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Econometrica, Vol. 49, No. 3 (May, 1981)

INFINITE HORIZON PROGRAMS

By MICHAEL J. P. MaGILL'

This paper presents a general framework for the analysis of programs over an infinite
horizon in continuous time. Sufficient conditions for the existence of an optimal program
are derived and are shown to reduce to the condition that the underlying preference
ordering exhibit impatience in a topology determined by the underlying technology.

1. INTRODUCTION

THIS PAPER PROVIDES a solution to a basic problem of capital theory posed by the
open-endedness of the future. Under what conditions do optimal infinite horizon
programs exist? It might be argued that such a question is little more than an
intellectual curiosum, leading to just another abstract mathematical exercise. I
shall argue that this is not the case and indeed that a proper understanding of the
practical economic consequences of the open-endedness of the future can only be
obtained by giving a precise answer to this question. It is true that we are led to
adopt a fairly abstract approach to the problem. But the abstraction serves the
best possible purpose—it focuses attention on the few basic ideas that lead
directly to the solution of the problem. Once the abstract framework is under-
stood (the degree of abstraction is always a relative concept) the solution of the
problem is both simple and natural.

It might be thought that in the years since Ramsey [44] first formalized capital
theory such a basic problem would have been thoroughly resolved. We shall find
however, that this is not the case, subject to one qualification. For in considering
the existence problem over an infinite horizon we need to distinguish two cases,
depending on whether the underlying preference ordering leads to a partial
ordering or a complete ordering. It is true that the first case has been rather
thoroughly examined, including as it does the original analysis of Ramsey [44]
and the subsequent work of Von Weisidcker [54], Gale [24], Brock [8], and finally
in continuous time, the rather complete analysis of Brock and Haurie [10]. I refer
therefore to the case of a complete ordering. As recently as 1960 Tinbergen [51]
examined a problem of this kind in which he found that for certain natural
parameter values of the underlying utility function the limit of the finite horizon
optimal paths is in a sense the worst possible path, for consumption is zero for
every finite time and infinite at infinity. This paper prompted Chakravarty [15] to
a perceptive, albeit largely verbal discussion of the problem of existence. It began
to be recognized that Ramsey’s approach while ingenious in many respects
involved a device that was artificial and inapplicable in many cases and indeed
served to hide some important economic problems posed by the open-endedness
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680 MICHAEL J. P. MAGILL

of the future. This was brought out clearly in the penetrating analysis of
Koopmans [29], the first major attempt to resolve the existence problem in the
case of a complete ordering.

Koopmans’ analysis is however incomplete (no rigorous proof of the existence
of the crucial infinite horizon path [29, p. 278], a fault common to virtually all
the literature of this period), uses special assumptions (single good, differentiable
utility and production functions, and bounded technology set), and does not
seem to be readily amenable to generalization. This last point is important. For
one natural generalization of Koopmans’ approach to the case of many commod-
ities would involve finding conditions that ensure the existence of a positive
stationary solution which is globally stable. It is clear however from recent
analysis [10, 14, 32, 33, 34, 47] that such conditions may have little or nothing to
do with the problem of existence. It would seem that existence results which
depend upon qualitative properties of an optimal solution are unlikely to lead to
results of any generality (the undiscounted stationary problem is rather special in
this respect [8, 10, 24]).

The first rigorous and complete analysis of existence over an infinite horizon in
the case of a complete ordering is the discrete time one-dimensional case
analyzed by Brock and Gale [9]. Their analysis has the further merit that it
contains the germ of a general method that ultimately forms the basis for the
approach adopted in this paper. An n-dimensional version of the method of
Brock-Gale was considered by McFadden [38]. A more general case was subse-
quently analyzed by Evstigneev [21].

In the economic literature there has been some misunderstanding as to the
basic causes of existence or nonexistence. Both Chakravarty [15, p. 179] and
Koopmans [27, p. 8] attribute it to a lack of compactness. McFadden [37, p. 403;
38, p. 260] argues that in the infinite horizon case existence cannot be based on
considerations of continuity and compactness except in a trivial case [37, p. 411].
If this conclusion were true it would be disturbing indeed since virtually all
existence results in economic theory depend at root on continuity and compact-
ness. I shall argue, in brief, that compactness is on the whole readily secured by
the appropriate choice of a program space and topology and that the true force
of existence conditions lies in the requirement of upper semicontinuity of the
preference ordering, this latter condition being tantamount to a precise form of
impatience.

