1 and var �y0� < var �gW�= E�gW�

2. Let �y �
E�gW�y

0 then �y satisfies E��y� � E�gW� and var ��y� < var�gW� �) E��y2
�

< E�g2
W�. Then k 1ÿ �y k2

c� 1 ÿ 2E��y� � E��y2
� < 1 ÿ 2E�gW� � E�g2

W� �

k 1ÿ gW k
2
c contradicting the definition of gW. (iii) follows by noting that (i)

implies E�g2
W� � E�gW�. h

Welfare gains function. We want to apply Proposition 1 to a purchasing
power economy E�u; e; a; V �, namely a one-good economy with payoff matrix

W � �a V � � Va �8�

When a changes, it alters the market subspace

Va � hVai

and our objective is to understand how the welfare of agents varies with the
‘‘characteristics’’ of the bond a. Since in (8), V is taken as fixed, a convenient
way of analyzing how welfare depends on a is to make the comparison with
the case where a is redundant �a 2V � hV i�. The utility of agent i at the
equilibrium with market subspace Va can be written as

�ui
Va
� ��ui

Va
ÿ �ui

V� � �ui
V

where the first term Gi
a � �ui

Va
ÿ �ui

V can be interpreted as the utility gain to
agent i of having the bond with characteristics a. By Proposition 1, this gain
can be written as

Gi
a � ci

k gVa
k

2
c ÿ k gV k

2
c

� �

where ci
�

1
2 ki

0
ai

ki
0
ÿ

a
k0

� �2
is a non-negative coefficient which is positive for all

‘‘non-average’’ agents. Since the subspace Va contains V, k gVa
k

2
c � k gV k

2
c ,

so that the gain G i
a is non-negative for all agents and is strictly positive if c i

>0
and a =2 V. We are thus led to study the function G : RS

ÿ!R defined by
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G�a� �k gVa
k

2
c ÿ k gV k

2
c �9�

which we call the welfare gains function, since the utility gains to all agents
are proportional to the function G: by Proposition 2, this function measures
the reduction in the riskiness of the market subspace achieved by introducing
the security a. This property of the model, that the utility gains of all agents
are proportional to the common function G – in particular that all agents are
made better off when a nonredundant bond a is added to an existing security
structure V – requires some explanation.

In general, introducing a new security has two effects: the first – which we
may call the direct effect – is to increase the span of the markets i.e. the
trading opportunities available in the economy, and this tends to increase the
welfare of the agents; the second – which we may call the indirect effect – is to
change all prices, both spot and security prices, and this can either increase or
decrease agents’ utilities. Combining the two effects can lead to the appar-
ently paradoxical result that introducing a new security decreases the welfare
of all agents, as first shown in an example by Hart [10]. More recently Cass-
Citanna [2] and Elul [4] have studied the case where all (and hence the
indirect) effects are marginal and have shown that if the markets are suffi-
ciently incomplete then, in a multigood economy, the combination of the two
effects can lead to any possible local change in agents’ utilities. In a one-good
two-period model, since there are no spot prices, the security prices are the
only equilibrium parameters that can change, and this reduces the range of
possible changes in agents’ utilities: it is not possible for all agents to loose
from the introduction of a new security – typically some agents gain and
some agents loose from the resulting change in the prices of the existing
securities. In this paper all indirect price effects are canceled: there is no effect
from spot prices because of Assumption H, and no effect from security prices
because of the linear-quadratic form of the agents’ utility functions, as can be
seen from formula (7) for the equilibrium security prices.3 Thus the analysis
concentrates on the direct effect of changing the span of the markets and this
effect is present in all economies. The analysis can thus be applied to an
economy in which the price effects are sufficiently small, or it can be taken as
the first half of a more complete study in which indirect effects are also
explicitly taken into account.

The next step is to analyze the properties of the welfare gains function
G�a�: we will show that the gain depends only on the statistical properties of
the income stream a 2 RS summarized by its mean, standard deviation and
its correlation coefficients with the securities v1

; . . . ; v J . Furthermore we will
show that the gain can be described in a very complete way for any number

3 Elul [3] shows that in any one-good two-period model it is possible to cancel the indirect price
effects and to exhibit the benefits of the increase in spanning brought about by the introduction
of a new security. In a general model only some carefully chosen securities (which exist
generically) are such that their inclusion does not change the existing security prices (no indirect
effect), while with linear-quadratic utility this holds for all new securities.
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of securities J , and any number of states of nature S. The derivation of the
properties of G as a function of the statistical attributes of a requires some
calculations which are left to section 5. Here we summarize these properties
and provide a simple geometric interpretation of the results for the case
�J � 1; S � 3�.

Since G�a� is derived by projecting 1 onto Va and V, it depends only on
the directions of the vectors �a; v1

; . . . ; v J
� and not on their lengths. Thus all

these vectors can be normalized and the most natural economic interpreta-
tion is obtained by normalizing each vector so that its expected value is one.
This requires that each of these date 1 payoff streams have a non-zero ex-
pected value: this is assured for v1

; . . . ; v J by Assumption I (iv), and will be
assured for the bond by restricting attention to bonds with positive expected
values �a 2 RS with E�a� > 0�. The following notation for normalized vari-
ables is convenient: for any random variable x 2 RS with E�x� > 0, the nor-
malized variable with expectation 1 is denoted by

bx �
x

E�x�

If r�x� denotes the standard deviation of x, then r�bx� � r�x�
E�x� measures the

standard deviation of the income stream x per unit of expected value: for
brevity we write rx̂ � r�bx�. Since the correlation coefficient q�x; y� � cov �x;y�

r�x�r�y�

between a pair of vectors x; y 2 RS does not depend on their lengths,
q�bx;by� � q�x; y�: for brevity we write qxy . Let

qa � �qav1 ; . . . ; qav J �; qV �

qv1v1 . . . qv1v J

.

.

.

.

.

.

qv J v1 . . . qv J v J

2

6
4

3

7
5

denote the vector of correlation coefficients between the bond a and the
securities v1

; . . . ; v J and the matrix of correlation coefficients between these
securities, respectively.

The next proposition asserts that the gain G�a� depends only on �râ; qa�

i.e. there exists a function g : R� RJ
ÿ!R such that G�a� � g�râ; qa�. In

order to deduce the properties of G from those of g it is necessary to de-
termine the subset (domain) of R� RJ on which g coincides with G i.e. the
values �r; q� 2 R� RJ which correspond to the standard deviation and
vector of correlation coefficients of a normalized random variable ba 2 RS .

Proposition 3 (existence of statistical gains function):

(i) Let �r; q� 2 R� RJ , then there exists a random variable a 2 RS with
E�a� > 0 such that �râ; qa� � �r; q� if and only if either �r; q� � �0; 0� or
r > 0 and q belongs to the convex domain R defined by

R � q 2 RJ
�
�
� �qV ÿ qqT

� is positive semi-definite
n o

�10�
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(ii) The boundary ofR is @R �

�

q 2 R
�
�
� det �qV ÿ qqT

� � 0
	

. If a is a ran-
dom variable with qa 2 @R, then there exists y 2V such that

q�a; y� � �1 ()â ÿ 1 � k�y ÿ E�y�1� for some k 2 R �11�

(iii) There exists a function g : R� RJ
ÿ!R such that if �r; q� 2 R��

� R0f0; 0g then g�r; q� � G�a� for all a 2 RS
ÿ

with E�a� > 0
�

such that
�râ; qa� � �r; q�.

