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Abstract 

This paper studies sequence economies over an infinite horizon with general security 
structures. Assumptions are given under which a pseudo-equilibrium exists for all economies 
and an equilibrium exists for a dense set of (appropriately parameterized) economies. Under 
these assumptions the indebtedness of the agents in equilibrium can be limited either by an 
explicit bound on their debts or by a transversality condition limiting the asymptotic growth 
of their debts. The qualitative properties of equilibrium prices of infinite-lived securities are 
studied: the prices of infinite-lived securities in zero net supply are shown to permit 
speculative bubbles and the existence of bubbles can affect the equilibrium allocation. The 
prices of securities in positive supply (equity contracts) cannot have speculative bubbles: 
the extent of speculation in this class of model is thus severely limited. 

JEL classijkation: D52 
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1. Introduction 

Sequence economies over an infinite horizon form the basic framework for 
modem theoretical macroeconomics. The models are of two kinds: in the first, 
agents (families) are finitely lived and are succeeded by their children in an 
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infinite sequence of overlapping generations (OLG); in the second, there are a 
finite number of families (dynasties) that are infinitely lived. The latter model, 
which is the focus of this paper, has mainly been explored in the representative 
agent case: while this simplifies the analysis it also limits the insights that can be 
obtained; in a representative agent model of an exchange economy, the equilib- 
rium allocation is given by the initial resources and no change in the structure of 
the markets or in the monetary environment can have real effects. It is for this 
reason that the general equilibrium analysis of sequence economies with incom- 
plete markets has been the subject of much recent research - this class of models 
being referred to more briefly as general equilibrium with incomplete markets 
(GEI). I The analysis of the GE1 model, which promises to provide a rich 
framework for the analysis of problems in macroeconomics, has, however, so far 
been restricted to the somewhat ad hoc setting of a finite horizon. 

In a companion paper (Magi11 and Quinzii, 1994) we showed how the concept 
of a GEI equilibrium can be extended to an infinite horizon economy. The new 
element that rlecds to be incorporated into the definition of an equilibrium is a 
device to prevent agents from indefinitely postponing the repayment of their debts 
(so-called Ponzi schemes). We showed how the two traditional approaches for 
deterministic economies based either on borrowing constraints or a transversality 
condition can be extended to a model with incomplete markets. An equilibrium 
with debt constraints is a simple and intuitively appeaiing descriptive concept of 
equilibrium: an equilibrium with a transversality condition is, in principle, more 
general and is more natural for theoretical (mathematical) analysis; however, some 
economists may find it hard to accept as a positive concept of equilibrium since it 
calls for substantial rationality on the part of agents. Under the assumption (8.4) 
that agents have a uniform lower bound on their degree of impatience at each 
date-event - defined as the proportion of future consumption that an agent is ready 
to give up in order to have one more unit of consumption (of the numeraire good) 
at that date-event - these two types of equilibria were shown to coincide. Thus, 
equilibria with transversality conditions, which are more convenient for shxiying 
existence and qualitative properties, can be used to study the descriptively more 
satisfactory concept of equilibrium with debt constraints. 

The Magi11 and Quinzii (1994) paper is restricted to the simplest setting of an 
economy with short-lived securities paying dividends in a numeraire good. The 
object of the present paper is to extend the analysis to genera] security structures 
with the emphasis on the case of infinite-lived securities. The first task is to find 
conditions under which an equilibrium exists: even in the case of finite hofizon 
economies it is well known since Hart’s (1975) paper that discontinuities in 

’ See the Special Issue of the Journal of Mathematical Economics on General Equilibrium with 
Incomplete Markets (vol. 19, no. I, 199Oi and the survey articles of Geanakoplos (1990) and Magill 
and Shafer (1991). 
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agents’ demands created by changes in the rank of the returns matrices can lead to 
non-existence of equilibrium. The method used in the recent GEI literature to 
circumvent th% problem consists of introducing the concept of a pseudo-equi- 
librium: such an equilibrium is shown to exist for all economies and for a generic 
set of economies every pseudo-equilibrium is shown to be an equilibrium (see 
Duffie and Shafer, 1985, 1986). To extend this approach to the infinite horizon 
case we adopt a simpler and more intuitive approach to represent a pseudo-equi- 
librium of an economy with long-lived securities that amounts to adjoining to the 
economy a family of potentially equivalent short-lived numeraire assets. This 
enables us to draw on the arguments in the earlier paper (Magi11 and Quinzii, 
1994) to establish the existence of a pseudo-equilibrium, the proof being obtained 
by taking limits of pseudo-equilibria of truncated economies. It is here that the 
techniques introduced by Bewley (1972) for establishing the existence of an 
Arrow-Debreu equilibrium over an infinite horizon turn out to be most fruitf~tl. 
For the price of an infinite-lived security (when it is priced at its fundamental 
value) is the discounted value of its future dividend stream - an expression with 
an infinite number of terms. The problem of convergence is solved by viewing the 
present value prices as elements of the norm dual of /% (the space ba of bounded 
finitely additive set functions), the convergence being taken in t%e weak star 
topology. Mackey continuity of agents’ preference orderings is then used to 
establish that the limit prices are summable. 

The existence of an equilibrium for a dense set of security payoffs is obtained 
by showing that whenever a pseudo-equilibrium offers a larger subspace of 
income transfers than the original securities, the commodity payoffs can be 
perturbed so as to make these subspaces coincide. This result is weaker than the 
existence result for finite horizon economies, which establishes existence for a 
generic set of economies. However, we have not found a way to use Smale’s 
version of Sard’s theorem for infinite dimensional spaces to establish existence for 
a generic set of economies: this must be the subject of later research. 

Since the equilibria exhibited in the existence proof are obtained by taking 
limits of equilibria (pseudo-equilibria) of truncated economies, they have the 
property that all securities are priced at &eir fundamental values. It is natural to 
enquire whether this property holds for all possible equilibria: since no terminal 
condition can automatically be attached to the system of stochastic difference 
equations that must be satisfied by a security price (the first-order conditions for 
the portfolio choice of each agent), it is not a priori clear that the price of an 
infinite-lived security will equal its fundamental value. 

The phenomenon of speculative bubbles has been the subject of much interest 
in macroeconomics (see Blanchard and Fischer, 1989, ch. 5). It is sometimes 
argued that bubbles cannot arise in an economy with a finite number of infinite- 
lived agents: in Section 6 we show that this statement needs to be qualified. As in 
Tirole (1982) and Santos and Woodford (1992) we find that there cannot be a 
speculative bubble on infinite-lived securities in positive net supply: since equity 
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contracts constitute a significant segment of the capital market, this places a bound 
on the extent to which the model predicts the occurrence ol” speculation. However, 
the prices of infinite-lived securities in zero net supply behave quite differently: 
they admit substantial amounts of speculation. We show that a speculative bubble 
can always be added to the price of such a security without affecting the real 
equilibrium allocation. There is thus a significant nominal indeterminacy in the 
prices of infinite-lived securities in zero net supply. However, there is a qualitative 
difference between speculative bubbles that can arise in an equilibrium depending 
on whether the markets are complete or incomplete. If the markets are complete, 
then speculative bubbles only introduce a nominal indeterminacy; if the markets 
are incomplete, then a speculative bubble can have a real effect in the sense that 
the same equilibrium allocation cannot be supported by a system of prices such 
that each security is priced at its fundamental value. 

2. The infinite horizon economy 

We consider an economy with time and uncertainty over an infinite horizon. 
Let T = (0, 1,. *. } denote the set of time periods and let S be a set of states of 
nature. The revelation of information is described by a sequence of partitions of S, 
lF=(lF,, IF I,..., IF, ,... ), where the number of subsets in ff, is finite and ff, is finer 
than the partition ff,, I (i.e. Q E IF,, o’ E F,- 1 * a C 0’ or a n CT’ = 8) for all 
t 2 1. At date 0 we assume that there is no information so that ff 0 = S. The 
information available at time t (for t E T) is assumed to be the same for all agents 
in the economy (symmetric information) and is described by the subset (T of the 
partition IF, in which the state of nature lies. A pair 6 = (t, a) with t E T and 
cr E IF, is called a date-euent clr node and t( 6) = t is the date of node 5. The set 
D consisting of all date events (or nodes) is called the event tree induced by IF, 
D=U tET.aEl& a)* 

A node 5’ = (t’, a’) is said to succeed (strictly) a node 5 = (t, a) if t’ 2 t( t’ 
> t) and Q’ C a; we write 5’ 2 e( 6’ > 5 ). The set of nodes that succeeds a node 
&Discalledthesubtree D(&)and D+([)=(e’~D(e)Ir’>[)isthesetof 
strict successors of 5. The subset of nodes of D( 5) at date T is denoted by 
DT( 6) and the subset of nodes between dates t( 6) and T by DT( 5): 

When 5 is the initial node (denoted by &,) the notation is simplified to 
D+, DT, DT. 

~‘=(5’ED(4)1t(5’)=t(5)+ 1) is the set of immediate successors of 5. 
The number of elements of [+ is finite and is called the branching number b( 5 > 
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atS(b(r)=#5+).IfT=(t, a),withtrl,thentheuniquenodee-=(t- 1, a’) 
with (T c a’ is called the predecessor of 6. 

The economy consists of a finite collection of infinitely-lived consumers 
(families) I = (1 , . . . , I} who purchase commodities on spot markets and trade 
securities at every node in the event tree D described above. There is a set 
L=(l , . . . , L) of commodities at each node: the set consisting of all commodities 
indexed over the event tree is thus: 

DxL=((& /y&D, eq. 
‘Let RDx b. denote the vector space of all maps x : D X L + W and let /%( D x L) 
denote the subspace of lRDx L consisting of all bounded maps (sequences): 

r,(DxL)= XEIW~~~I 
I (~ ,su,“,,,l4~~e) 1 < -)* 

The norm 11 l IIm of f%(E) X L) is defined by II x II p = supfs. e)E DxL I As, a. 
As in Bewley (1972) we take the commodity space to be /i( D X L). Each agent 
i E I has an initial endowment process given by ui = ( oi( 6, c@), (5, R’) E D x 
L) which is assumed to lie in the non-negative orthant c( D X L). Let d( 6) = 
( oi( 6, /‘), &‘E L) E R L denote the agent’s endowment of the L goods at node 5. 
Agent i chooses a consumption process xi = (x’( 6, e), (5, /‘) E D X L), which 
must lie in his consumption set Xi =c( D x L); x’( 5) = (x’( 5, k’), /‘E L) E 
W$ denotes the agent’s consumption at node 6. Note that this description of the 
commodity space assumes that each good is perfectly divisible and is perishable 
(no storable or durable goods) and that the supply of goods does not grow without 
bound. The agent’s preference among consumption processes in Xi is expressed 
by a preference ordering 2 , . 