Section 2 outlines the basic framework for the analysis of the problem of
choice over an infinite horizon. I define a program space U as a certain infinite
dimensional space (a locally convex space) endowed with a suitable topology T
(Section 3). A subset ¥ C U denotes the set of feasible programs. The basic
axiom is that choice among programs in ¥ can be represented by a preference
ordering. In this paper I am concerned with the subset of preference orderings
that are representable by a certain class of integral functionals: this class includes
all the standard preference orderings that arise in capital theory. Under certain
conditions (Assumptions 4—6 in Section 6) such preference orderings can be shown to
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be complete, transitive, and upper semicontinuous on ¥ relative to a certain topology
T (Proposition 7.1).

The choice of the program space O and its topology T is crucial. 1 allow the
choice of the program space to be dictated by the properties of the instantaneous
technology set I'(¢), the set which represents the production opportunities at any
moment of time (see Sections 4, 5). I choose the topology in such a way that the
set of feasible programs ¥ induced by I'(¢) is compact. This leads to two distinct
cases. In the first case I'(¢) is uniformly bounded for all t € I = [0, c0): this case
arises when there are decreasing returns to scale (Section 8). In this case it is
natural to let U be the space of bounded, vector valued measurable functions
defined on 7 and to let T be the weak* topology. In the second case I'(¢), t € I, is
unbounded: this case arises when there are constant returns to scale (Section 9) or
when there is technical change (Section 10). In this case a preliminary analysis is
needed to find out how fast feasible programs can grow when viewed as a
function of time (see Section 5, Definition 5.1). Given this information I show
that the program space may be chosen as the space of vector valued functions
defined on I whose components are integrable, the Lebesgue measure on / being
replaced by a measure which is in essence the reciprocal of the maximal rate of
growth of any feasible program. In this case I let the topology T be the weak
topology. Given this choice of program space and topology, Assumptions 1-3 in
Sections 4 and 5 ensure that the set of feasible programs  is compact (Proposition
7.5).

I recall in Section 2 (Theorem 2.5) that if a preference ordering is complete,
transitive, and upper semicontinuous on ¥ relative to a topology T and if ¥ is
compact in the topology T and nonempty, then there exists an optimal program.
This leads us to the basic Existence Theorem 7.6. If additional assumptions are
made concerning the asymptotic properties of the instantaneous utility function,
then more precise existence conditions (Corollaries 7.8, 7.9) can be deduced.
Sections 8-10 establish existence in the context of the three main types of
technology set that arise in capital theory. The problem reduces to showing that
Assumptions 1-6 are satisfied. Since Assumptions 1, 2, 4, and 5 are readily
established, it is Assumptions 3 and 6 that require the additional analysis.

Koopmans [30] first uncovered the basic relation between the concept of
impatience and the property of continuity of the preference ordering. Brown and
Lewis [12] have subsequently substantially refined the analysis. Section 11
considers these ideas in a preliminary way in the continuous time case. The
upper semicontinuity condition leads in the simplest case to a certain inequality
on underlying parameters which characterize the asymptotic form of the instan-
taneous utility function, the asymptotic rate of discounting and the maximal
asymptotic rate of growth of consumption. This condition is nothing but the
requirement that the asymptotic instantaneous rate of impatience in the sense of
Irving Fisher [22, p. 62], along a path of maximal growth of consumption, exceed
the maximal rate of growth of output. In the class of problems considered in this
paper the requirement of upper semicontinuity of the preference ordering and its
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relation to the concept of impatience is the central idea in terms of which the
essential economic aspects of the open-endedness of the future may be summa-
rized.