Proof: (See Section 5)

The next proposition describes the properties of the function g, which we
call the statistical gains function, since it expresses the gain from a bond a as a
function of its statistical properties �râ; qa�. Since the securities �v1

; . . . ; v J
�

are taken as fixed, the projection gV of 1 onto V forms part of the data of
the problem: to reflect this we let

g � gV � projV1

In Proposition 2 we introduced the two measures, 1 ÿ E�g� and rĝ, of the
riskiness of V (i.e. the market subspace in the absence of a). Both play an
important role in the next proposition. 1 ÿ E�g� measures the maximum gain
that can be attributed to any bond a since

k gVa
k

2
c ÿ k g k2

c � 1ÿ k g k2
c � 1 ÿ E�g2

� � 1 ÿ E�g�

The maximum gain is attained when 1 2Va, which happens either if a � 1, or
if a is risky and 1 can be obtained by a combination of a and some vector in
V: by (11) this occurs when a is perfectly correlated with some vector y 6� a
in V.

For normalized bonds of a given variability r, the minimum gain as a
function of q depends on whether the bond is less or more variable than the
(normalized) least risky income stream ĝ in V: when r < rĝ the bond is less
risky than any security in V and thus necessarily leads to a positive gain;
when r � rĝ then the bond will not contribute towards risk reduction if it
does not permit the risks in V to be hedged.

All bonds a 2 RS with the same vector of correlation coefficients qa � q
with v1

; . . . ; v J , have the same correlation coefficient q�a; g� with the least
risky security g in V, regardless of their variability: for g can be written as
g �

P J
j�1 kjv j, so that

q�a; g� �
cov �a; g�

rarg
�

PJ

j�1
kjqav jrarv j

rarg
�

PJ

j�1
kjqav jrv j

rg

which is a linear function of �qav1 ; . . . ; qav J � which is independent of ra. As a
result a coefficient of correlation r 2 �ÿ1; 1� defines a subset of R
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Rr � q 2 R q�a; g� � r for all a 2 RS with qa � q
�
�

� 	

which is the intersection of R by a hyperplane in RJ . The domain R is thus
partitioned into two regions depending on the sign of the correlation coef-
ficient between a and the least risky security g

R�
� q 2 R q�a; g� > 0 for all a 2 RS with qa � q

�
�

� 	

Rÿ
� q 2 R q�a; g� � 0 for all a 2 RS with qa � q

�
�

� 	

Proposition 4 (Properties of the Statistical Gains Function):

(A) Properties of g as a function of q (for fixed r > 0):

(0) For any r > 0; g�r; �� is a convex function on the interior of R.
(i) (Low variability): if 0 < r < rĝ, then the maximum of g�r; �� is

attained for all q 2 @R and

g�r; q� � 1 ÿ E�g� � 1 ÿ
1

1 � r2
g

for all q 2 @R

The minimum is attained for the unique vector q� �
r=rv̂1 ; . . . ; r=rv̂ J� � and

g�r; q�� �
1

1 � r2 ÿ
1

1 � r2
ĝ

(ii) (High variability): if r > rĝ, the minimum of g�r; �� is attained for
the vectors q which lie in the J ÿ 1 dimensional subset Rrr with
rr � rĝ=r and g�r; q� � 0 for all q 2 Rrr . The maximum of g�r; ��
is attained for all vectors q 2 @RnRrr and

g�r; q� � 1 ÿ E�g� � 1 ÿ
1

1 � r2
ĝ

for all q 2 @RnRrr �12�

If dim V � 2, then g�r; �� is discontinuous at the points @R/Rrr .
(iii) (Intermediate case): if r � rĝ, the subset Rrr � R1 on which

g�r; �� attains its minimum reduces to the point
q� � �r=rv̂1 ; . . . ; r=rv̂ J � 2 @R and g�r; q�� � 0. The maximum of
g�r; �� is attained for all vectors in @RnR1 and is given by (12). If
dim V � 2, then g is discontinuous at q�.

(B) Properties of g as a function of r (for fixed q 2 Rn@R�.

If q 2 Rÿ, then g��; q� is strictly decreasing for all r > 0; if q 2 R�, then
there exists a critical variability r� � rĝ=q�a; g� such that g��; q� is strictly
decreasing for r 2 �0; r�� and strictly increasing for r 2 �r�;1�. Thus g��; q� is
strictly decreasing for all r > 0 if and only if q 2 Rÿ.

Proof: (See Section 5)
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Figure 1. A family of normalized bonds with fixed standard deviation r and different
correlations q with v, and the graph of the gains function g�r; ��: (i) r < rv̂ (ii) r > rv̂ (iii)
r � rv̂. In each case a pair of market subspaces OAC (OA′C′) is shown.
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Geometric interpretation. An intuitive geometric interpretation of Proposi-
tions 3 and 4 can be given in the simplest case J � 1; S � 3 (recall that
Assumption I(iii) requires S � J � 2). Let v denote the payoff on the single
security, V �< v >. Since the welfare gain only depends on the normalized
income streams, it suffices to restrict attention to normalized bonds ba with
expectation 1 i.e. to vectors ba � �ba1;ba2;ba3� 2 R3 such that E�ba��c1ba1 � c2ba2

�c3ba3 � 1. To simplify the geometry, let us assume that c1 � c2 � c3 �
1
3 so

that the normalized bonds with non-negative payoffs belong to the simplex
(see Figure 1)

S � ba 2 R3
�

1
3
�ba1 � ba2 � ba3� � 1

�
�
�
�

��

Furthermore with this assumption of equal probabilities the c-inner
product (1) coincides (up to the coefficient 1/3) with the Euclidean inner
product.4 Under the c-norm (2), the standard deviation r�ba� is the distance
of a normalized bond ba 2 S from the center 1 � �1; 1; 1� of the simplex, since

r�ba� = E�ba ÿ E�ba�1�2
h i1=2

�k ba ÿ 1 kc. Thus all normalized bonds with the

same standard deviation r belong to a circle (in the simplex) of radius r,
centered at 1 (see Figure 1). Since J � 1, the subspace V is one dimensional
and the least risky security g in V is collinear to the unique vector v gen-
erating V: thus after normalization bg � bv. The intersection of the subspace
V with the simplex is simply the vector bv. When the bond ba is introduced, the
market subspace becomes Va �< bv;ba > which intersects the simplex along
the line �bv;ba�: for example when the bond ba1 is introduced, then in each of the
cases (i)–(iii) in Figure 1, the market subspace < bv;ba1 > is given by the plane
OAC which intersectsS along the line segment AC. There is a gain in welfare
from introducing the bond ba if the line �bv;ba� is closer to 1 than bv.5

Given bv, the distance of the line �ba;bv� from 1 depends only on the radius r
of the circle on which ba lies and on the angle h�ba ÿ 1;bv ÿ 1� between the
vectors ba ÿ 1 and bv — 1 — or more precisely (by symmetry) on the cosine of
this angle. This cosine is the correlation coefficient qa between a and v, since

cos h ba ÿ 1;bv ÿ 1� � �

��ba ÿ 1;bv ÿ 1��

k ba ÿ 1 kck bv ÿ 1 kc
�

cov �ba;bv�
r�ba�r�bv�

� q�a; v� � qa

Thus the gain from introducing a bond is a function of its standard deviation
and of its correlation coefficient with bv : G�a� � g�r; q� for all a such that
�râ; qa� � �r; q�. For example in each of the cases (i)–(iii) in Figure 1, ba1 and

4Figures 1 (i)–(iii) can be used to represent the general case of unequal probabilities by
appropriately changing units along the co-ordinate axes i.e. by changing from the standard basis
fe1; e2; e3g to the basis fe01; e

0

2; e03g with e0s �
1���
cs

p es; s � 1; 2; 3.
5 By Proposition 2 (ii)(b) the distance of the line �bv;ba� from 1 is equal to r�bgVa

�. By (i) and (iii) of
Proposition 2, r�bgVa

� < r�bgV� () E�gVa
� > E�gV� () E�g2

Va
� > E�g2

V� () k gVa
k

2
> k gV k

2

() G�a� > 0. Thus if bgVa
is closer to 1 than bgV (i.e. when the riskiness of the market subspace is

reduced) then the welfare is increased.
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ba01 have the same standard deviation (lie on the same circle) and the same
correlation coefficient q1 with bv (since the angles satisfy h�ba1 ÿ 1;bv ÿ 1�

� ÿh�ba01 ÿ 1;bv ÿ 1��. They generate the same gain since the line segments AC
and A0C0 lie at the same distance from 1.