At each date event there are spot markets on which the L commodities are 
traded. Let 

P=(P(~,P),(~,$)EDXL)EIW~~~, 
denote the spot price process and let p( 5 ) = ( p( 5, J’), /E L) denote the vector 
of spot prices for the L goods at node 5. At each node 5, good 1 plays the role of 
numeraire good: 

p( 671) = 1, WED, 
so that all payments are denominated in units of good 1. 

(2 1) . 

In this paper we consider the class of red1 securities: a financial asset is said to 
be a real security if its return at each node 6 (after its node of issue) is the value 
under the spot prices at node 5 of a specified bundle of the L goods. As is well 
known, a model with nominal securities can be converted into a family of models 
with real securities (see Geanakoplos and Mas-Colell, lC89). Let J denote the set 
of (real) securities. Security j E J is issued at node t(j) E and promises to 
deliver a dividend process ( p( 6 ) A( 5, j) E Ill I 5 E ‘( 5(j))) at all nodes strictly 
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succeeding its node of issue c(j), which is the value of a bundle A( 6, j) = 
(A( 5, R’, j), & L) E [wL of the L commodities under the spot prices p( 5 ). A 
maturity node of a security is a node (after its node of issue) beyond which it 
makes no payment (i.e. 6 E D( s(j)) is a maturity node of security j if A( 5, j) # 0 
and A( t’, j) = 0, Vt’ > 5 ). A security is first traded at its node of issue and is 
always retraded until the predecessor of a maturity ncde: a security is usually not 
retraded after a maturity node is reached, but in some circumstances (which are 
discussed later) this will be permitted. Security j with node of issue 6 = e(j) is 
said to be short-lived if it is traded only at its node of issue and pays dividends 
only at the immediate successors of this node, namely if A( e’, j) = 0, k/t’ e 
t’(j). In all other cases security j is said to be long-lived. A security whose 
commodity payoff is exclusively in good 1 ( A( 6, R’, j) = 0 if J’# 1) is called a 
numeraire security. A security that is traded at every node after its node of issue is 
said to be infinite-lived. 

The set of traded securities at node 6 is denoted by J( 5): it includes all 
securities issued at or before node 5 which have not yet reached a maturity node 

J(S)z,(jEJI5(j)$~and35’>5 with A(&‘, j)+O). P-2) 
As indicated above it is sometimes of interest to include in .I( 5) securities that 
have already matured. In all circumstances, however, we assume that for each 
node 5 E D, the number of traded securities j( 6 > = # J( 6 ) is finite. It is 
convenient to extend the definition of the commodity payoff of each security j 
from its subtree D+( t(j)) to the whole event tree D by defining A( 5, j) = 0 for 
all 6 e D+( t(j)). Let 

denote the commodity payoffs of all securities at node 6 and the commodity 
payoff process of the securities. Note that A( 6 ) has at most a finite number of 
non-zero components. 

Definition 2.1. A security structure JV = (J, ( S( j))j E J, (J( 6 ))& E D, A) consists 
of a set of securities J, a node of issue r(j) for each security j E J, a set of traded 
securities J( 5) c J at each node 5 E D and a commodity payoff process A E 
RDX LX’ for the securities, which satisfy the following consistency conditions: 

6) A( 5, j) = 0 if 5E DY E(j)); 
(ii) &ED(&(j)>*j!EJ((); 
(iii) t(jke and j~J(s)~j~J(~‘),‘Js’25; 
(iv) (2.2) holds. 
Conditions (i) and (ii) assert that a security which has not yet been issued 

cannot pay a dividend and cannot be traded. (iii) asserts that once a security ceases 
to be traded, it is never retraded. (iv) states that all ‘active’ securities which have 
not yet reached a maturity node are traded. 
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If j E J( 5 ), then let q( 6, j) denote the price of one unit of security j after its 
dividend at node 5 has been paid. It is convenient to define the price process of 
each security j on .the whole event tree D by setting q( 6, j) = 0 if j e J( 5). Let 

q(5) = (dh j19 jE Jb s=(q(& &-) EQ 
denote the vector of security prices at node 6 and the security price process, 
where Q = (q E IwDxJ 1 q( 6, j) = 0 if j GZ J( 5 )) denotes the space of security 
prices. 

Let z’( 5, j) E Iw denote the number of units of the jth security purchased (if 
~‘(6, j) > 0) or sold (if ~‘(5, j) < 0) by agent i at node 6: each security is 
assumed to be perfectly divisible and can be bought and sold in unlimited amounts 
(no short-sale s constraints). If security j is not traded at node 6, then we adopt the 
convention z’( 5, j) = 0. Let 

z'( 5) = (zi( 5, j), +J), zi=(zi(S), &D)(= 

denote the agent’s portfolio at node 6 and his por$iolio process (trading strategy), 
where Z= (Z’E lwDxJ 1 z’( 6, j) = 0 if j E J( c )} is the portfolio space. 

If k=(k ,,..., ki) and o=(u’ ,..., w ’ ) denote the profiles of preference 
orderings and endowments of the I agents and & is the security structure, then 
gm(D, 2 o, &) denotes the associated economy over the event tree D. The 
economy ZZZ( D, 2 cr), &‘) satisfies the following assumptions. 

Assumption BI (Event-tree). For each node 6 E D the branching number b( 6) = 
#t+ is finite. 

Assumption B2 (Endowments). There exist scalars m and m’ with 0 < m < m’ 
such that V(& R’)EDXL, ~‘(5, k)>m, ViEI and Cie,Wi(S, /‘)<m’. 

Let /‘,( D X L) denote the subspace of II?! Dx L consisting of all summable 
sequences, 

Recall that the Mackey topology on !%( D X L) is the strongest locally convex 
topology such that the dual of /%( D X L) under this topology is J’,( D X L). For a 
discussion of this topology see Bewley (1972) and Mas-Cole11 and Zame (199 1). 

Assumption 83 (Preferences). For i E I, 2 , is a transitive, reflexive, complete 
preference ordering on Xi =c (D X L) which is strictly convex and continuous 
in the Mackey topology (i.e. for all Zi E Xi, (xi E Xi I xi * , Xi} is strictly convex 
and closed in the Mackey topology and (xi E Xi I xi + i Zi) is open in the Mackey 
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topology). 2 i is monotone in the sense that for each xi E Xi and for each 
YE~(DXL), x'+ykiX'. 

To express the next assumption on preferences it is convenient to introduce the 
following notation. Let 

F= [y~c(DxLl 11 ylkm’) 
be a bounded set which includes as a subset the feasible consumption plans of 
each agent. For a subset E c D of nodes let xE denote the characteristic function 
of E: 

X,(5) = 
1, if &E, 
0, if [4E, 

and for x E/~( D X L) define x& =(X(& 1)x&),(& 1kDxL). Let + 
/.%( D X L) denote the process that has all components 0 except for the component 
of good R’ at node 5 which is 1: 

ej( t’, k’) = 
( 

1, if(&‘,L’)=(&k), 
0, if(&‘,tf’)#([,e). 

Assumption B4 (Uniform lower bound on impatience). There exists p < 1 such 
that for all i E I 

x’X~\~+~~~ + /3xkD+cz, + i$;xi, V‘E D, Vx’ E F. 

Assumption B.5 (Securities). Every security j E J is a real security with bounded 
commodity payoff A(. , j) E/%( D X L) and the number of traded securities j( 6) 
is finite at each node 6 E D. 

Assumption B6 (Short-lived numeraire bond). At each node 6 E D, a security 
J’~ E J( 6 ) is issued which is traded only at this node and has a commodity payoff 
of one unit of good 1 at each successor: 

Assumptions B 1 -B6 are essentially the same as Assumptions Al -A6 in Magi11 
and Quinzii (1994). The main difference is that A3 in Magi11 and Quinzii (1994) 
only requires convexity of agents’ preferred sets, while Assumption B3 requires 
that these sets be strictly convex. The reason for this strengthening of the 
convexity requirement is as follows. The proof of existence of an equilibrium for 
the infinite horizon economy is based on taking limits of equilibria of truncated 
finite horizon economies. In the case of short-lived numeraire securities, the 
existence of an equilibrium in a finite horizon economy only requires the use of a 
standard Kakutani fixed-point argument, which can be applied to an economy in 
which agents’ demands are expressed by correspondences. For a finite horizon 
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economy with a general security structure, the existence of a (pseudo-) equilibrium 
(see Section 4) requires the use of degree arguments and the currently available 
results (Duffie and Shafer, 1985, 1986; Husseini et al., 1990; Hirsch et al., 1990) 
use degree theory for functions. The proofs thus require that agents have well-de- 
fined demand functions - a property ensured by the strict convexity assumption in 
B3. It seems likely that the existence of a pseudo-equilibrium for a finite horizon 
economy can be extended to the case of demand correspondences, but we will not 
enter into such refinements here. B3 invokes only the assumption of weak 
monotonicity, but recall that strict convexity and weak monotonicity imply strict 
monotonicity with respect to every good at every node. 

The assumption that there is a uniform lower bound on the impatience of each 
agent (Assumption B4) means that at each node 5, each agent is prepared to give 
up at least the fraction 1 - p > 0 of his) future consumption plan after node e in 
exchange for an additional unit of commodity 1 at that node, 1 - /3 being uniform 
across all nodes of the event tree and across all feasible consumption plans. B4 
plays an important role in the analysis and is essentially the only new assumption 
added to those made by Bewley (1972). Assumptions B3 and B4 are satisfied by a 
preference ordering I? represented by an additively separable utility function, 

U’( Xi) = C p( s)sil(~)ui( X’( 5)), (24 
5ED 

where p( 5 ) is the probability of 6 (induced by a probability measure p on the 
measurable subsets of S), Si E (0, 1) is a discount factor and Vi : R$ + R is a 
continuous, increasing concave function with Vi(O) = 0. 

3. Definition of an equilibrium 

The problem of defining an appropriate concept of an equilibrium for an 
infinite horizon sequence economy with incomplete markets has been discussed in 
Magi11 and Quinzii (1994). The simplest concept is that of an equilibrium with 
debt constraints: to show that such an equilibrium exists we introduced the more 
abstract concept of an equilibrium with a transversality condition. As we shall see 
below, this more abstract concept provides a particularly powerful tool to prove 
the existence of an equilibrium for an economy with infinite lived securities. 