In the framework of this paper impatience is a sufficient condition for
existence. It is clear however that optimal programs can exist without the
preference ordering exhibiting impatience. We have only to consider a preference
ordering that is upper semicontinuous in the norm topology on the space of
bounded measurable functions and a technology set compact in the norm
topology. More generally the partial orderings considered by Von Weisécker [54],
Gale [24], and Brock-Haurie [10] do not exhibit impatience. These are however,
in a sense, hairline cases. For as soon as the preference ordering exhibits patience
optimal programs cease to exist. This result is not established in the general case
in this paper but is a result that is readily established in the simplest cases.?

Yaari [55] and Aumann-Perles [3] have considered a related variational prob-
lem with a simpler integral structure. By exploiting this simpler integral structure,
in conjunction with the Liapunov convexity theorem, Aumann-Perles are able to
establish existence without the assumption of convexity. There are essentially two
parts to the convexity assumption in this paper: convexity in the stocks and
convexity in the flows. The former assumption can be dropped in Sections 4-7 at
the cost of some complication in the analysis. I have chosen not to enter into this.
An attempt to drop the latter assumption, however, leads to the phenomenon of
chattering. To deal satisfactorily with this case requires an extension of the
concept of a solution curve to the concept of generalized curves along the lines
originally introduced by Young [56].

In a framework closely related to the analysis of this paper Chichilnisky [16]
has established existence without the assumption of convexity in either stocks or
flows. To avoid the problem of chattering she imposes bounds on the degree to
which flows can fluctuate over time [16, vi p. 512]. It is clear however that in
general the basic statement of the economic problem may not permit the
introduction of such an assumption. Just as mixed strategies are forced to make
an appearance in the theory of games, so generalized curves need to be intro-
duced to cope with the problem of nonconvexities in the flows. When convexity
is introduced into Chichilnisky’s analysis, her existence result appears as a special
case of the results of Section 7.

A well developed existence theory is applicable in the case of a finite horizon®
[20, 45]. This paper will explore ways of extending these earlier results to the case
of an infinite horizon, with particular emphasis on the class of problems that
arise naturally in intertemporal economics. This paper is part of a broader
project that seeks to integrate capital theory and equilibrium theory. Indeed there

21f the criterion of optimality is replaced by the criterion of weak maximality introduced by Brock
[8], then preference orderings which exhibit a small degree of patience are consistent with existence. A
precise bound on the degree of patience in the one good case has been given by Mitra [42, Theorem
1] exploiting the efficiency criterion of Cass [13, Theorem 3].

3Much of the early development of this theory is due to Tonelli [52], who first recognized the
crucial importance of semicontinuity in variational problems.
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is a close connection between the results of this paper and the infinite dimen-
sional version of equilibrium theory developed by Bewley [7].

2. UPPER SEMICONTINUITY AND COMPACTNESS

The first basic notion is that of a program space.

DEFINITION 2.1: Let (U, T) be a locally convex space endowed with a topology
T. A will be called the program space. ¥ C 9 will denote the subset of feasible
programs.

The second basic notion is that of a preference ordering > . I take this notion to be
understood. A solution of the problem of choice among programs in AU will
depend on the following basic assumption.

AsSUMPTION P.1: Choice among programs in 9 can be represented by a
preference ordering *.

DEeFINITION 2.2: The preference ordering x is said to be complete on ¥ if for
every w, w' €9 either wxw’ or wzw and transitive if wzw’, wzw” implies
wzw”.

ASSUMPTION P.2: The preference ordering > is complete and transitive on .

DErINITION 2.3: The preference ordering x is upper semicontinuous on & in the
T topology if the preferred sets

(2.1) U, = (W EF|Wzw}, VweETF

w

are closed in the T topology.

ASSUMPTION P.3: The preference ordering > is upper semicontinuous on F in the
T topology.

DEFINITION 2.4: If w* € § satisfies w*=w, Vw € ¥, then w* will be called an
optimal program. If 9 is a space of programs over an infinite horizon, then w*
will be called an optimal infinite horizon program.

In the sections that follow the proof of the existence of an optimal infinite
horizon program will be reduced by a sequence of steps to the following standard
result.