To study the behavior of g�r; q� as a function of q, when r is fixed, it is
thus sufficient to study how the distance of the line �bv;ba� from 1 varies when ba
‘‘moves around’’ on a circle of radius r. The qualitative behavior of g falls
into three categories, corresponding to the cases (i), (ii) and (iii) in Propo-
sition 4: they depend on whether bv lies outside the circle �r < rv̂ � rĝ�, inside
the circle �rĝ < r� or on the circle �rĝ � r� of radius r. In each case the
maximum gain is obtained when the line �bv;ba� passes through 1 (so that the
distance from 1 is zero) and this occurs when the cosine of the angle
h�ba ÿ 1;bv ÿ 1� is +1 or )1 (the correlation coefficient between ba and bv is +1 or
)1). In economic terms this corresponds to a case where the bond provides a
perfect (riskless) hedge against the risk bv. What distinguishes the three cases
(i)–(iii), is the geometric behavior of the market line �bv;ba� at its maximum
distance from 1. When bv lies outside the circle of radius r, the maximum
distance (and hence the minimum gain) is obtained for the lines �ba�;bv� and
�ba�0;bv� (corresponding to the same q� in Figure 1(i)) which are tangent to the
circle. Since their distance from 1 is smaller than k bv ÿ 1 kc, the minimum
gain is strictly positive. When bv lies inside the circle of radius r, the maximum
distance is obtained when the market line �bv;ba� is perpendicular to bv ÿ 1: its
distance from 1 is exactly k bv ÿ 1 kc so that the minimum gain is zero. When bv
lies on the circle of radius r, the maximum distance is obtained for the
degenerate case where ba � bv (the dimension of Va collapses to 1 and
Va �V): once again the minimum gain is zero. The collapse in rank when
ba � bv does not create a discontinuity in the gain function when J � 1,
however it does when J � 2.

In all three cases the minimum gain always occurs when there is no
‘‘synergy’’ between the bond ba and the security bv for reducing market risks:
the projection of 1 onto the market line �ba;bv� is ba when r < rv̂ and is bv when
r � rv̂. For all other values of q (i.e. q 6� q��, a combination of ba and bv
creates the least risky security on the line �ba;bv� and this security is less risky
than either ba of bv taken on their own. Placing the family of curves in the small
diagrams in Figure 1 on a common graph (figure 2) shows how the welfare
gains change when the variability of the bond is increased,6 for a given q. For
negative correlation ÿ1 < q � 0; g��; q� is a decreasing function for all va-

6 The fact that even a bond with very high variance can essentially provide a riskless hedge
provided the magnitude of its correlation with bv is sufficiently large, comes from neglecting the
non-negativity constraints on the real value of consumption in the linear-quadratic pp economy.
With non-negativity constraints and no possibility of default, the feasible hedging strategies
using a bond with extremely variable payoffs are much more limited and the amount of trade on
the bond must go to zero for extremely high variance: for a study of the consequences of these
no-bankruptcy constraints see Neumeyer [18].
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lues of r; for positive correlation 0 < q < 1; g��; q� is decreasing for r < rv̂=q
and increasing for r > rv̂=q.

Direct geometric arguments of the kind given above are no longer
available in the multidimensional case J � 2, since by Assumption I,
S � J � 2. What is remarkable is that by explicitly calculating the function
g�r; q� and deriving analytically its properties, it is possible to show how
these results extend to the multi-dimensional case J � 2. The explicit deri-
vation of the function g�r; q� and the study of its properties is postponed to
section 5. In the next section we use Proposition 4 to address the question
posed at the beginning of this paper: under what circumstances does a
nominal bond provide greater social welfare than an indexed bond, or
conversely?

4 Nominal versus indexed bond

Let us first consider two extreme cases where the answer is clear cut, since
one of the bonds is the ‘‘ideal’’ bond with constant real purchasing power
payoff.

(a) Conditions under which aN
� 1 or aR

� 1

The purchasing power of a nominal bond paying one unit of money in
every state is

aN
� ms� �

S
s�1 �

h�ws�

Ms

� �S

s�1

The variations in the purchasing power of money ms depend on how the
money supply Ms varies with aggregate output, as measured by the index
h�ws�. In order for ms to be constant across the states, the money supply Ms

must be proportional to h�ws� or, in terms of growth rates, the rate of growth

Figure 2. Welfare gains for a family of bonds of increasing variability.
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ms of the money supply must match the rate of growth gs of real output so
that (for some constant c)

ms

m0
�

h�ws�=h�w0�

Ms=M0
�

1 � gs

1 � ms
� c; s � 1; . . . ; S

This condition would be satisfied in the idealized setting where a monetary
authority (or a banking system) perfectly controls (adapts) the money supply
to the fluctuations in real output

ÿ

h�ws�
�

. In this case, since the nominal bond
is the ideal bond aN

� m � 1, there is no role for an indexed bond.
If the bond is indexed on the value of a bundle of goods b 2 RL, then it

becomes a real bond whose purchasing power across the states

aR
� rh�ws�b� �

S
s�1

is not influenced by fluctuations in the purchasing power of money. However
if the relative prices of the goods

ÿ

proportional torh�ws�
�

vary across the
states, then the purchasing power aR fluctuates. In this model, in view of
Assumption H, it would be possible to avoid these fluctuations by indexing
on a state-dependent bundle bs � ws=h�ws� which is proportional to ag-
gregate output in state s. Indexing on this ideal state-dependent bundle
permits the creation of the riskless real income stream

aR
�

rh�ws�ws

h�ws�

� �S

s�1
� 1

If indexation could create such a riskless real income stream, then agents
would only use the indexed bond and the nominal bond would disappear.

In a more realistic model in which agents do not have identical pre-
ferences for goods within each state, no such ideal reference bundle – and
hence no such ideal index – exists. We invoked Assumption H to simplify the
analysis of equilibrium – by factoring out the influence of the income earned
by agents on financial markets on the determination of spot prices – certainly
not to suggest that there is an ideal index. To capture the inherent im-
perfections of indexation in spite of the simplifying Assumption H, we as-
sume that the reference bundle must be state independent. This assumption
also captures the fact that in practice an index is more credible if its com-
putation does not involve the use of a state-dependent reference bundle, since
the possibility of changing the bundle as the contingencies vary opens the
door to manipulations to either understate or overstate inflation, depending
on the interests of the parties involved.