In an exchange economy, equilibrium concepts differ only by the specification 
of the agents’ budget sets. For agent i, faced with the price procrss ( p, 4) E 
Ryx L X Q, let us consider the following budget sets: 

(i) The budget set with an explicit debt constraint M 

EZ, such that V&D 
-M , 

(~)(xi(~)-wi(5))=v(5)zi(5-)-4(5)zi(5) 
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where V( &) = p( 6 )A( 6) + q( 5) gives the vector of returns at the successor 5 of 
the J t-) securities traded at c- (ignoring the remaining zero components). 

(ii) The budget set with an implicit debt constraint 

s?“(p, q, d d) 

3z’EZ, with (42) E&J D) 
= x'EX' uchthatVeED 

1 b (5)(xi(~)-w’(5))=v(s)zi(~-)-4(5)zi(~) 

where (qz’) = (q(()z’@), &D). 
(iii) The budget set with a transversality condition 

gcy( p, 4, 7Ti, d Jq 

32’ EZ, such that V& D 

= &fgx’ lim I t C ?r’( e’)q( S’)zi( 5’) =0 
--Z’ED#) , 

(~)(xi(5)-Oi(5‘))=V(5)zi(5-)-4(5)zi(~) 

where w i = (T ‘( 6 ), 5 E D) is a process of present value prices. 
The first budget set, LJI& , M leads to the simplest concept of an equilibrium with 

explicit debt constraint M. Since the object of the debt constraint is to eliminate 
Ponzi schemes (the indefinite postponement of debt) and not to introduce a new 
imperfection over and above the incompleteness of the markets, we do not want 
the debt constraints to be binding in an equilibrium. It is clear that if M is chosen 
independently of the characteristics of the economy, there will always be some 
Gconomies for which M is too small and is binding in equilibrium. The budget set 
(ii) avoids the bad choice of a bound M by leaving the bound unspecified: 
proving that an equilibrium with budget set (ii) exists is thus a convenient way of 
proving that there is an appropriate bound M for a given economy such that an 
equilibrium with budget set (i) exists in which the bound M is never binding. The 
requirement that the constraints that prevent Ponzi schemes be non-binding is also 
emphasized in the approach of Levine and Zame (1996). 

If the present value process 7~ i is summable (r i EC,(D)), then condition (iii), 
that the asymptotic present value of debt tends to zero on any subtree, is a weaker 
restriction than a debt constraint. By showing that an equilibrium with budget set 
(iii) exists, where 7~~ is the present value process of agent i at equilibrium, we 
will show that an equilibrium with budget set (ii) exists. 

If (xi, z’) is a consumption-portfolio plan for agent i satisfying the constraints 
in the budget set L&!=* (where an asterisk takes the place of the superscript 
indicating the type of constraint involved in the budget set), then zi is said to 
finance xi and we write (xi; z’) EgX* (p, q, wi, M). (?; 2’) is said to be 2 i 
maximal in 22?:( p, q, 02, M) if 2’ finances Xi and 3’ 2 iXi for all (xi; z’) E 
A&* ( p, q, fd, Jd. 
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The debt constrained budget sets L%!!~ and L%!!~ lead to the following equilib- 
rium concepts. 

Definition 3.1. An equilibrium with implicit debt constraint (resp. with explicit 
debt constraint M) of the economy lEz(D 2 o, s’) is a pair 

((X, ~),(j5,~))~~(DxLxI)XZ*XRDXLxQ, 

where (X, Z) = (?, . . . , X’, t’, . . . , Z’), such that 
(i) (Z’; 2’) is & i maximal in BZDc( F, 4, oi, ti) (resp. in 

LB/( j5, Zj, d, at)), for each i E I; 
(ii) Ci, ,( Xi - Oi) = 0; 

(iii) Ci, I 2’ = 0. 

The transversality conditions in the budget set ~8’:~ require that on every 
subtree the present value of an agent’s debt be asymptotically zero. However, 
when markets are incomplete there is no objective present value vector (which can 
be deduced from the market prices ( p, 4)) for evaluating an agent’s indebtedness. 
For this reason we use agent i’s present value vector 5’ to evaluate the 
asymptotic value of his debt. The implicit prices (Z ‘)i E, must thus be added to 
the objective market prices ( p, q) to define an equilibrium with the transversality 
condition. 

Definition 3.2. An equilibrium with the transversality condition (a TC equilib- 
rium) of the economy 2F,(D, 2 , o, JZ’) is a pair 

((X9 Z), (jj9 S9 (zi)iE,)) 

~~(DxLxI)xZ’xlW~~~xQx~( 

such that 
(i) (E’; 2’) is 2 i maximal in &?!‘( i?, Q, ?‘, wi, B’), for each i E 

(ii) for each i E I 
(a) Z=‘(e)>O, V&Z XL), where F’=(p’(e), 6E 

D)=(+(5)j%[ 
(b) P is 2 i maximal in S&(F’, oi) = (xi E Xi 1 P’( xi - oi) 5 0), 
(cl ?I tf >ij( 5, j) = Et@ E (+ 7~ -‘((‘)($ T’)A@‘, j! + q((‘, j)), vi E 

J(e), V&D; 
(iii) Ci, ,(E-’ - Oi) = 0; 
(iv) CiE,Zi=O* 

Remark. Condition (ii) characterizes the equilibrium present value vector 5’ of 
agent i. (b) and (c) express the fact that if T( 5 ) is the multiplier associated with 
the budget equation for node 5 (for all 5 E D), then the first-order conditions with 
respect to xi and zi are satisfied. Mackey continuity of the agent’s preference 
ordering implies that Fi lies in 6,( X L), the condition required in (a). 
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4. Existence of a pseudo-equilibrium 

Equilibria with the debt constraint and transversality conditions are two ways of 
extending the notion of an equilibrium with incomplete markets for a finite 
horizon economy (often called a GE1 equilibrium) to an infinite horizon. As is 
well known, even for a finite horizon economy a GE1 equilibrium may not exist. 
The problem arises from the fact that at a node 5 the dimension of the subspace of 
Rb(() spanned by the columns of the b( 5) Xx 5) returns matrix, 

V( 5’) = [V( 5’, 81 tk6+ = IP(5’)W9 8 +4(5’, j)jtk~+y (4.1) 
jEJ(5) jEJ(() 

can change when prices ( p( t’), q( r)>)tr E 5+ vary. This creates discontinuities in 
agents’ demands which may lead to the non-existence of a GE1 equilibrium. The 
way to circumvent this problem, adopted in the recent literature, is to introduce the 
concept of a pseudo-equilibrium: our objective is to show how this approach can 
be extended to the infinite horizon case. In this section we show that a pseudo- 
equilibrium exists for all infinite horizon economies; in the next section it will be 
shown that ‘for most’ economies a pseudo-equilibrium is a TC equilibrium. The 
statement ‘for most’ economies will mean l’or a dense rather than a genei ic set of 
economies, so that the existence result is weaker than in the finite horizon case. 

The idea of a pseudo-equilibrium is as follows: typically if j( 6) securities are 
traded at a node 6 which has b( 6) successors, then the rank of the returns matrix 
V( 6’) in (4.1) is 

~(5) =min(b(t), j(6)). (44 
However, for some prices (p, q) the rank may fall. This statement presupposes 
that the securities traded at node 5 have non-trivial dividends and/or capital 
values at the immediate successors of 5. In this section we consider only 
equilibria in which securities with zero dividends have a zero capital value 
(securities are priced at their fundamental values). There is thus no loss of 
generality in assuming that once a security has matured, it is no longer traded. 
This amounts to modifying (2.2) to 

J(~)=(jEJI~(j)$Sand3~‘>~ with A(&‘, j)+O). (4 3) . 
A pseudo-equilibrium is an equilibrium of an economy in which agents are given 
an artfzcial subspace of income transfers of dimension a( 6 ) at node 5 which 
contains the subspace of transfers achievable with the existing securities - but 
which is larger when the matrix V( 5’) has rank less than a( 6 ). 

In the analysis of finite horizon economies, a pseudo-equilibrium is defined 
using a vector of discounted date 0 prices and an abstract subspace at each node. 
The subspaces are parameterized in a way that is convenient to prove existence. 
Here we adopt an alternative representation which is more convenient for the 
passage to the limit from the finite to the infinite case: this representation consists 
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in defining the artificial subspace at each node by an orthogonal basis which may 
be interpreted as the returns of a( 5) short-lived numeraire securities issued at 
node 5. 

Definition 4.1. ST = (K, ( t(k)), E K, (K( 5 ))( E D, r ) is an artificial short-lived 
numeraire security structure of subspace dimensions (a( 5 ))& E D if 

(i) K = IJ 5 E D K( 6 ), where K( 5) consists of a( 8 ) short-lived numeraire 
securities issued at node 5: 

k-(5)=+(k)=5 and r([‘, /, k) =0, if &Ee+or F’# 1; 

(ii) at each node 5 the returns of the securities issued at node 5 are pairwise 
orthogonal: 

c r( (‘, 1, k)r( t’, 1, k’) =0, tlk, k’EK( t), k+k’; 
43 5“ 

(iii) the payoff on each security is non-zero and is normalized so that 

max lr(t’, 1, k)l = 1, VkEK(&),v[ED. 
0 6’ 

Using a short-lived security structure X to describe the artificial subspaces of 
income transfers available to agents leads to the following definition of a 
pseudo-equilibrium. Note that if V is an n X k matrix, then (V > will denote the 
subspace of UP spanned by the k columns of V. 

Definition 4.2. ((F, 71, (F, p, (F’Ii E 1)) is a pseudo-equilibrium of the economy 
gW( D, 2 0, s’) if there is an artificial short-lived numeraire security structure LZY 
with subspace dimensions (a( 5 ))( E D given by (4.2) such that 

6) ((Z, y), ( jj9 Jj, CFi)ie 111 ‘is a TC equilibrium for EW( D, & , w, 3); 
(ii) there exists 4’ E RDx J such that 

1 
ij( t, j) = -7 C +( S’)F( 5’)A(5’9 j), 

Z’( 5) pD+(~) 

QjEJ(~),Q@D,QiW 
(iii) 

F( 5’) A( t’, j) + 4( 5’, j)] efEt+ I( c IQ 5’, 1, k)l l’Et+ 9 
jEJ(() kEK(() 

(4-4) 

Q&zD. W) 
If, in a pseudoequilibrium, the returns matrix of the original security structure 

JV has maximal rank a( 5) at each node 5 E , then the inclusion in (4.5) is an 
equality. In this case trading in the artificial securities gives each agent access to 
the same opportunity set as trading in the original securities. Thus when the rank 
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condition in (4.6) below is satisfied, up to converting the portfolios and security 
prices from the artificial to the original securities, a pseudo-equilibrium is a TC 
equilibrium. 