THEOREM 2.5: If Assumptions P.1-P.3 are satisfied, if F is compact in the T
topology and ¥ + @, then there exists an optimal program.
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ProoF: Since the proof is simple, and basic to what follows, I shall remind the
reader of it. Since ¥ #* @, consider a finite collection of points {w, ..., w,}
C . Transitivity implies ﬂlf=|%w, # @. Since the finite intersection property is
satisfied for all finite subsets {w,, ..., w,} C %, since U, is T-closed Vw € ¥ by
P.3, and since ¥ is T-compact, (), csU, 7 9. v* € N, s, is optimal. Q.E.D.

3. LOCALLY CONVEX SPACES

Let I =[0,0) denote the infinite time interval and (I,9,\) the associated
measure space, 9 the Lebesgue measurable sets, A the Lebesgue measure. I shall
be concerned with linear subspaces of the space 9™ of all R™-valued (m = 1)
9-measurable functions defined on the measurable space (7, 9).

Let £2(A) = £7(1, 9,A) and £7'(A) = £7'(1, §,A) denote the subspaces of IM™ for
which

3.1 v, = esssup|lo(T)]| < o0, |0l =j;||v(1')||d7< 0, vEM”,

where esssup|v(?)|| = inf{a € R| u(t|||v(?)|| > a) =0} and where | || is the
standard Euclidean norm. £7'(A) induces a locally convex topology on £7(A) by
means of the family of seminorms

() ¥o)=|[ f(u(ndr], VELN), vELLM).

This topology, which is written as T = o(£7, £7"), is called the weak* topology of
£7(M). A sequence {v,};—; C £7()) is said to converge to v in the weak* topology
if

(3.3) Q(v, —v)>0 as n—>o0, VfELTQA).

DEFINITION 3.1: A function § € 9L satisfying

(34) 0<8(r)<o a.e., flo(f)d»r=1,

will be called a density function for I. 8 induces a measure on the measurable
space (/,9) defined by

(3.5) ,L(S‘)=L0(T)d»r, Seq.

Let 4 denote a density function for 7 and let p be its associated measure; then
I shall let 27'(p) = 27'(1, 9, p) and L7 (p) = £ (1,9, u) denote the subspaces of
o™ for which

(3.6) o]l =f1||v(1')l|du(1') <00, |lv|l, =esssup|o(7)|| < oo, vEM”,
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respectively. £7 () induces a locally convex topology on £7'( ) by means of the
family of seminorms

BT P(v)= Iflf(f)v(f)du(f)l, VfELL(n), v ELT(p).

This topology, which is written as T = o (27, £%), is called the weak topology of
£"( ). A sequence {v,}_; C £7"(p) is said to converge to v in the weak topology
if

(3.8) Q(v, —v)>0 as n—>oo, VfeELL(p).

ReEMARK 3.2: In view of Definition 3.1, u(S)=10 if and only if A(S)=0,
VS €9. Thus L7 () = L72A).

REMARK 3.3: It will be clear from the context whether the norms are being
defined by (3.1) or (3.6).

The locally convex spaces defined by the seminorms (3.2) and (3.7) are the two
basic program spaces that I shall consider in the sections that follow.

4. TECHNOLOGY

The description of productive activity in the economy will be based on the
following stylized facts concerning the process of intertemporal production.
Output of commodities increases through the accumulation of stocks of capital
goods. and through the process of invention, a process by which existing techniques
of production are made more productive. If there is no underlying process of
invention, the process of capital accumulation leads to decreasing returns due to
the presence of nonproduced primary resources such as labor and land. In certain
instances it is useful to set aside the effect of nonproduced primary resources and
to allow constant returns to increases in capital. This allows one to focus attention
on the way in which goods are produced from one another and to obtain insights
into the structural interdependence of the economy. In the general case where a
process of invention or technical change is present the decreasing returns are offset
by new inventions which increase the marginal product of capital. These three
broadly defined categories will be referred to as the cases of decreasing returns,
constant returns, and technical change, respectively.