Since neither of the extreme cases where the purchasing power of money
is constant or there exists an ideal index is likely to be met in practice, it is
instructive to identify the circumstances in which one of the two types of
bond – nominal or indexed – has a relative advantage over the other. This
may be done by analyzing which bond creates the greater social welfare,
under the assumption that only one of the two bonds is traded.
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(b) Conditions under which aN or aR is socially preferred.
We want to apply the analysis of section 3 to a purchasing power economy

E�u; e; a; V � where a denotes either the nominal or the indexed bond and V is
the matrix of payoffs on the underlying risk-sharing securities, all payoffs
being expressed in purchasing power. Consider first the simplest case where V
consists of a single security �J � 1�. Given Assumption S its payoff v must be

v � rh�ws�ws� �
S
s�1� h�ws�� �

S
s�1� h�w1�

The projection g of 1 onto V must then be collinear to v so that
bg � h�w1�=E

ÿ

h�w1�
�

. Thus rĝ depends on the variability of aggregate output
(measured with the aggregator h).

The risk characteristics of the real bond depend on the underlying real
side of the economy. Since aR

� rh�w1�b, the variability râR of the nor-
malized indexed bond depends on the magnitude of the fluctuations in re-
lative prices, which in turn depends on the extent to which supply-side shocks
influence the relative quantities of the goods across the states. If the real
shocks which affect the economy are primarily economy-wide, affecting all
sectors (goods) in a similar fashion, then the fluctuations in output captured
by rv̂ will be greater than the fluctuations in relative prices summarized in râR

(see Figure 3(a)). Conversely the case râR > rĝ arises when the real shocks are
primarily sectoral, affecting sectors differentially while creating only small
fluctuations in the level of output (see Figure 3(b)). Clearly the greater the
relative price fluctuations the smaller the potential gains from an indexed
bond. The correlation qaR depends on how the prices of the goods which are
most heavily weighted in b covary with aggregate output: if the supply w`s of
the goods `, whose components b` in the index have a substantial weight, are
positively (negatively) correlated with aggregate output

ÿ

h�ws�
�

, then qaR will
be negative (positive). In view of Figure 2, when the correlation is relatively
small, the potential gain is greater when the correlation is negative than when
it is positive.

Figure 3. In a, economy-wide shocks are greater than sectoral shocks �rv̂ > râR �; in b, the
reverse �rv̂ < râR ).
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The risk characteristics of the nominal bond depend on the interaction
between the real and the monetary sides of the economy. In the analysis that
follows it is useful to distinguish two categories of economies depending on
the role attributed to monetary policy:
(i) Economies in which a primary objective of monetary policy is to stabilize
the purchasing power of money. Most developed countries are in this cate-
gory with average annual inflation lying between 1 and 15% per annum and
standard deviation of the same order of magnitude. Even in these economies,
there is always some variability in the purchasing power of money due to
imperfections in the control of the money supply process by the Central
Bank or to the fact that monetary policy must also meet other objectives such
as full employment. This is the category of economies in which the absence of
indexed bonds has been somewhat of a puzzle to economists.
(ii) Economies in which the money supply is used to finance government
expenditure. These are typically economies in which inflation is high and very
variable, the variability in inflation being due to periodic attempts to dras-
tically lower the rate of inflation. Many less developed countries are in this
category, having mean and standard deviation of inflation per annum in
excess of 200%. In these economies indexation is pervasive, although nom-
inal bonds of short-term maturity continue to be traded.

The magnitude of râN is greater in economies of type (ii) than in those of
type (i). As for the sign of qaN , in most economies – and especially in
economies of type (i) – the statistical relation between inflation and output
underlying the Phillips curve, suggests that the purchasing power of money is
negatively correlated with aggregate output �qaN < 0�. The fact that nominal
bonds are typically used in economies of type (i), while indexation is per-
vasive in economies of type (ii), can then be explained by the following
proposition which is a corollary of Proposition 4.

Proposition 5 (nominal versus indexed bond): Given �râR ; qaR� which depend on
the real side of the economy, with qaR 6� �1, and given qaN satisfying
ÿ1 < qaN � 0, there exists r� such that if râN < r�, then the nominal bond
leads to greater social welfare and if râN > r�, then the indexed bond leads to
greater social welfare.

Proof: Since ÿ1 < qaN � 0, by Proposition 4B, the function g��; qaN � is
strictly decreasing in r. Thus if r� is defined by

g�r�; qaN � � g�râR ; qaR� � �g

then g�râN ; qaN � > �g if râN < r�, and g�râN ; qaN � < �g if râN > r�. h

Thus in an economy which is subjected to real (sectoral) shocks there is
always an interval �0; r�� of fluctuations in the purchasing power of money on
which the nominal bond is preferred. This interval is larger, the greater the
relative price fluctuations râR and the more negative the correlation qaN v be-
tween the purchasing power of money and aggregate output. The existence of
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sectoral shocks leading to relative price fluctuations and a relatively strong
positive correlation between inflation and output may thus be two important
elements which help to explain the lack of indexation in Western economies.
With slight abuse of the model, the proposition can also be used to obtain
insight into the bonds traded in economies with high and variable inflation.
The response to high inflation is often to switch to nominal bonds of shorter
maturities: such a switch reduces the uncertainty over the future ppm �râN �,
while lags in collecting data and computing indices effectively add to the in-
herent uncertainty of the payoff on a short-term indexed bond �râR�. Indexa-
tion is typically introduced when certain agents (most notably the government)
find it unpractical to shorten the maturity on bonds: thus in economies of type
(ii), it is for medium to long-term bonds that indexation is typically used.

Proposition 5 extends in a relatively straightforward way to the case
where there are many securities that generate the market subspace V�J > 1�.
If neither the indexed nor the nominal bond is perfectly correlated with a
marketed (real) income stream, and if q�aN

; g� � 0, then by Proposition 4B,
g��; qaN � is strictly decreasing in r, so that there exists a r� with the properties
stated in Proposition 5: if râN < r� then the nominal bond is preferred, while
if râN > r� then the indexed bond gives greater social welfare. Note that if the
least risky income stream g in V is positively correlated with aggregate
output h�w1�, then the condition q�aN

; g� � 0 is likely to be satisfied. A
qualitative analysis similar to that given for the single security case can then
be made in the more realistic case J > 1 – many securities inevitably being
required if the spanning Assumption S is to be a reasonable approximation.

(c) When the restriction to trading only one of the two bonds is a reasonable
assumption.

The analysis in (b) was based on the assumption that only one of the two
bonds is traded. We need to clarify the conditions under which this restriction
is reasonable. For there can be circumstances when the correlations
q�aN

; v j
�; q�aR

; v j
� and q�aR

; aN
� are such that agents would be much better off

trading both the nominal and the indexed bond, so that restricting them to
trading only one of the two securities gives an artificial result. The analysis in
(b) leads to a result with explanatory power only if, when agents trade the
preferred bond, augmenting their opportunity set by permitting trade in the
other bond would not add much to their welfare. In such circumstances, even a
small transaction cost would cancel the benefit of using the second-best bond.

To cover the two cases where the nominal (resp. indexed) bond is pre-
ferred, let a denote the preferred bond and let a0 denote the second best bond.
The market subspace when the preferred bond is used is W � hV; ai and by
Proposition 4, the maximum welfare gain from adding the second bond a0 is
1 ÿ E�gW�, where gW is the least risky security in W. There are two reasons
why introducing the bond a0 may add only a small welfare gain. First, the
maximum potential gain 1 ÿ E�gW� from introducing any additional security
may be small. Second, the characteristics of the bond a0 may be such that
only a small part of this maximum gain can be captured: since a is preferred
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to a0, the least risky security gW must be closer to 1 than a0 i.e. r�ba0� > r�bgW�,
so that a0 falls into the high variability category of Proposition 4, in which
the gain may be zero.