Proposition 4.3. If (( F, 7). ( j5, p, (Z ‘)i E I )) is a pseudo-equilibrium of ZZ( D, 2 , 
o, M) that satisfies 

where Zj is defined by (4.4), then there exists a vector of port$olios for the agents 
z=(i’,..., 2’) such that ((X, Z), ( j?, 4, (F ‘)i E ])) is a TC equilibrium of 
&,@, t 0, d. 

Proof. By (4.4), Vj E J( 5 ), V( E D, Vi E I: 

Fi( 5E( T9 j) 

= C +(t’)V( 5’, j), 
efE 6’ 

which can be written as ?( 6 )q( 6) = F’( [‘)V( t+), where F’( 5’) = 
($( t’), 6’ E &+), denotes agent i’s b( 5) row vector of present value prices at 
the successors &+. Let I’( 6”) = [ ZY 5’, 1, k&t E (,, Kt6b, then by (4.5) and (4.6): 

- W( Es)> = (r( 6'))9 '@ED. 
This implies that the .&budget set .%!Jc( ii, ii, ?‘, oi, H) and the X-budget set 

c( J, ii, ljT I, CO’, J!?“) are the same. Note that if z’( 5 :t and y ‘( 6 ) are portfolios 
generating the same income transfer 

v(e+)zi(s) =r(f+W(~~9 (4 7) . 

then 

so that they have the same cost. Thus, since every tradi:lg strategy y i in the 
X-budget set has an equivalent trading strategy zi in the &budget and con- 
versely, the two budget sets coincide. Let 2’ be a trading sttategy in the M-budget 
set corresponding to 7’ in the X-budget set for i = 2,. . . 9 I and let 2’ = C:, 2 2’. 
It is easy to check that ((Z, Z), ( F9 & (~‘)i E ,)) IS a TC equilibrium of ES( D, k 9 
0, Jf). Cl 
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We now prove the main theorem of uris section. 

147 

Theorem 4.4. Each economy ZCzt D, 2 , cr), M) that satisfies Assumptions I31 -B6 
has a pseudo-equilibrium. 

Proof. The theorem will be proved by taking limits of pseudo-equilibria of 
truncated economies in which trade stops at some finite date. 

Let Z$( D, 2 , w, &‘)) be an infinite horizon economy: the associated T-trun- 
cated economy E&D, 2 , w, JV)) is the economy with the same characteristics 
as ZX in which agents are constrained to stop trading at date T. If ( pr, qT) E 
RDx L x Q is a commodity and security price process, then the budget set of agent 
i in the truncated economy kF’* is defined by 

3~~~2, zi(e)=O, if t(e)zT ’ 

: 

Tw(xi(wWi~~~) 

X’EX’ =(PT(5jA(5j+qT(~))Zi(~-)‘* 

--q~(~)zi(~)~ if t(tjsT 

i 
(t)=wi(5), ift(t)>T / 

Even though the consumption-portfolio process of an agent is defined over the 
whole event tree, a T-truncated economy is essentially a finite horizon economy 
with T + 1 periods since an agent’s consumption-portfolio process is fixed after 
date T. 

Definition 4.6. A GE1 equilibrium of the truncated economy Zr( D, & , w, A%‘) is 
a pair 

K ET, ZT),(~T,~T))E~(DXLXI)XZ'XIW~~~XQ 

such that 
(i) ($.; 2;) is ,F maximal in &&( &, qr, ai d), tli E I; 
(ii) Ci, I( Zk - Oi) = 0; 
(iii) Ci E 1 2: = 0; 
(iv) jTjT([)=O, if t(t)> T, and qr(&)=O, if t(t)2 T. 

Since only the prices of the commodities and securities that are traded in gr 
are well determined, (iv) is a natural way to extend these prices to the whole event 
tree. Since in an equilibrium of the truncated economy the terminal condition 
zi( 5) = 0 for all 5, with t( 5) 2 T replacing the transversality condition of the 
budget set ~22~ TC, the present value vectors of the agents do not appear explicitly in 
Definition 4.6. However each agent has a well-defined present value vector in an 
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equilibrium of S?‘r defined by the first-order conditions of the agent’s maximiza- 
tion problem. When an agent’s preference ordering is represented by a differen- 
tiable utility function, then the present value vector is simply the vector of 
Lagrange multipliers given by the Kuhn-Tucker Theorem. When the preference 
ordering is assumed not to be differentiable (as is the case here), the existence of a 
present value vector can be derived by a direct separation argument. In Magi11 and 
Quinzii (1994, lemma 5.6) it is shown that under Assumption B3 if 
((z,, Z,), ( &, &)) is a GE1 equilibrium of JFr( D, 2 , cc), s’), then each agent 
i E I has a present value vector ?ri E RD satisfying 

(a)YF#)>O, if r([)sT, and Z#)=O, if t(t)> TT; 
(b) X; is i” maximal in 

B,(i$, w’)= 9 

The following definition is the finite horizon analog of Definition 4.2. 

Definition 4.7. (( ET, yT), ( &, &)) is a pseudo-equilibrium of the truncated 
economy $Yr( D, 2 , o, s’) if there is an artificial short-lived numeraire security 
structure X,. with subspace dimensions (a( 6 ))* E D, where a( 6 ) = min( b( &?, 

DT- ‘, such that 
(i) (( Zr, TT), (&, j&)) is a GE1 equilibrium for &( D, 2 , cc), XT); 
(ii) if nT is any positive vector of node prices satisfying 

QQ)iq5) = ~TwYT(t+)~ t(5) ST- 1, w9 
and if & is defined by 

1 
C vT( s’)FT( 04 5’, jL 

qT( 6, 8 = 

I 

n,(5) gED+([) 
if jE J( t), SE DT-‘, 

VW 

0, otherwise, 

then 

, 

V&DT-‘. (4.10) 
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Remark. When (4.10) holds, the definition of ZjT in (4.9) is independent of the 
choice of the vector of node prices +. satisfying (4.8). This can be seen as 
follows: 

1 

where ( ai, k E K( 5 )) are the coordinates of the vector ( &( 5 ‘) A( 6 ‘, j) -I- 
qT(tt, j)& 5’ on the basis (&( l , 1, k), k E K( 5 >). The reverse CakUkitiOn 

with any other vector of nodes prices (‘iir( 5 ), 5 E DT) satisfying (4.8) leads to 
(4.9) using the terminal condition qr( 6, j) = 0 if t( 6) = T. 

It follows from the extension of the existence result of Hirsch et al. (1990) to 
the multiperiod case 2 (see Magi11 and Shafer, 199 1, theorem 16) that a pseudo- 
equilibrium ((ET, yT), (&, &)) of the truncated economy gr(& k , w, d) 
exists for every finite T. IA 2r denote the associated artificial short-lived 
numeraire security structure and let i=r denote its (numeraire) commodity payoff 
process. since (( 3i-,, yT), ( FT9 pT)) is a GE1 equilibrium of &(D, & , WV zT), 
it has associated with it Present value vectors and discounted prices for the agents 
<if;, FIJiE I satisfying (a) and (b) above, (c) being replaced by (4.8). Zk, and 
hence Pi, can be normalized by setting 

F;n= c F;(&/‘)=l, WEIJTET, (4.11) 
(E, C)ED”X L 

where 1 =(l,..., l,... ) E/~( D x t) denotes the vector all the components of 
which are equal to 1. Let & denote the prices of the original securities defined by 
(4.9). In view of the remark following Definition 4.7 for each i E I: 

1 
O~(54=+(~) c z~(~')~T(~t~A~~t9 jh 

T [‘ED+(e) 

WjE J( t), &EUT-‘, 
which can be written as 

1 
qT(tr j) = .&FiA(-, j)xD+f61, vjEJ(t)9&EDT-‘* (4*12) 

T 

2 This result cannot be derived from the existence result of Duffic and Shafer (1986) for multiperiod 
economies which depends on the differentiability of agents’ demand functions - a property which is 
not required here. 
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bt eT= (ET, TTY PT9 pT9 (%:&a 1, Fr) denote the actions, prices and payoff 
process characterizing the T-period pseudo-equilibrium. Since ET E R Dx L ’ ‘, & 
E RDxJxf, etc. er (and hence the sequence (eT)r& lies in a space Y which is a 
product of Euclidean spaces. The discounted prices ($ i E I)T E r can be viewed 
as elements of ba( D x 1,) =&* (D X L), i.e. the norm dual of f?,( D X L), consist- 
ing of bounded finitely additive set functions on D X L. Let 11 l 11 ba denote the 
norm of ba( D X L) and let c( ba, /%) denote the weak * topology of ba( D X L). 

The idea is to take limits of eT in the product topology and of (P:, i E I) in 
the a( ba, /%) topology. In Magi11 and Quinzii (1994, step 1 in the proof of 
theorem 5.1) it is shown that the actions and prices (ET, TT, Jjr, &, (7Fk)i E ,) 
can be bounded independently of T and that for each 6 E D there exists cz > 0 
such that ?7;( c) 2 cr, V’i E I, WE T. By property (iii) of Definition 4.1 the 
commodity payoffs rr are bounded independently of T, I Fr( 5, 1, k) I 6 1, vk 
E K, ‘Js E D. It follows from Tychonov’s Theorem that ( eT)Te r lies in a subset 
of Y which is compact in the product topology. Since (4.11) implies II Pi 11 ba = 
1, Vi E I, V’T E T, these prices belong to the unit sphere in ba( D X L) which, by 
Alaoglu’s theorem, is compact in the o(ba, Hm) topology. Thus there exists a 
directed net ( A, 2 ) and a subnet ((F& i E I, A E ( A, 2 )} such that Fi con- 
verges to Fi in the a( ba, /=) topology, Vi E I. By extracting an appropriate 
subnet, eT. Converges to e = (z, 7, F, p, (%‘)i E f, T ) in the product topology. 