The stocks of n capital goods available at time ¢ are denoted by the vector
z(t)=(z,(0), . .., 2,(?)), n=1. The stocks of r nonproduced resources and a
vector of s parameters indicating the current state of technology are summarized in
a single vector &(¢) = (§,(2), . . ., §,,(1)) where m = r + s = 0. It will be useful to
let

(4.1)  zZ(t)=(z(¥),&1)), teLl
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The current flow output of the n goods available for consumption is denoted by
c(t)=(c(), . .., c,(¢)) and the flow output available for investment is denoted
by v(#) = (v,(2), . . ., v,(2)). It will be useful to let

(4.2) w(t) = (c(1),v(t)), te€L

The vector of consumption-investment goods w(?) is produced by means of
processes employing stocks of capital goods and nonproduced resources, each
process depending also on the current state of technical change.

DEFINITION 4.1: A process is represented by a pair of nonnegative vectors
(Z(2),w(2)). The set of all processes available at time ¢ is called the technology set
().

I need to be more precise about the properties assumed for I'(¢) and about the
relation between Z(¢) and w(¢) in (4.1) and (4.2).

ASSUMPI]ON 1: F t): I > R X R iS a Closed, convex- Valued measur able
+ +
Cor Iespondence.

ASSUMPTION 2: There exists an (n + m) X (n + m) matrix-valued measurable
function ay(t), with ay(0) = 1, ,, (the identity matrix), and an (n + m) X n matrix-
valued measurable function a(t,T), such that on every finite interval [0,s] C I, ay(+),
a(-,7) V1 €1, a(t,-) Vt € I are essentially bounded. For every v € IN" such that

(4.3) f’||u(7)||d7< w, Viel,

0
and for every z, € R',*™, Z(t) is determined by the relation
(44)  z(1)= ao(t)zo+f’a(t,»r)u(»r)d7, tel

0
REMARK 4.2:
= — t
IZ(D] = llao() - [|1Z6]] + Ma(t)j(; lo(T)|[dr< oo, tEIL

In most applications and all those considered in this paper, a,(-) and a(-,7) are
continuous. In this case Z(¢): I—> R"*™ is continuous.

ReMARK 4.3: It will be convenient to write the affine transformation in (4.4) as
(45)  Z(t)=(Qov)(1), €1,
where @ depends on the technology kernel a(t,1), ay(t) and the initial condition Z,,.

REMARK 4.4: The three basic categories of intertemporal production stated
above correspond to certain properties of the family of technology sets {I'(?)},,-
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In the decreasing returns case, the technical change component of £(¢) is absent
and the presence of the nonproduced resource component leads to decreasing
returns. In this case there exists a bounded set B C R”*™ X R2" such that

(46) T(1)CB, Viel

This is the classical case considered by Ramsey [44] and Koopmans [29]. It also
corresponds in equilibrium theory to the case considered by Bewley [7].

In the constant returns case &(¢) is absent altogether. In this case there exists a
closed convex cone C C R". X R?" such that

(4.7) r@g=c¢, viel
This is the very classical technology of Walras and Cassel, revived by Leontief
and extended to the temporal context by von Neumann [53]. It was subsequently
extensively used by Koopmans [26], Gale [23], Radner [43], McKenzie [39], and
McFadden [38] among others.

In the technical change case although the nonproduced resource may be

present, it is the presence of the technical change component of £(¢) which leads
to an increasing family of technology sets

(48) T(r)cT(r), r<tViEL

This is the case considered by Mirrlees [41], Brock-Gale [9], and Arrow-Kurz [2],
among others.

5. PROGRAM SPACE

The idea is now to choose a program space that reflects the capacity of the
economy for producing a stream of flow output over time which is either
bounded or unbounded.

DEerFINITION 5.1: T shall call the pair (I, ) where @ is defined by (4.4) and
(4.5), the technology of the economy. Consider a function y € 9 satisfying the
following conditions:

(1) 0<y(1)< 0 ace.

(ii) For all w € 91" for which v satisfies (4.3) and for which

(5.1) ((Ro)(2),w(r)) €L(r) a.e.
we have
(5.2) Iw()ll=v(r) a.e.

Such a function will be called an expansion function for the technology (T, ®).
I make the following basic compactness assumption.

AssumpTION 3: (T', @) has an expansion function .
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The three principal types of technology considered in the previous section now
fall into two categories depending on whether the associated expansion function
is bounded or unbounded. If y is bounded it is natural to choose the program
space

(53)  W=LLN).