In the case of economies of type (i), in which the nominal bond is pre-
ferred, a combination of these two reasons serves to explain why the indexed
bond is not more widely used. First, if the nominal bond is negatively cor-
related with most of the securities V (the stocks), then diversification be-
tween the nominal bond and the stocks may permit risks to be significantly
reduced, in which case r�bgW� is small. If r�baR

� is relatively large and the
correlation q�aR

; bgW� is positive, then the gains from introducing aR may be
close to the minimum, which is zero.

In the case of economies of type (ii) in which indexed bonds are preferred
(at least for bonds with medium to long-term maturities) the nominal bond is
simply too risky to be used. Given the general ‘‘noise’’ in the system, the high
variability of baN is not likely to be compensated by a high correlation with
real variables. On the other hand, if neither of the bonds is traded, the
assumption that only one can be traded is not restrictive: this will occur if
both râN and râR are very large and the correlations qaN v; qaRv and q�aN

; aR
�

are weak. For then neither of the bonds, nor a combination of the two,
would add significant welfare gains. This will be the case for economies for
which the random variables ws, rh�ws� and h�ws� Ms= are highly variable and
uncorrelated: such a situation may closely represent economies with high and
variable inflation, since the stylized facts (see Heymann and Leijonhufvud
[11]) indicate that high variability of inflation is typically associated with high
variability of relative prices, and a tendency for trade on both nominal and
indexed bonds with medium to long-term maturities to disappear.

5 Proof of properties of the statistical gains function

In this section we prove Propositions 3 and 4. The order of the proof will not
exactly follow the statements of these propositions. It is convenient to begin
by calculating the statistical gains function, namely the function g�râ; qa�

which expresses the welfare gain G�a� from a bond a as a function of
its normalized standard deviation and its vector of correlation coefficients
with the underlying securities v1

; . . . ; vJ ((iii) of Proposition 3). We then
exhibit the domain on which the function g�r; q� expresses the welfare gain
of some random income stream a 2 RS ((i) and (ii) of Proposition 3). Finally
we establish the properties of g as a function of q and r (A and B of Pro-
position 4).

Some matrix notation simplifies the calculation of g. Since the purchasing
power payoffs on the securities can be normalized to have unit expectation,
we let

bV �

bv1
1 . . . bv J

1

.

.

.

.

.

.

bv1
S . . . bv J

S

2

6
4

3

7
5; bv j

�

v j

E�v j
�
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denote the matrix of normalized payoffs. The J � J diagonal matrix of
standard deviations of these J normalized payoffs is denoted by

r
^V �

rv̂1 . . . 0
.

.

.

.

.

.

.

.

.

0 . . . rv̂J

2

6
4

3

7
5

and qV � �qviv j �i;j�1;...;J denotes their J � J matrix of correlation coefficients.
For some intermediate calculations, it is convenient to introduce the fol-
lowing measure of stochastic dependence, defined for non-centered random
variables: if x; y 2 RS

; E�x� 6� 0; E�y� 6� 0 define

k�x; y� � E�bxby� �
E�xy�

E�x�E�y�

Since k�x; y� � 1 � q�x; y�r�bx�r�by�; k�x; y� is greater (less) than 1 for posi-
tively (negatively) correlated random variables. This measure of stochastic
dependence appears naturally in the projection formulae. Thus we define

ka � �ka1; . . . ; kaJ � �
ÿ

k�a; v1
�; . . . ; k�a; vJ

�

�

K �

k�v1
; v1

� . . . k�v1
; vJ

�

.

.

.

.

.

.

k�vJ
; v1

� . . . k�vJ
; vJ

�

2

6
4

3

7
5 �

bV T
�c�bV

Computation of the function g. Recall that the gain function G : RS
ÿ!R is

defined by G�a� �k gVa
k

2
c ÿ k g k2

c . Not surprisingly, the reduction in the
distance from 1 (or the increase of the length of the projection) achieved by
changing the market subspace from V to Va � hV; ai depends only on the
innovation component of a relative to the subspace V. Let

a � a� � a0; a� 2V; a0 2V??

denote the decomposition of a into its component a� on V and its innovation
component a0 2V?? and let ga0 � proj

ha0i1 denote the projection of 1 onto the
one-dimensional subspace generated by a0.

Lemma 1: The welfare gain G�a� from introducing a bond a 2 RS is given by
G�a� �k ga0 k

2
c .

Proof: The decomposition of 1 onto Va and its orthogonal complement V??

a
gives

1 � gVa
� 10; gVa

2Va; 10 2V??

a

Since Va �V� ha0i; gVa
can in turn be decomposed into

gVa
� u � v; u 2V; v 2 ha0i
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so that 1 � u � v � 10. Since v 2 ha0i �V?? and 10 2V??a �V??, by un-
iqueness of the orthogonal decomposition u � gV. Since u 2V � ha0i?? and
10 2V??a � ha0i??, v � ga0 . Thus gVa

� gV � ga0 and by Pythagoras theorem
G�a� �k gVa

k
2
c ÿ k gV k

2
c �k ga0 k

2
c . h

Lemma 2: The welfare gains function G : RS
ÿ!R can be expressed as a

function eg : R� � RJ
ÿ!R of the normalized variables E�ba2

�; ka
ÿ �

for all
a 2 RS such that E�a� 6� 0

G�a� � eg E�ba2
�; ka

ÿ �

�

�1 ÿ 1T Kÿ1ka�
2

E�â2
� ÿ kT

a Kÿ1ka
; if a 62 hVi

0; if a 2 hVi

8

<

:
�1�

Proof: By formula (4) of section 3 for the projection matrix BW with
W � ha0i,

ga0 � a0�a0T �c�a0�ÿ1a0T �c�1 �
E�a0�
E�a02�

a0

so that

G�a� �k ga0 k
2
c �

E�a0�2

E�a02�
�

�1T
�c�a0�2

a0T �c�a0

Since a0 � a ÿ BVa,

G�a� �
E�a� ÿ 1T

�c�BVa
ÿ �2

�a ÿ BVa�T
�c��a ÿ BVa�

�

�1 ÿ 1T
�c�BVba�

2

E�ba2
� ÿ baT

�c�BVba

where the second equality is obtained by dividing the numerator and de-
nominator by E�a�2 and exploiting the orthogonality of a and a0:
aT
�c��a ÿ BVa� � 0. Since the c-projection onto hVi is not affected by the

length of the vectors which span the subspace hVi, the c-projection matrix
can be written as

BV � bV �bV T
�c�bV �ÿ1bV T

�c� � bV Kÿ1bV T
�c�

Using the relations 1T
�c�bV � 1T and bV T

�c�ba � ka leads to formula (1).
Since the variables

ÿ

E�ba2
�; ka

�

can be expressed as functions of �ra; qa�,

E�ba2
� � 1 � r2

â; ka � 1� râ�r^V �qa �2�

substituting the expressions in (2) into equation (1), leads to a function
g�râ;qa� satisfying

G�a� � g�râ; qa� � eg 1 � r2
â ; 1� râ�r^V �qa

ÿ �

which proves (iii) of Proposition 3. The exact formula for g is cumbersome
and it is always more convenient to make calculations using the function eg.

Consider therefore the functions eg : R� RJ
ÿ!R defined by
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eg�m; k� �
�1 ÿ 1T Kÿ1k�2

mÿ kT Kÿ1k
; if m 6� kT Kÿ1k

0; if m � kT Kÿ1k

8

<

:
�3�

and g : R� RJ
ÿ!R defined by

g�r; q� � eg 1 � r2
; 1� r�r

^V �q
ÿ �

�4�

When the variables �r; q� correspond to the standard deviation and vector of
correlation coefficients of a normalized random variable ba 2 RS , then g�r; q�
is the welfare gain attributable to the bond a. Thus the properties of g need to
be studied only for these relevant values of �r; q� which we now characterize.