It is clear that F satisfies (ii) and (iii) in Definition 4.2 and has a( 5) linearly 
independent payoffs at each node ( 6 E D: let Z( 6) denote these securities and let 
K= U,.+(&). Then p=(K, &(k)kEK,(K(&))2ED, T) is an artificial 
short-lived numeraire security structure with subspace dimensions (a( &I& E D. It 
r?ollows from Magi11 and Quinzii (1994, step 3 in the proof of theorem 5.1) that 
((k 71, (3, 3, (In’)i~ ,N is a TC equilibrium uf ZZZ( D, k , CI), 2): in particular 
it is shown that for each i E I, the limit price pi lies in /,( D X L) and that 
Pitt, l’)=F’([)jj((, k),V(& /kDXL. Since A(#, ~)x~+~~,E/~(DXL) 
and since $.. converges to Fi in the u( ba, fW> topology, 

mus (4. I T) implies that K E I, Vj E J( 5 ), v6 E D: 

Let Zj( 5, j) denote this limit. Then q = ($5, j), 5 E D, j E J( 5 )) satisfies (4.4). 
Passing to the limit in (4.10) in the obvious way gives (4.5), and the proof is 
complete. Cl 
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it is the fact that, for each agent i E I, the personalized prices 
em) topology and that the limit price satisfies 
5?(~)~([, k’),V(& /')EDXZ+ which en- 

ables us to show that each security price ZjT,< l , j) converges to the discounted sum 
of its future dividends for each agent. This result seems difficult to obtain using 
convergence of the personalized prices in the product topology. 

5. Existence of an equilibrium 

In this section we show that for an economy with given uncertainty and agent 
characteristics (D, 2 , o) and for given nodes of issue and maturity for the 
securities (,!, ( &j>& J9 (J( 5 >>s. E D) there is a dense set of security payoffs A * 
such that for all A E A * the economy 8’&3, 2 , (I), &‘), with JX? = 
(J, (S(j))j,=,, (J(5))5ED9 A), has a pseudo-equilibrium which is a TC equilib- 
rium. To establish such a result we first define a set of admissible security payoffs 
compatible with a given set of nodes of issue and maturity. More precisely, let 
(J, (scj>>iE J, (J( 5 >>r E D) be a collection of securities, nodes of issue and 
traded securities such that J( 5) is finite for all @ED and such that the 
consistency conditions (ii) and (iii) in Definition 2.1 are satisfied. The set A of 
admissible payofi for the securities is defined by 

The definition of A ensures that each payoff process A E A is compatible with 
(J, l(j)i,J, (J(&)gED) - in the sense that (i) and (iv) in Definition 2.1 are 
satisfied - and that Assumptions B5 and B6 hold. 

Since A Cr,( D X L X J), it is natural to endow A with the norm topology, the 
norm of a payoff process A being defined by 

11 A 11 r, = sup IA(W 
(&f.jkDxLXJ 

Note that A is a closed subset of dA( D x L x J). 

Theorem 5.1. Under Assumptions B 1 -B6 there exists a dense subset A * c A such 
that if A E A*, then the infinite horizon economy em t ‘) 
w, M) has an equilibrium with the transversality condition. 
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Proof. See the appendix. 
- 

The idea of the proof is to show that if we pick a payoff process AE A for 
which the rank condition 

is not satisfied in a pseudo-equilibrium ((X, y), (p, p, (Z’)i, ]) of ZTZ( D, 2 , 
W, 2) then for all E > 0, there exists a payoff process A E A in the ball of radius 
E around x such that (( 2, T), ( F, j5, (~‘)i E ,) is a pseudo-equilibrium for 
&Z=( D, & , o, M)) in which the rank condition is satisfied for A. 

5.1. Equilibrium with a debt constraint and the transversality condition 

For a deterministic sequence economy over an infinite horizon in which there is 
a market for short-term borrowing and lending at each date, it has long been 
recognized that a concept of equilibrium based on a transversality condition on the 
indebtedness of each agent - requiring that an agent’s debt grows asymptotically 
slower than the rate of interest - permits the link to be made between the 
equilibria of the sequence economy and the Arrow-Debreu equilibria (see, for 
example, Kehoe, 1989). The concept of an equilibrium with the transversality 
condition in Definition 3.2 provides an extension of this concept to the case of 
stochastic economies with incomplete markets. When markets are incomplete there 
is no unique present value vector (representing implicit prices of income in the 
future) which links the prices of the securities to their future dividends, i.e. which 
satisfies 

For this reason the indebtedness of each agent is evaluated using his own present 
value vector 5’ at the equilibrium. Some economists may argue that this makes 
the concept of a TC equilibrium somewhat questionable as a descriptive concept 
of an equilibrium: since agents are assumed to assess their capacity to postpone 
the repayment of their debts (i.e. their capacity to borrow from the market) using 
their own present value vector, the concept of an equilibrium is based on 
self-monitoring rather than some objective market-based scheme for controlling 
the indebtedness of agents. 

Even for deterministic economies, macroeconomists have typically been more 
comfortable with a concept of equilibrium based on explicit debt constraints. It is 
thus of some interest that under Assumption B4 the equilibria of an economy with 
implicit debt constraints can be shown to coincide with the equilibria with the 
transversal@ condition. This, in turn, implies that the equilibria can be obtained 
by imposing an explicit bound M on the indebtedness of the agents at each node, 
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where it4 can be chosen so that it is never binding. Proposition 5.3 below permits 
the advantages of each concept of equilibrium to be retained, since for a 
theoretical (mathematical) analysis a TC equilibrium is more natural, while an 
equilibrium with a debt constraint is more plausible as a descriptive concept of 
equilibrium. 

Proposition 5.2. Under Assumption B4, if ((X, Z), ( ii, Zj, (5 ‘)i E *)) is a TC 
equilibrium of Z$(D, 2 , o, &), then (42’) E/~(D) for al! i E I. 

Proot Let ((F, 3, (p9 q, Gi)i, 1 )) be a TC equilibrium. Pick any node $E D 
and consider an agent who is a net lender at 5, i.e. q( 5 )Z’( z> 2 0. Agent i can 
consider scaling down his portfolio from node $ onwards, i.e. to change 2’ to 2’ 
defined by 

zi( 5) = ” ‘w ’ if WD( c), 
pZ’( 0, if &D(E), 

where /3 < 1 is the factor defined by Assumption B4. It is easy to check that this 
new portfolio satisfies the transversality conditions 

lim C Zi( &‘)g( t’)Zi( 5’) =0 
T’“r’ED,(5) 

for all -5~ D. With the trading strategy 7’, agent i can consume X’( 6) if 
& D( 0, at least /3X’( 5) if 6~ D+( 5) since 

PbS)Wi(6) +Pv(s)z’(~-)-Ps(5)2’(5) 

=-PF(5pi(5) +(1 -P)F(W(s) ePF(w(o 
and can increase his consumption of good 1 at node 2 by (1 - p )q( 8) Z’( t) 
since 

By Assumption B4 the increment ( 1 - p)Zj( 8) 2 ‘( g> to his consumption of good 
1 must be less than 1 so that 

Since Xi, I q( 8) z’( 8) = 0, agents who are net borrowers must find net lenders. 
Thus 

q(g)qf)so* - 3 gj(S)z’(5) ( 1 - 
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so that 

- E sa(S)ii(S)q+j. ( 1 ViEI. - 

Thus for each agent i E I, (qZ’) E~C,( D). q 

Proposition 5.3. Under Asslmlptions B1 -B4, (( F, Z), ( p’, q)) is an equilibrium 
with an implicit debt constraint of &CD, 2 , o, d) if and only if there exist 
present value vectors G ‘Ii E I such that ((Z, Z), ( ~YJ, 4, (Fiji E ,)> is a TC equi- 
librium. 

ProoJ (e=) The fact that a TC equilibrium ((E, Z), (F, Zj, (Z ‘)i E ,)) is also an 
equilibrium with implicit debt constraints follows from Proposition 5.2. Since for 
all i E I, (Z’; ii) ES!mDc( j5, q, d, at’) CL&fc( jj, q, F’, d, at’) and since 
( Ei; 2’) is 2 i maximal in the larger budget set G!Jc, it is 2 i maximal in 9:‘. 
Thus ((E, Z), ( ii, ?j)) is an equilibrium with an implicit debt constraint. 

( * ) The main ideas of the proof are as follows: for a complete proof see 
Magi11 and Quinzii (1993, theorem 5.2). Let ((Z, Z), ( p, 4’)) be an equilibrium 
with an implicit debt constraint. Since Ei is & i maximal in BWDc(F, Zj, wi, H), 
a separation argument gives the existence of a price Pi E ba( D X t) which 
separates the preferred set V’ = (xi EC( D X L) 1 xi 2 i E’), which has a non- 
empty interior in the norm topology, from L@~. Mackey continuity of 2 i 
implies that Pi E/‘,( D X L). Since L@mW is defined by linear inequalities, Farkas’ 
Lemma applied to a sequence of truncated budget sets leads to the existence of a 
present value vector i? E 1 ,(D) which is strictly positive by the monotonicity of 
2 i and satisfies (a)-(c) in Definition 3.2(ii). Since for each i E I, 5E’ EL@:’ c 

’ C B( P’, CO’) and since by the separation argument Xi is L: i maximal in the 
larger set B( Pi, oi), it is also & i maximal in 92’. Thus 
((E, Z), (j3, & (Y?‘)i E ,)) is a TC equilibrium. 0 

Corollary 5.4. Under Assumption B 1 -B6 there exists a dense subset A * c A such 
that if AEA*, then the infinite horizon economy ZEX(D, & , w, ..& has an 
equilibrium with an explicit debt constraint M which is never binding. 

Proof. Let A* be the dense subset in Theorem 5.1. If the commodity payoff 
Trocess A lies in A*, then the economy Zz( D, 2 , o, ti) has a TC equilibrium 
((X, Z), ( j3, q, (~‘)i E ,)), which by Proposition 5.3 is an equilibrium with an 
implicit debt constraint. Any number M > g, where M = 
sup& E D 1 q( 6 ) Z’( 5 ) I, provides a debt constraint that is never binding. 

maxiE I 
0 
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5.2. Generalization to securities in positive supply 

Although the model introduced in Section 2 is restricted to an exchange 
economy in which securities are in zero net supply it can be generalized to include 
securities in positive supply (such as equity contracts) that arise naturally in a 
production economy. 