This case is examined in Section 8. If v is unbounded it is natural to choose the
program space

(54) W =e¥(w),
p being the measure associated with a density function @ satisfying
(5.5) fy(*r)0(1')d‘r< 0.

1

This case is examined in Sections 9 and 10. Note that in this latter case if there
exists » > 1 such that

(5.6) fly(f)‘—'d7< %,

then the density function

(5.7 0(t)= ay(t)ﬁr, a >0,

satisfies (5.5), where a is a normalization constant.

REMARK 5.2: It is useful to introduce notation which simultaneously covers the
program spaces (5.3) and (5.4). To this end I shall write U = E;" (v) withp =1 or
o0, ¥ = A or u, integrating with respect to the measure » in the standard way.

DEFINITION 5.3: Let w € 9*". If w is a program satisfying (4.4) and (5.1) then
w will be called production feasible from z,. Let § denote the set of all such
programs.

I shall now introduce an important function that leads directly to an integral
functional whose effective domain is §.

DEFINITION 5.4: The extended real-valued function y.: R"*™ X R X > R
defined by
if (§,w) €T(7)
o if (§,w) & T(?)

is called the indicator function of the technology correspondence T'(¢).

0
(58) Yr($w 1) = { _

DEFINITION 5.5: Given an extended real-valued function g: R¥ X I-> R we
define

E(t)={(x-0) E R* X Rla = g(x. 1)}



INFINITE HORIZON PROGRAMS 689

as the subgraph correspondence of g. The function g is said to be a normal
integrand if E (1) is a closed-valued measurable correspondence.

REMARK 5.6: Under Assumption 1 the indicator function r is a normal inte-
grand [46, p. 177].

REMARK 5.7: If g: R* X I R is a normal integrand and v € M, then g(v(2),
t) €N [46, p. 174].

REMARK 5.8: By Remarks 5.6 and 5.7 if Assumptions 1 and 2 are satisfied and
if we oM satisfies (4.3), then Yp((@v)(?), w(?),£) € 9. If in addition Assump-
tion 3 is satisfied, then Y induces an extended real-valued integral functional on
the program space B;" (v) defined by

(59)  ¥(w) =£¢r((@0)(7),W(T),T)dV(’T).

It follows from Definition 5.3 and from standard properties of the Lebesgue
integral that

(5.10) 6 =dom¥ = {w€EL)(r)[¥(w)> —o0}.

6. PREFERENCES

I shall be concerned with preference orderings over infinite horizon programs
which can be represented by integral functionals. An integral is the simplest
functional operation. Being in the present context a temporal average, it has only
limited power to discriminate among programs. The class of preference orderings
representable by integral functionals is thus a small subset of the set of all
preference orderings satisfying P.2 and P.3. This issue and the related representa-
tion problem has been examined by Leontief [31], Debreu [17, 18], and Koop-
mans [30]. I shall not enter into this further. I shall however attempt to overcome
some of the independence that characterizes standard integral representations,
along lines that generalize the approach of Ryder-Heal [49].

Let y(2) = (y,(?), . . . , y,(2)) denote the vector of stocks of durable consumption
goods available at time ¢ and let o(¢z) = (0,(2), . . . , 0,(¢)) summarize the current
state of tastes at time ¢. It will be useful to let

©1)  F(O) =)o) tEL

Current utility () depends on the stocks of the durable consumption goods, the
current state of tastes, and the current flow of consumption

(62)  u(ty=u(F(1).c(t)1), tE€L

AsSUMPTION 4: (i) u(x,¢,0): R"** X R" X I-> R is upper semicontinuous and
concave in (x,$), Vt € I. (i) C(¢) = domu(-,t) has a nonempty interior V't € I.
(i) u(x,§, -) € O, V(x,§) € R"** X R".
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REMARK 6.1: C(¢) denotes the consumption set at time ¢ and has been included
for simplicity into the effective domain of u(¢).

REMARK 6.2: Under Assumption 4, u(x,$,t) is a normal integrand (46, p. 176].
I need to make the relation between j(¢) and ¢(#) more precise.