Relevant domain of g. We begin by proving the sufficiency part of Proposi-
tion 3(i).

Lemma 3: If a 2 RS , then either �ra; qa� � �0; 0� or ra > 0 and qa is such that
�qV ÿ qaq

T
a � is positive semi-definite. Furthermore if E�a� 6� 0 and ra > 0 then

the following properties are equivalent:

(i) det �qV ÿ qaq
T
a � � 0

(ii) there exists y 2V such that q�a; y� � �1
(iii) there exist y 2V and k 2 R such that ba ÿ 1 � k

ÿ

y ÿ E�y�1
�

.

Note that if a 2V then (iii) implies that 1 2 Va

Proof: If a 2 RS , then ÿ1 � q�a; y� � 1 for all y 2 RS and in particular for all
y 2V. If r�a� � 0 and E�a� 6� 0 then a � k1 and qa � 0. If r�a� > 0, then
ÿ1 � q�a; y� � 1; 8 y 2V is equivalent to

XJ

j�1

ekjqav jrarv j

 !2

� r2
a

XJ

i�1

XJ

j�1

eki
ekjqviv jrvirv j

 !

; 8
ek 2 RJ

�5�

Letting kj �
ekjrv j , (5) is equivalent to kT qaq

T
a k � kT qV k for all k 2 RJ or

�qV ÿ qaq
T
a � positive semi-definite. There exists y 2V such that q�a; y� � �1

if and only if there exists ek 2 RJ such that (5) holds with equality, or if and
only if there exists k 2 RJ such that kT

�qv ÿ qaq
T
a �k � 0 () det

�qV ÿ qaq
T
a � � 0. Thus (i) is equivalent to (ii). On the other hand (ii) is

equivalent to

a ÿ E�a�1; y ÿ E�y�1� �� �
2
�k a ÿ E�a�1 k2

ck y ÿ E�y�1 k2
c 6� 0 for some y 2V

If E�a� 6� 0, dividing by
ÿ

E�a�
�2 gives

��ba ÿ 1; y ÿ E�y�1��2 �k ba ÿ 1 k2
ck y ÿ E�y�1 k2

c 6� 0 for some y 2V

By the Cauchy-Schwartz inequality this occurs if and only if ba ÿ 1 and
y ÿ E�y�1, which are non-zero, are linearly dependent, which gives (iii). (iii)
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can be written as
ÿ

1 ÿ kE�y�
�

1 � a ÿ ky for some k 2 R. If a =2 V then
1 ÿ kE�y� 6� 0 and 1 2Va. h

The next lemma proves that the restriction r > 0 and �qV ÿ qqT
� positive

semi-definite, completely characterizes the �r; q� which correspond to the
standard deviation and vector of correlation coefficients of non-constant
random variables in RS .

Lemma 4: Let R � q 2 RJ
j�qV ÿ qqT

�

�

is positive semi-definiteg

(i) R is a convex subset of RJ

(ii) @R � q 2 RJ
�
� det �qV ÿ qqT

� � 0
�

g

(iii) If �r; q� 2 �0; 0�0R�� �R, then there exists a 2 RS with E�a� 6� 0 such
that �ra; qa� � �r; q�.

Proof: The proof of (i) and (ii) is straightforward and is left to the reader.
Proving (iii) is equivalent to showing that if r > 0 and q 2 R then the fol-
lowing system of equations has a solution:

Find a 2 RS such that

(A)

PS

s�1
cs

ÿ

as ÿ E�a�
�ÿ

v j
s ÿ E�v j

�

�

� qjrrv j ; j � 1; . . . ; J

PS

s�1
csas � E�a�

PS

s�1
cs

ÿ

as ÿ E�a�
�2
� r2

8

>
>
>
>
>
>
>
<

>
>
>
>
>
>
>
:

In terms of the standardized variables

xs �
as ÿ E�a�

r
; cj

s �
v j

s ÿ E�v j
�

rv j
; s � 1; . . . ; J ; j � 1; . . . ; J

the problem (A) is equivalent to:
Find x 2 RS such that

�A0
�

PS

s�1
csxsc j

s� qj; j � 1; . . . ; j

PS

s�1
cxxs � 0

PS

s�1
csx

2
s � 1

8

>
>
>
>
>
>
>
>
<

>
>
>
>
>
>
>
>
:

()

bC�c�x =
q

0

� �

xT
�c�x � 1

8

>
<

>
:

with bC �
C
1

� �

�

c1
1 . . . c1

S

.

.

.

.

.

.

c J
1 . . . c J

S
1 . . . 1

2

6
6
6
4

3

7
7
7
5

Since rank bC � J � 1 < S, the problem �A0
� has a solution if and only if the

minimum value function

30 M. Magill and M. Quinzii



�P� h�q� � min xT
�c�x bC�c�x �
�
�
�

q
0

� �

; x 2 RS
� �

satisfies h�q� � 1. For if x� gives the minimum of this problem then, for all
solutions y 2 RS of the homogeneous equations bC�c�y � 0; x � x� � ky sa-
tisfies bC�c�x �

h q
0

i

and an appropriate choice of k leads to xT
�c�x � 1. The

solution of the problem �P� is given by x� � Cqÿ1
V q where qV � C�c�CT is the

symmetric positive definite matrix of correlation coefficients of the vectors
v1
; . . . ; v J , and h�q� � x�T

�c�x� � qT qÿ1
V q. If �qV ÿ qqT

� is positive semi-defi-
nite, then for n � qÿ1

V q, nT
�qV ÿ qqT

�n � 0 which implies qT qÿ1
V q

ÿ�qT qÿ1
V q�2

� 0 and since qT qÿ1
V q > 0; h�q� � 1.

Note that for any �r; q� 2 R�� �R, the expected value of the random
variables a 2 RS such that �ra; qa� � �r; q� is arbitrary: if x is a solution to
�A0
�, then for any k 2 R; a � rx � k1 is a solution to (A). h

Lemmas 1–4 complete the proof of Proposition 3. It remains to establish
the properties of the statistical gains function g on the domain R�� �R.

Properties of the function g. The function g�r; q� defined by (4) is obtained
from the function eg�m; k� defined by (3), via the change of variable

m � 1 � r2
; k � 1� r�rV �q �6�

While the variables �r; q� have a more natural economic interpretation, the
variables �m; k� are better adapted to analyzing properties derived from
projection formulae: the properties of g�r; q� will thus be derived from the
properties of the function eg�m; k�.

The function eg�m; k� is rational function which we write as

eg�m; k� �
N�k�

Q�m; k�
; if Q�m; k� 6� 0

0; if Q�m; k� � 0

8

<

:

The relevant domain for eg is the image of R�� �R under the change of
variable (6). It is convenient to begin by studying when the denominator
Q�m; k� vanishes.

Lemma 5: If �r; q� 2 R�� �R and �m; k� is defined by (6), then

(i) Q�m; k� � 0
(ii) Q�m; k� � 0 () every a 2 RS such that �ra; qa� � �r; q� satisfies a 2V
(iii) Q�m; k� � 0 �)q 2 @R and r � rĝ.