Let Z?$D, 2 , cd, 6, M) denote an economy which is identical in all respects 
to that considered in Section 2 except that a subset Jo C J( &) of the securities 
issued at date 0 can have positive initial supply S = ( ?jj, j E J,), where $ = 
CiE, Si and 6; is agent i’s initial holding of security j. (Securities issued after 
date 0 could also be permitted to be in positive initial supply, but this complicates 
the notation unnecessarily.) A TC equilibrium of the economy Em@, 2 , 
O, 8, &) is given by Definition 3.2 with the following modifications: the new 
budget set a:‘( p, q, 7r ‘, oi, a’, @‘) of agent i is identical to that defined in 
Section 3 except for the equation at the initial node which becomes 

and the market-clearing condition (iv) becomes 

CZ’(S, j)=si, W&D,VjEJ, 
iEI 

(5 1) . 

(54 

where ~j = 0 if j GE Jo. 
Securities in positive supply model ownership rights to the income (dividend) 

streams created by productive assets such as firms, land or other durable capital 
goods. An economy E,( D, t , U, S, &‘) in which there are securities in positive 
(initial) supply thus serves as a model of a production economy in which all 
decisions regarding the use of the productive assets (i.e. the production plans) are 
fixed: for such an economy we make the following additional assumption. 

Assumption B7. If ~j > 0, then A( l , j) EC( D X L) and 6; )= 0 for all i E I. If 
Sj = 0, then 6; = 0 for all i E I. 

Thus securities in positive supply represent productive assets with non-negative 
payoffs and agents only inherit non-negative initial shares of such assets. For 
securities in zero supply agents do not inherit any initial debt (or credit). 

Let us show how the above existence results can be extended to such economies. 
To this end let 3 

a 1 = WC ( m’ ,..,, 0’) E~(DXLXZ)Io’~ml, id) 
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denote the space of initial endowments of the agents satisfying Assumption B2. 
Theorem 5.1 leads to the following result. 

Theorem 5.5. Under Assumptions BP -B7 there exists a dense subset A c 0 X A 
such that if (0, A) E A, then the infinite hor!zon economy a( D, 2 , co, 8, d) 
has a TC equilibrium. 

Proofi With an economy &Cz(D, 2 , cr), S, H) in which some securities are in 
positive initial supply we may associate an economy g%( D, 2 , o, s’) in which 
all securities are in zero initial supply and as merits have the modified endowments 

ei(tj)=wi([)+ cF$A(& j), V&D. 
iEJJ, 

If &?!(D, &, W, JY’) does not have a TC equilibrium, then by (the construction of 
the equilibrium in the proof of) Theorem 5.1 there exists, for each E > 0, A’ CA * 
such that 11 A’ - A 11 z < E and @!!(D, 2 , w, JZ”) has a TC equilibrium 
(( E, E), ( p, 4, (77 ‘)i E & where 4 satisfies the pricing equations (4.4). Let us 
show that if for each i E I 

zi(*, j) =F’(*, j) +a;, VjE J, 
and o’ is such that for all i E 

di( 5) + c $4’( 6, j) = $( 6) =d(&)+ c$A(& j), QED, 
6 Jo jEJo 

W) 

then (( X9 21, ( fj, ?j, (*‘)i, 1)) is a TC equilibrium of ZZ( D, 2 , cc)‘, 6, H”). To 
see this it suffices to check that if z’(. , j) = Z’(. , j) + 6; for all j E J, then 

( xi; fi a:“( j5, if, z’, g, J3q 

- (xi; z’) F?&zqC( p, if, if’, di, s’, a’). 

The budget equations at each node are clearly the same, and if the security prices 
satisfy (4.4), then for all j E J, i E I and 6 E D: 

;$+ F&w m?( 5’) 
‘E T 

= lim c 
T--5’eD(~)\0Ttg) 

*i(5’)F(t’)A’(5’, j) =O, 

since F’ E/,( D X L) and A’(. , j) E/~( D X L). Thus the transversality conditions 
for the two budget sets are equivalent since for all 5 E D: 

lim C 
-(‘EDT(~) 

Zi( [‘)q( 5’) zi( 5’) 

= lim c 
‘-(‘EDiP(S) 

Fi( S’)S( (‘)( ?( 5’) + si) 

= lim Tjxg 
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Since (5.3) implies 11 o - W’ 11 p s (Cj, J,sj) 11 A - A’ II =, co’, A’) can be chosen 
arbitrarily close to (0, A). Thus the set A of parameters ( W, A), such that 
Kc@, k , 
O, S, &) has a TC equilibrium, is dense in &? X A. CI 

Since Propositions 5.2 and 5.3 can clearly be applied to an economy ZX( 0, 2 , 
O, 8, Ccs), it follows that if (w, A) E A, then any TC equilibrium of the economy 
Zm(D, 2 , o, 8, &‘) can be obtained by imposing an explicit debt constraint M 
that is never binding. 

6. Equilibrium prices of infinite lived securities 

In any equilibrium the prices of the securities 4 and each agent’s present value 
vector Z’ must satisfy the equations 

~WS j) = C ~i(S’)(P(S’)A(~‘~j)+~(5’,j)), 
0 5’ 

V@D,VXI, (64 
which express the first-order conditions for the agent’s portfolio. In a finite 
horizon economy, or as here in a T-truncated economy ET, ‘integrating’ these 
equations (by successive substitution) and using the terminal condition 

&( 5) = 0, t’5E&9 (6.2) 
gives 

&(55 ,) 
1 

c 
= *it 5) <‘ED+(() 

n:( 6’)&( !$‘)A( 5’, j), &ED, vjiII, (6.3) 

so that the equilibrium price of each security is equal to the present value of its 
future income stream for each agent. The expression on the right-hand side of 
(6.3) is called the jhhzmental oalue for agent i of security j (at node 6). 

It is evident that in an infinite horizon economy (6.3) holds for any finitely-lived 
security. However, for an infinite-lived security there is no terminal condition 
(6.2) that can be added to Eq. (6.1) that would force the equilibrium price of the 
security to equal its fundamental value ‘for each agent. This leads to the following 
definition. 

Definition 6.1. Let (( X, Z), ( p, 4, (*‘)i E I )) be a TC equilibrium of the economy 
ZZZ( D, & , OJ, A?). Security j E J is said to be priced at its fundamental value if, 
for all agents i E I, 

1 
C +( 5’)ii( 5’)A( 5’, j), QED( SO) 

pal’(~) 
(6 4) . 
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Security j is said to have a speculutive bubble if (6.4) is not satisfied for some 
agent i E I. 

It is a natural consequence of the method used in Sections 4 and 5 to construct 
equilibria of an infinite horizon economy ZI that in these equilibria all securities 
are priced at their fundamental values: since in the truncated economies ET (6.3) 
is satisfied, this property is transmitted to the equilibrium prices of the securities in 
the limit. To what extent are such equilibria typical? Do there exist equilibria ot 
8% in which some of the securities have speculative bubbles? 

The answers depend crucially on the type of infinite-lived securities available in 
the economy: securities in positive supply can never have speculative bubbles, 
while infinite-lived securities in zero net supply always admit the possibility of 
speculative bubbles. 

Proposition 6.2. Under Assumptions B4 and B7, if ((Z, Z), ( p, 4, (F’)i, ,)) is a 
TC equilibrium of Z,( D, 2 , o, S, M), then the price of eveby security in 
positive supply (aj > 0) is equal to its fundamental value. 

Proof. This result could be deduced from Santos and Woodford (1992), but a 
titularly simple proof can be given in the present context. Let 
, 3, ( p, q, W) iE ,)) be a TC equilibrium. For all 6~ D, xi, ,?$ e)Z’( 5) = 

jE J,q( 5, j)aj. Since Assumption B4 holds, by Proposition 5.2, (@‘) E/I(D) 
for all i E 1. Thus C j E J l , j)aj &I?(D). By Assumption B7, 4 > 0 implies 
Zi( 6, j) 2 0, V[ E D. Thus every security in positivl? supply (j E J,) satisfies 
y’(. , j) E!%(D). Integrating the first-order condition (6.1) >f agent i up to date T 
gives 

We now show that the equilibrium prices of infinite-lived securities in zero net 
supply are not tied to their fundamental values. Proposition 6.3(i) below shows 
that it is always possible to add a bubble component to the equilibrium price of 
such a infinite-lived security so that the resulting price remains an equilibrium 
price. However, there is a difference between speculative bubbles with complete 
and incomplete markets. If, in an equilibrium, the financial markets are complete 
even without securities with speculative bubbles, then the same equilibrium 
allocation can be supported by pricing every security at its fundamental value; 
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removing the bubble component in the price of any infinite-lived security does not 
alter the span of the markets and hence does not affect the real equilibrium 
allocation (Proposition 6.3(ii)). When markets are incomplete there exist equilibria 
in which infinite-lived securities have speculative bubbles that are non-trivial in 
the sense that the same equilibrium allocation cannot be obtained if securities are 
priced at their fundamental values: the bubble components in the prices of the 
infinitely-lived securities affect the span of the markets in such a way that they 
cannot be removed without altering the real equilibrium allocation (Proposition 
63(iii)). 

The following preliminary remark will be helpful before stating Proposition 
6.3. Suppose ((Ti, Z), ( jj, q, (z i)ie 1)) is a TC equilibrium of an economy 
gE(D, 2 , U, 8, JV) in which the price d(. , j) of security j has a bubble. If 
q(. , j) is the fundamental value of the security defined by (6.4), then both q(. , j) 
and q(. , j) satisfy the first-order condition (6.1). Thus the difference p(. , j) 
between the two prices, 

~(6, j) =q(& j) -9( 6, j)* QED, (6 5) . 

called the bubble component 4 of q(. , j), satisfies the following homogeneous 
equation: 

+([)p(t)= C Fi(f)p(t’), ViiZ. 
0 5’ 

(6 6) . 

In a deterministic economy (b( 6 ) = 1, Wt E D) in which there is short-term 
borrowing and lending at each date, markets are complete (5 i = ?r, Vi E I) and 
the equilibrium short-term interest rate satisfies 

1 7f I+ I -=-, VttT. 
1 +‘;, 5, 

In this case (6.6) becomes p, = [ l/( 1 -t F,)] pI+ I, V t E T, which implies p,+ l = 
a! nA=,( 1 + &,) and leads to the well-known conclusion that in a deterministic 
economy a bubble must grow at the rate of interest. 