Proof: Let a 2 RS be such that �râ; qa� � �r; q� and let �m; k� be deduced
from �r; q� by (6), then eg�m; k� �

ÿ

E�a0�
�2
=E�a02� where a0 is the innovation

component of a relative to V. Thus Q�m; k� � E�a02� � 0 and Q�m; k� � 0 if
and only if a0 � 0()a 2V, which proves (i) and (ii). If a 2V, then there
exists y 2V �y � a� such that q�a; y� � 1, and by Lemmas 3 and 4, q 2 @R.
Moreover in this case r � râ � rĝ, since râ < rĝ would contradict the
minimum risk property of ĝ in Proposition 2 (ii) b. h
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Lemma 6: For all r 2 R��; g�r; �� is a convex function on int R.

Proof: Given the linearity of the change of variable (6), it suffices to prove
that k #eg�m; k� is a convex function of k on the domain Q�m; k� > 0. The
matrix of second derivatives of eg with respect to k is given by

D2
kkeg�m; k� �

D2N�k�
Q�m; k�

� N�k�D2
kk

1
Q�m; k�

� �

�rN�k�rT
k

1
Q�m; k�

� �

�rk
1

Q�m; k�

� �

r
T N�k�

�7�

where r (resp. rT ) denotes the gradient (resp. transpose of the gradient) and
where

rN�k� � ÿ2�1 ÿ 1T Kÿ1k�Kÿ11

D2N�k� � 2Kÿ111T Kÿ1

rk
1

Q�m; k�

� �

�
2Kÿ1k

Q2
�m; k�

D2
kk

1
Q�m; k�

� �

�

2Kÿ1

Q2
�m; k�

�

8Kÿ1kkT Kÿ1

Q3
�m; k�

Inserting these expressions into (7) leads to

xT
�D2

kkeg �x �
2
Q

xT Kÿ11ÿ
2�1 ÿ 1T Kÿ1k�xT Kÿ1k

Q

� �2

�

2xT Kÿ1x�1 ÿ 1T Kÿ1k�2

Q2

which is non-negative for all x 2 RJ , since Kÿ1 is positive definite and
Q > 0. h

We now study the minima of the function g�r; ��. Since g is a convex
function on int R, the values of q 2 int R for which g attains a minimum are
the solutions of the first order condition rqg�r; q� � 0. Since

rqg�r; q� � r�r
^V �rkeg

and since �r
^V � is invertible, these values of q correspond to the values of k

such that rkeg�m; k� � 0 (with m � 1 � r2). Define the functions H : RJ
ÿ!R

and F : RJ
ÿ!RJ

H�k� � 1 ÿ 1T Kÿ1k; F �m; k� � �kT Kÿ1k ÿ m�1� �1 ÿ 1T Kÿ1k�k �8�

noting that the numerator of eg satisfies N�k� �
ÿ

H�k�
�2
: Then

rkeg�m; k� �
2H�k�Kÿ1F �m; k�

Q2
�m; k�
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Since Kÿ1 is invertible, rkeg�m; k� � 0 if and only if

either (i) H�k� � 0

or (ii) F �m; k� � 0

The next two lemmas locate the zeros of H and F respectively. For fixed
m � 1 � r2, the zeros of H define a hyperplane Hr in RJ

Hr � q 2 RJ H�1� r�r
^V �q� � 0

�
�

� 	

Lemma 7: �a� Let q 2Hr/R, then (i) g�r; q� � 0 and (ii) a 2 RS is such that
�râ; qa� � �r; q� if and only if

q�a; g� �
rĝ

r
()��â; 1ÿ g�� � 0 () gVa

� g

�b� If r < rĝ; then Hr does not intersect R.
�c� If r � rĝ; then Hr is tangent to R at the unique point

q� � rĝ�r^V �
ÿ1

1 2 @R.
�d� If r > rĝ; then Hr intersects R and the relative interior of Hr/ int R

is an open subset of dimension J ÿ 1.

Proof: �a� (i) If q 2Hr/R then g�r; q� � eg�m; k� �

ÿ

H�k�
�2

Q�m;k� � 0. (ii) Note

that E�bv j
� � 1; j � 1: . . . ; J implies bV T

�c�1 � 1. Thus g, which is the projec-
tion of 1 onto hV i, is given by

g � bV bV T
�c�bV

h i
ÿ1
bV T
�c�1 � bV Kÿ11 �9�

so that

E�g� � 1T
�c�bV Kÿ11 � 1T Kÿ11 �10�

Thus if a 2 RS , since ka � E�bv1
;ba�; . . . ;E�bvJ

;ba�
ÿ �

� bV �c�ba

E�bag� � 1T Kÿ1bV T
�c�ba � 1T Kÿ1ka �11�

(11) and the definition of H in (8) imply

H�k� � 0 ()1 ÿ E�bag� � 0 () ��ba; 1ÿ g�� � 0

Thus 1ÿ g is orthogonal to ba. Since by definition 1ÿ g is orthogonal to
V; 1ÿ g 2V??

a which implies that g is the projection of 1 onto V??

a i.e.
g � gVa

. Furthermore 1 ÿ E�bag� � 0 ()1 ÿ E�g� ÿ q�a; g�rrg � 0 and di-
viding by E�g� this is equivalent to

1
E�g�

ÿ 1 ÿ q�a; g�rrĝ � 0 () q�a; g� �
rĝ

r

where the last step is derived from the equality r2
ĝ �

1
E�g� ÿ 1 proved in

Proposition 2 (iii). �b� By �a�; q 2Hr/R implies q�a; g� � rĝ=r which is
impossible if r < rĝ: thus Hr/R � ;. �c� If a 2 RS is such that

Nominal versus indexed bond 33



�râ; qa� � �r; q� with r � rĝ and q 2Hr/R then by �a�, q�a; g� � 1 and by
Lemma 3, ba ÿ 1 � k

ÿ

gÿ E�g�1
�

� k0�bgÿ 1� with k0 > 0 since the correlation
is positive. râ � rĝ () k â ÿ 1 kc�k bgÿ 1 kc which implies ba � bg so that
qa � qg, and by Lemma 5, qg 2 @R. qg is readily computed, since
kg � bV T

�c�bg � 1
E�g�

bV T
�c�bV Kÿ11 � 1

E�g�KKÿ11 � 1
E�g� so that solving from

1� rĝ�r^V �qg � kĝ gives

q� � qg �
1
rĝ
�r

^V �
ÿ1 1

E�g�
ÿ 1

� �

1 � rĝ�r^V �
ÿ1

1

�d� Since Hr is a hyperplane in RJ , it suffices to show that Hr/ int R 6� ;.
Consider k� � 1

E�g�. By (10), H�k�� � 0. Let us prove that q� such that
k� � 1� r�r

^V �q
� namely q� �

r2
ĝ

r �r^V �
ÿ1

1 lies in the interior of R. For any
k 2 RJ , consider the vector y �

PJ
j�1 kjbv j with co-ordinates k on the nor-

malized basis of V. Then

kT
�r

^V ��qV ÿ q�q�T
��r

^V �k � kT
�r

^V �qV �r^V �kÿ
r4

ĝ

r2 kT 11T k

� r2
y ÿ

r4
ĝ

r2

ÿ

E�y�
�2
� r2

ŷ ÿ
r4

ĝ

r2

 !

ÿ

E�y�
�2

Since r > rĝ and since ĝ is the minimum risk income stream inV, rŷ � rĝ, so
that the expression is always strictly positive, implying that q� 2 int R. h

For fixed m � 1 � r2, the zeros of F define the subset of RJ

Fr � q 2 RJ F �1 � r2
; 1� r�r

^V �q� � 0
�
�

� 	

Lemma 8: �a� If r<rĝ, then Fr/R � fq�g where q� � r�r
^V �
ÿ1

1 � r
rv̂1

; . . . ;

�

r
rv̂J

�

2 int R, and

g�r; q�� �
1

1 � r2 ÿ
1

1 � r2
ĝ

�12�

�b� If r � rĝ; then Fr/R �Hr/@R.