This property generalizes to stochastic economies in which markets are not 
necessarily complete, as follows. The equilibrium short-term interest rate 7( 5) at 
node 6 satisfies 

4 Since a bubble assigns a non-zero value to a zero dividend stream, when the price of a security has 
a bubble component, the price ceases to be a linear functional on the apace of income streams k?=(D). 
Thus the bubbles that arise in the model of this paper are not the same as the bubbles studied by Gilles 
and LeRoy (1992) which come from a pure charge component of a continuous linear functional on 
L(D). 
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and the product p( 5 ) of the random interest rates on the path [ to, 5-1 from the 
initial node &, to the predecessor c$- of 5, 

satisfies homogeneous equation (6.6) since, for all 5 E D and for all i E I, 

Proposition 6.3. Let 8=( D, 2 , ct), 8, &) be an economy satisfying Assumption 
B6, with at least one infinite-lived security (j E J( &,)I in zero net supply 
(si=O, 6;=0, WEI). 

6) If ((Z, 21, (jj, q, (*‘)iE ,)I is a TC equilibrium of the economy and if G is 
defined by 

q(g, j) =ij(*, j) +iW q(-, J)=Zj(-, j), J+h 

where p = ( p( 5 ), 5 E D) is the bubble component given by (6.7), then q is also 
an equilibrium security price vector; i. e. there exist portfolios ? = ( i’, . . . , z’ 1 
SUC~I that ((X, i), ( j?, q+ (*‘)i, t)) ,is a TC equilibrium of the economy. 

(ii) Conversely, [f (( E, z), ( a, q, (YF i)i E ,)) is a TC equilibrium of Z,( D, 2 , 
W, 8, &) and if the financial markets are complete even without the infinite-lived 
securities whose prices exhibit a bubble, then there exists a vector of port$olios 
Z==(?,..., 2 ’ ) and a vector of security prices q, under which every security is 
priced at its fundamental value, such that ((F, 21, ( F, & (5’& E ,)> is a TC 
equilibrium. 

(iii) Zf the hypothesis in (ii) is not satisJed, then the existence of bubble 
components in the security prices can have real effects, i.e. there exist equilibria 
in which the price of some infinite-lived security has a speculative bubble, such 
that the same real allocation cannot be supported by a vector of security prices 
under which every security is priced at itsfGndamenta1 value. 

Proof. (i) For a vector of security prices q, let V(q, 6’) = [ i;( 5’) A( t’, j) + 
q(e’)J*‘E b.jE J(*) denote the b( 5 ) x j( 5 ) matrix of returns at the successors of 
5. Since ii;( 6’) has the same value for each successor 5’ E t+, the vector 
( jX 5’1, 5’ E e+) is collinear to (1 ,..., l).SincebyAssumptionB6,(1,..., l)T~ 
(V(q’, e+ )>, adding the bubble component to the price of security j does not 
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change the subspace of returns at the successors of e, (V( g, [+)) = (V( 9, 5’)). 
Since q and q satisfy (6.1), 

VW 

so that the subspace of income transfers is unchanged at each node. Since no agent 
inherits debt at date 0 in the infinite-lived security j, q( &)S i = q( &# i, so that 
the agents’ wealth at date 0 is unchanged. Thus Z@( p, & 5 i, oi, S i, A) = 
&?( p, 4, 5 i, oi, 6 i, A). For all agents i E I, i # 1, we define the new portfolio 
Z’ by 

1 --q(5) 1-i 
v(q, ,,,1"5'= 

-4(r) 
[ I v(tL 6') F(S), KED. (6.9) 

Let Z’(E)= - cl= 2 Z’( 5 ), Ve E D. The spot market-clearing equations imply that 
Z’( 0) satisfies (6.9). Thus (Z’; Z’) is 2 i maximal in B( p, 2, ?i’, oi, 6 i, A), k/i 
E il. Since Ci, , Z’ = 0 and “7 LiE I (Xi - o ‘) = 0 it follows that 
((Z, z)( p, q, (Z i)i E ,)) is a TC equilibrium. 

(ii) Let Z’= 5, Vi E I, denote the common present value vector of the agents 
and let 4’ denote the vector of security prices defined by (6.4). Then q( l , j) = 
$9, j) except possibly for some infinite-!ived assets in zero net supply. By 
assumption, (V(& l+ 3) = (V(Zj, 5’ )) = R! ‘(‘? Since both 4 and q satisfy (6. l), 
it follows that (6.8) holds. Since $ = 0 for securities in zero net supply, 
.53( ,5, q, ?, oi, S’, A)=S??(p, 4, Z’, oi, S’, .A). By the same argument as in 
(i) there exists Z such that (( X, Z), ( F, Zj, (~i)i E ,)) is a TC cr;quihbrium. 

(iii) When the subspaces (V(q, 5’)) depend on the bubble components of 
infinite-lived securities - in the sense that replacing prices with speculative 
bubbles q by the fundamental values Q of the securities leads to different 
subspaces (V( & [+)) - then the equilibrium (( F, Z), ( p, q, (5 ‘)i E I) cannot be 
achieved with prices q and a change in portfolios. This will be shown by two 
examples. The first has the merit of simplicity, but does not satisfy Assumption 
B6: it illustrates how a speculative bubble on an intrinsically worthless security 
can enable agents to carry out mutually advantageous borrowing and lending in 
the absence of a bond. Constructing an example satisfying Assumption B6 is 
necessarily more complicated since, as shown in (i), when the short-term bond is 
traded, the simplest bubble given by (6.7) cannot have real effects. Thus Example 
2, which satisfies Assumption B6, exhibits a more sophisticated bubble which has 
real effects. 

Example 1. Suppose that the event tree D is such that the only uncertainty is at 
date 1, the future after date 1 being infinite but certain. Let ( &, 6;) denote the 
two nodes at date 1, the node following 5, (resp. 6;) at date t being denoted by 6, 
(resp. &‘) for i 2 1 (see Fig. 1). We assume that the two nodes at date 1 are 
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Fig. 1. Event tree and agents’ endowments for Example 1. 

equally probable ( p( & )) = ( p( 6;) = l/2). Suppose the economy has an equal 
number of agents of two types and one good (income). Every agent has the same 
additively separable utility function (2.3) with 

The endowments of the two types of agents are shown in Fig. 1: both types have 
one unit of income at node to, and if nature chooses node 6, , then type 1 agents 
have 1 - E for ever and type 2 agents have E for ever; if nature chooses node &;, 
then the incomes of the two types are reversed. The financial structure consists of 
two securities issued at node to. Security 1 (2) pays one unit of income at node 6, 
(6;) and 0 elsewhere and is retraded at all nodes on the upper (lower) branch 
(S,(s:), t& 0. 

If the securities are priced at their fundamental values, then the equilibrium 
prices are 

and the equilibrium allocation is 
q&)=1, P(&)=Xi(5;)=f, P(&)=E*([;)=l-E, 
I?( 5:) =Z2( &) = e, tz 2. 

Trading the securities only permits income transfers at date 1, the agents remain- 
ing at their initial endowments thereafter. 

If there is an equilibrium in which both securities have speculative bubbles, 
then the financial markets are complete; the allocation must correspond to the 
Arrow-Debreu equilibrium allocation 

?( 50) = 1, ?(&,)=5’(5;‘)=& tzl,i=l,2, (6.10) 
and the agents’ present value vectors (normalized by F’( to) = 1) coincide with 
the Arrow-Debreu prices Z given by 

q 60) = 1, 
ts 

qet)=z(5:)=21/2’ tr 1. 
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Since the prices of the securities q = (q,, y2; must satisfy (6.11, we must have 
6 

94 Qo) = 21/2(1 +si( m, 
at+ I 

g&d 6) = 2’/241( &+A tz 1, 

q*( 50) = $(1+4*(~~))~ 
S’ 6 t+ 1 

21/2q2( 5/J = 21/2q2(LL e 19 

in which the initial prices of the securities (ql( &,), q2( &)) are arbitrary. 5 
Choosing 

1+6 1 
il,( 43 = &( 50) = - p/2 gives 4(sI> =!T2(5/) = 6’9 e 1. (6=11) 

The portfolios ( 2’ , z2) that finance the allocation (6.10) must satisfy z2 = - z ‘, 
where z ’ = ( z f , zl) is a solution of 

l= 1 +Q1(&Jzf&J +~2(s&:&)~ 

+= 1 --E+(1 +4”*(t,))zf(50) -6l(h)zf(51)~ 
+=E+(l+~2(sI))z:(~o)-~2(51)z:(5;)1 

and for t 2 2: 

3= 1 --+4”1(&)zt(5;-1) --~,(5;)zt(~t)~ 
f=E+iT2(5:)z:(S:-,) -~2(~:ME), 

so that 
l-6’ 

21(5,)=(1+s)zl(So)+s(f-E)1S - 

1-S’ 
z~(5:)=(l+s)z:(5,)-s(f-E),,. - 

Since +( @j,C 5,) = Z( &‘)?j2( &‘> = I/ fi, t 1 I, the transversality conditions 
are satisfied if and only if lim,,, z,‘(&)= lim,,, &i>= 0. The unique 
initial portfolio for which the transversality conditions are satisfied is thus given 
bY 

s 1 
z”f(&-J)= -Zj(&))= -- -- 

( 1 l-G2 2 e 
(6.12) 

so that the equilibrium portfolio of agent 1 is given by (6.12) for t = 0 and for 
tzl by 

t+ I s 1 $(Et) = -- -- 
( i 1-s 2 e = -z;( r:)* 

5 This is a nominul indeterminacy which has no real effects, since a cL:ge in ‘7i( &,) can always be 
compensated for by resealing the portfolios zj, i = 1, 2. 
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If E is small (E < +), then agents of type 1 are rich on the upper and poor on 
the lower branch of the event tree, with the converse for agents of type 2. To 
finance a transfer of income from the upper to the lower branch at date zero, type 
1 agents take a long position in security 2 covered by a short position in security 
1: they are thus debtors on the upper and creditors on the lower branch. The 
situation is reversed when E is large (E > f), and when E = i there is no trade 
since the initial endowment is Pareto optimal. The securities enable the agents to 
achieve risk-sharing only if they have a positive value after date 1: this in turn 
arises only if each agent believes that other agents believe that they have value. 
The equilibrium thus depends on the beliefs of the agents, not on the fundamentals 
of the securities. 

Note that the transversality conditions determine the only value of z’( &,) for 
which the asymptotic present value of the debt is zero. If 2: ( I&) > - [ S/(1 - 6 *)I 
(3 - E), then agents of type 1 pay off their debts on the upper branch too fast and 
become creditors at infinity - which cannot be optimal; similarly, if S,‘( &) < 
-[S/(1 - S2)](i - E), then agents of type 2 become lenders at infinity (on the 
upper branch). 