Proof: By (8), F �m; k� � ÿQ�m; k�1� H�k�k so that F is a linear combination
of the vectors f1; kg. Either k is collinear to 1 or these vectors are linearly
independent. In the first case F � 0 only if k � m1 and this corresponds to a
value q� such that

1� r�r
^V �q

�
� �1 � r2

�1 ()q� � r�r
^V �
ÿ1

1 �13�

q� 2 R if for all k 2 RJ

kT
�r

^V ��qV ÿ q�q�T
��r

^V �k � 0

which is equivalent
ÿ

see proof of Lemma 7�d�
�

to r2
ŷ ÿ r2

� 0 for all y 2V,
or to r � rĝ. If r < rĝ then the inequality is strict so that q� 2 int R. Since
k� � m1, it follows from (10) that
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g�r; q�� � eg�m; k�� �
�1 ÿ m1T Kÿ11�

m ÿ m21T Kÿ11

2

�

ÿ

1 ÿ mE�g�
�2

m
ÿ

1 ÿ mE�g�
�

�

1
m
ÿ E�g� �

1
1 � r2 ÿ

1
1 � r2

ĝ

�14�

If r � rĝ, then q� is given by (13) with r � rĝ and thus coincides with the
point in Hr/@R given by Lemma 7�c� and g�r; q�� � 0.

If the vectors fk; 1g are linearly independent, then F � 0 if and only if
Q � 0 and H � 0: by Lemma 5, the former implies q 2 @R and r � rĝ and
the latter implies q 2Hr. Thus if r � rĝ;Fr/R �Hr/@R. h

Since by Lemma 6, g�r; �� is convex on int R, it follows from Lemmas 7
and 8 that if r � rĝ then g�r; �� attains its minimum at the unique point q�

given by (13), and g�r; q�� is given by (14). If r > rĝ then g�r; �� attains its
minimum for all points q on the intersection of the hyperplane Hr with R
and g�r; q� � 0 for all such points. By Lemma 7�a�,Hr/R coincides with the
set Rrr with rr � rĝ=r consisting of the vectors q 2 R such that
q�a; g� � rĝ=r for all a 2 RS with qa � q.

The next lemma locates the values of q for which g�r; �� attains its
maximum onR: this consists of all the boundary points ofR which do not lie
on the hyperplane Hr. Since g is zero on Hr, it follows that g has a dis-
continuity at the boundary points which lie on Hr, when J � 2.

Lemma 9: �a� g�r; �� attains its maximum on R for all q 2 @RnHr and
g�r; q� � 1 ÿ E�g�; 8 q 2 @RnHr.

�b� If r < rĝ; then g�r; �� is continuous on R: If r � rĝ and J � 2; then
g�r; �� has a discontinuity at q 2 @R/Hr and g�r; q� � 0; 8 q 2 @R/Hr.

Proof: �a� Since g�r; q� � G�a� �k gVa
k

2
c ÿ k gV k

2
c , for all a 2 RS such that

�râ; qa� � �r; q�; g attains its maximum when gVa
� 1()1 2Va. By Lemmas

3 and 4, this occurs when q 2 @R and a =2 V. Since a 2V is equivalent to
E�a0� � 0 where a0 is the innovation component of a, and since (see proof of
Lemma 2) E�a0� � H�ka�, the maximum of g�r; �� is attained for q 2 @RnHr.

�b� Since g is a rational function it can be discontinuous only at the points
where the denominator is zero. When r < rĝ, by Lemma 5, Q > 0, so that
g�r; �� is continuous on R. When r � rĝ, Q � 0 when q 2 @R/Hr and g�r; ��
has a potential discontinuity at such points. Since R is a manifold with
boundary of dimension J , its boundary @R is a manifold of dimension J ÿ 1.
When J ÿ 1 � 0; @R consists of isolated points and we saw in section 3 that
g�r; �� is not discontinuous at q 2 @R/Hr. For J � 2, when q moves in @R,
which is now of dimension J ÿ 1 � 1, g�r; �� has the value 1 ÿ E�g� when
q =2Hr and 0 when q 2Hr. Thus there is a discontinuity which arises from
the drop in dimension of Va which looses one dimension when a goes from
being outside V (in which case it contributes a great deal) to being inside V
(in which case it contributes nothing). h
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SinceRrr �Hr/R, this completes the proof of part A of Proposition 4. It
remains to study the properties of g as a function of r. In section 3 it was
shown that the correlation coefficient q�a; g� with the least risky security g is
the same for all a 2 RS with the same vector of correlation coefficients qa.
The expression for q�a; g� as a function of qa is

q�a; g� �
cov �â; g�

rârg
�

E�âg� ÿ E�g�
rârg

�

1T Kÿ1ka ÿ 1T Kÿ11

rârg

Substituting the expression for ka in (2) gives

q�a; g� �
1T Kÿ1

�r
^V �qa

rg
�15�

Thus
q 2 R� (resp.Rÿ

� ()1T Kÿ1
�r

^V �q > 0 �resp. � 0� �16�

The behavior of g as a function of r depends on whether q lies in R� or Rÿ.

Lemma 10: Consider any q 2 int R.

�a� If q 2 Rÿ, then g��; q� is strictly decreasing for all r > 0.
�b� If q 2 R�, then there exists r� � rĝ=q�a; g� such that g��; q� is strictly
decreasing for r 2 �0; r�� and strictly increasing for r 2 �r�;1�.

Proof:
@g�r; q�

@r
� 2r

@~g�m; k�
@m

� qT
�r

^V �rkeg�m; k� where

�m; k� � 1 � r2
; 1� r�r

^V �q
ÿ �

�17�

Define

L�r; q� � rqT
�r

^V �K
ÿ1F �m; k� ÿ r2H�k�

with �m; k� given by (17). Then

@g
@r

�

2HL
rQ2

Let us show that L�r; q� < 0; 8 �r; q� 2 R��� int R so that

sgn
@g
@r

� �

� ÿsgn�H�

L can be written as

L�r; q� � �1 ÿ m�H�k� � �k ÿ 1�
T Kÿ1

ÿQ�m; k�1� H�k�k� �

with �m; k� given by (17), which by appropriately regrouping terms gives

L � Q g ÿ �1 ÿ E�g�� � < 0

where L < 0 follows from Q > 0 and g < 1 ÿ E�g� for r > 0 and q 2 int R.
Thus if H > 0 (resp. < 0) then g��; q� is strictly decreasing (resp. increasing).
The expression for H as a function of �r; q� is
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H�r; q� � 1 ÿ 1T Kÿ1 1� r�r
^V �q

ÿ �

� 1 ÿ E�g� ÿ r1T Kÿ1
�r

^V �q

which by (15) can be written as

H�r; q� � 1 ÿ E�g� ÿ rrgq�a; g�

Thus if q�a; g� � 0 then H�r; q� > 0 for all r > 0, which proves �a�. If
q�a; g� > 0, define

r� �
1 ÿ E�g�
rgq�a; g�

�

1
rĝq�a; g�

1 ÿ E�g�
E�g�

�

rĝ

q�a; g�

If r 2 �0; r�� then H�r; q� > 0 and if r 2 �r�;1� then H�r; q� < 0, which
proves �b�.

This completes the proof of Proposition 4. h
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