Example 2. Suppose the event tret D is such that at each node there are two 
possible events, (u, d) (‘up’ and ‘down’), which can follow, each with probability 
$ The initial node to is event d. There are two (types of) agents (I = 2) and one 
good (L = 1) at each node. The preferences of agent i are represented by a utility 
function 

U’( Xi) = C (fs)l”‘ui( X'( 5 )), i = 1) 29 
&D 

where u, : R + -+ R, ui > 0, ul< 0, o,(O) = 0, and 3 < S < 1. The endowment of 
agent 1 is given by 

1 

d-a(~), if ~‘=d,Q’~[&,, 51, 
o’(T)= d-p([), if t=uand ~‘=d,t/S’E[&-,, e-1, 

a’, otherwise, 
where [ to, 5 ] denotes the path from the initial node &, to node 5 and where a( l ) 
and p(e) are given by 
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the endowment of agent 2 being given by o*( 5) = CY* + QC* - or( 0, V& Lb. 
cu ’ and ac * are chosen so that o’( l ) and o*(- ) are uniformly positive. 

If there is a single infinite-lived security (a consol) with payoff A( 6, 1) = 1, 
Vt E D+, then it is easy to check that ((Z, Z), (j5, q, (5 & ,)) is a TC equilib- 
rium where 

Z’(tj)=d and Z*(t)=a*, F(S)=l, v@D, 

if5’=d,W’~[509 51, 

otherwise, 

otherwise, 

z’( 5) = -Z’(t) and F’(e) =7?*(c) = , V&D. 

The structure of the event tree and the price of the consol are taken from Santos 
and Woodford (1993, example 6), the price q being a solution of the stochastic 
difference equation 

qr= SE(1 +4r+1 Iq), 

where F, denotes the information available at date t, which can also be written in 
event tree notation: 

q( 6,) =$(I +9(5‘1’:1)) wq +4(cLI) (6.13) 

( 6,‘: I, 6:: , ) denoting the successors of 6,. The price q is the sum of two 
components: the first is the findamen,+al value y’( 5) = S/( 1 - S), Vt E D, and 
the second is a stochastic bubble that grows at the rate (2/8) on the lower branch 
[d, d, . . . j and bursts the first time that event u occurs. To compensate for the 
probability of bursting, the return on the lower branch [cd, d, . . . ] exceeds the 
implicit riskless return 1 /S. 

Note that since the allocation (Xl, X2) is Pareto optimal, the equilibrium would 
not be affected if the security structure were modified to include the short-lived 
riskless bond at each node (Assumption B6): the same equilibrium would be 
obtained with zero trade in the riskless bond. However, the equilibrium allocation 
(El, X2) cannot be obtained if the consol is priced at its fundamental value 4: the 
only portfolio 2 = ( Z’, 2*) that would permit the agents to finance the allocation 
(X’, X2) under price Zj can be computed by forward induction and it is easy to 
check that the transversality conditions (for example, on the subtree that begins 
with event u at date 1) do not hold for Z. 
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Appendix 

Proof of Theorem 5.1 Let (D, 2, cr), (J, (S(j)>j, J) (J(t$)& ,& be the fixed 
characteristics of the economy and let A * CA be the set of commodity payoff 
processes for which the economy has a TC equilibrium. For 5 E D let j( 5 ) = 
# J( 5 ) and let a( 5 ) = min( j( 5 ), b( 5 )). Let us consider a payoff process AE A 
and let ((X, T), (p, ;li, (%i)i,I >) be a pseudo-equilibrium of Zm( D, 2 , W, 2)) 
generated by an artificial security structure (Z = (K, ( t(k)), E K, 
(BANKED, f), with 

ranl#‘YS’, 1, k)] 5’Ee+ =a(5), Q&D. 

Let 4’ be the vector of prices of the original securities defined by (4.4). There 
exists a vector of portfolios LE 2 such that ((E, Z), ( j& q, (5 ‘)i E ,)) is a TC 
equilibrium of Z$( D, 2 , w, M) if and only if 

rank[p([‘)~(& j)+q(&, j)],f,,+ =a([), Q&ED. (Al) 
jEJ(t) 

To prove the theorem we show that if (A 1) is not satisfied for x, then for every 
E > 0 there exists a commodity payoff process A E A with 11 A - All rr: < E such 
that (Al) is satisfied for A, so that A E A * . We show that this can be done 
without changing the underlying pseudoequilibrium ((I& p), ( j?, p, (~‘)i E I). 

Let H CA denote the subset of commodity payoff processes A such that 
(( 2, T), ( j!, i?, (?ji)iE ,)) is a pseudo-equilibrium of Ea( D, & , o, ~‘1). The 
payoffs in H must satisfy (4.4), i.e. for all 5 E D, 

& c ~i(Sr)F(5t)A(S’) [‘E!l’(~) 
must be independent of i, and if y( 6) denotes this common value, then (4.5) must 
be satisfied with 4 replaced by 4. Thus A E H if A E A and if for all [E D, 
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= 5’9 1, k)] 5tE5+ . 

These two equations can be written with date 0 discounted prices as: for all 6 E D, 

c p’( (“)A( t”, j) rrE5+ c [ P’( S’)r( (I, k)] SIEr+ . 
[“E D( 6’) 1 I( jEJ(5) kEK(Z) 

To simplify notation, if x E/%( D X L) and P EL’,@ Y L), then we define 

p**x= c PWb(5’) 
(‘ED(() 

and let 

denote the b( 5) vector of date 0 discounted values of x from all the successors of 
6 onwards. For A E A we define 

P**A=(PD*A(=,j),jEJ(r)), P 0 (+A = [ P l t0 A( l , j)] gEt+ l 

Then H can be written as 

H= 

where 
I @$+A) cp( 0, @ED 

Since 6~ H, H is not empty. Since for each 5 E D the second condition 
( - ) Cp( 8) can be expressed by a system of linear equations. H is the 
intersection of a countable collection of closed hyperplanes. Thus H is a closed 
subset of A. Since A is a closed subset of the Banach space lz( D X L X J), it 
follows that H is a Baire space (Rudin, 1973, p. 42, theorem 2.2). 
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For each node 5 let J^( 6 ) be a subset of J( 5 > consisting of a( 5 ) securitiet 
including the short-lived numeraire bfnd. For a payoff process A E A let A 
denote the payoffs of the securities in J( 5). Let & be a subset of a( 5) nodes of 
6’ (to be chosen below). Consider the subset of H: 

Ht= AEHldet[p’O&] =O}. 

We show that Ht has an empty interior in H. It suffices to show that we can 
perturbanyAEH*, A+A+AA,with A+AAEHinsuchawaythat 

det[P’O$(A+dA*)] #O. (A21 

Consider changes AA in the commodity payoff process consisting solely of 
changes in the amounts of commodity 1 which can be decomposed as follows: 

’ 1 

c cd et’ + 5’ 1 C @ef’+ yjef, if jE?( t), 
AA(-, j) = 5’~j 0 s’\s^’ W) 

0, if jEP( 5). 

where J^I< 6 ) is the subset of J^( 5 ) which excludes the short-lived numeraire bond. 
Note that the commodity payoffs are perturbed only at node 6 and its immediate 
successors 5’ and only securities in .?( 6 ) have their payoffs perturbed. For 
security j E J^,( 6 >, its payoff in good 1 is perturbed by (Y/, at node 6’ E &, by 
#. at node 5’ E ef\ p and by yj at node 6. For brevity we write 

a!= ( . 
(y/,, j&( 0, 5 E (+) E ~(a(t)-l)a(4), 

pzz (&,, jE$( t), (f’E S+\&) E ~("(l)-IXb(t)-40) 

y= (yj, jES( 6)) E lf?P)-'. 

ar can be chosen so that (A2) is satisfied. To see this, let g : lR(“(E)- ‘M* ) + k! be 
defined by 

g(a)=det[P’O&+AA?], 03 
where A A is defined by (A3). While AA is a function of (cy , p, y 1, the 
determinant in (A4) depends only on CL A straightforward but tedious calculation 
shows that g has partial derivatives of order a( 6 ) - 1 evaluate j at ac = 0, which 
are not zero since P( t’, 1) > 0, Vt’ E &. Thus g is not locally constant in a 
neighborhood of ar = 0. It follows that there exists a! arbitrarily small such that 
gWf O. 

If a( 5 ) < b( 6 ), then /3 is chosen to ensure that 
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Since p( c ) is a non-trivial subspace of IL! b(6), there is a choice of a( 6 ) nodes 
PCs’ and an appropriate ordering of the nodes such that L?( 6 ) can be 
represented by a system of b( 6 ) - a( 0 equations of the form 

The nodes are ordered so that the subset [+\ & constitutes the first b( 5) - a( 5 ) 
nodes. I is the (b( 6 ) - a( 5 )) X (b( p ) - a( 5 )) identity matrix and E is a 
(b( 5 ) - a( 5 )) X a( 5 ) matrix (see Magi11 and Shafer, 199 1, p. 1544). For each 
j E .?( 5 ), once (x has been chosen, there is a unique vector pi = ( @rT 5’ E c+\ 
p)ER b(*)- ‘(6) such that the vector 

satisfies the equation [I 1 E]d = 0. 
If a(&)= b(t), p(t)= Rib(*) so that (A5) is automatically satisfied. 
We have to ensure that ( P’ 0 z+ ( A + AA)) CL?( g) is satisfied for all nodes 

[S 5. By construction, this inclusion holds for all nodes 6 which are not on the 
path from &-, to 5. If yj is chosen so that 

for j&‘(t)nJ(t-),andif yj = 0 for j GE .?( 6) n J( r-), then (A5) is satisfied 
for all nodes & D. Thus A + AA satisfies the subspace requirements (the second 
condition) in the definition of . To show that the first condition in the definition 
of H is satisfied it only remains to show that if Aq is defined by 

then for all i E I, 

1 - C 
q 0 pEo+< I> 

i?‘( (‘)jj( [‘)AA( 5’, j) = Aq( 6, $ 

VjEJ([),V&D, 

so that all agents agree on the induced changes in the security prices. Since AA 
has only a finite number of non-zero terms this follows from ( P’ 0 g+ A A) C 
2?( f>, v& D. 

Since cr can be chosen to be arbitrarily small and since ( p, y ) are deduced 
from a! by linear relations with bounded coefficients, the perturbation AA can be 
made arbitrarily small. Thus for all 5 E c”, Hs is closed and has an empty interior 
in H. Since is a Baire space, the countable union IJ 5 E D H6 has an empty 
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interior in H. Thus for all E > 0 there exists an E-perturbation A of x such that 
AEHand 

(Pq+A) =ei?( t), WED J , 

which completes the proof. 0 
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