ASSUMPTION 5: There exists an (n+ k) X (n + k) matrix-valued measurable
function by(t), with by(0)=1,,,, and an (n + k) X n matrix-valued measurable
function b(t,7), such that on every finite interval [0,s] C I, by(-), b(-,7) V1 € I,
b(t,-) Vt € I, are essentially bounded. The ith row b,(t,7) satisfies for each t € I

b(t, )
()

where (1/p) + (1/p’) = 1. For every c € £,(») o € R¥k, y(¢) is determined by
the relation

(6.3)

ey, i=1,...,n+k

(64)  y(1) = bo(1) yo +flb(t,’r)C(T) dr, tel

REMARK 6.3: For fixed r € 1, let g(r) = b,(t,7)/0(7), i=1,...,n+ k. If
ceEf(v)and g € £,(») by (6.3), then by Holder’s inequality [48, p. 244]

|[ema(r)ydr ()= el llgll, <o i=1 ... n+k

so that the integral in (6.4) is well-defined. The restriction (6.3) on the preference
kernel b(t,7) implies that the weight attached to future consumption must go to
zero sufficiently rapidly.

REMARK 6.4: It will be convenient to write the affine transformation in (6.4) as
(65) () =(De)1), tEI
where % depends on the preference kernel b(t,t), by(t), and the initial condition
JYo-

DEFINITION 6.5: A program (c,v) € £2" (v) satisfying
(6.6) ((Be)(t),c(t))EC(t) a.e.

will be called a program consumption feasible from y,. Let @ denote the set of all
such programs. A program (c,v) will be called feasible if it is both production
and consumption feasible. The set of all feasible programs is denoted by %. By
definition

67) F=en8g.
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DEFINITION 6.6: I define a discount factor as a function A € 9 such that

(6.8) O0<A(f)< oo a.e.

In the analysis that follows a crucial role is played by the existence of bounds
on the current utility function (6.2). Such bounds can be obtained in a variety of
ways. It is convenient to begin with the following formulation.

ASSUMPTION 6: There exists functions a, & € O satisfying
(69) - <flg_('r)A('r) d, fla(T)A(T) dr < oo
such that, recalling 8 from (5.10),
(6.10)  u((Bc)(t),c(t),t)<a(t) a.e. forall (c,0) €S,

(6.11)  a(?r) <u((Be)(1),c(1),t) ae. forsome(c,v)ES.

REMARK 6.7: In view of Remarks 5.7, 6.2, Definition 6.6, and Assumptions
4-6, the current utility function # and discount factor A may be combined with
the operator # to form the extended real-valued integral functional

(6.12)  U(w) = U(c) =flu((€5 e)(r), ¢(1), T)A(T) dr

defined on the feasible subset (6.7) of the program space U = B;" (»). The
preference ordering on ¥, that U represents, by the definition

(6.13) w'zw ifandonly if U(w')Z= U(w)

clearly satisfies Assumption P.2. In the following section it will be shown to
satisfy Assumption P.3 for the locally convex topologies introduced in Section 3.
As in (5.10) Definition 6.5 implies

(6.14) € =domU={weELV(r)|U(w)> —o0}.

7. EXISTENCE THEOREM

In this section I shall show that the preference function U(w) is upper
semicontinuous and the feasible set ¥ is compact in the weak* and weak
topologies (3.2) and (3.7).

PROPOSITION 7.1: Let Assumptions 1-6 be satisfied and let

Uw) = [u((Be)(r).e()m)A(r)dr, wES.
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(i) If the expansion function y is bounded, then & C R2"N), F + @, and the
preference function U(w) is upper semicontinuous on ¥ in the (82, £2") topology.
(i) If the expansion function vy is unbounded, then J C LM w), § + @, and the
preference function U(w) is upper semicontinuous on F in the (3", £2") topology.

ProoF: I shall prove (i) and (ii) simultaneously using the notation of Remark
5.2 so that

(,A),
(L, p),
with topology T = a(2",2), (1/p)+(1/p)=1. § C LY (») follows at once
from Assumption 3, wh11e % #« @ follows from (6 11) 1n Assumption 6. Let

x = (J,Z). Since the technology kernel a(¢,7) is a Volterra kernel, a(¢,7) =0 for
T > t, if we define

A = 812,"(1') with (p,») = {

[ty 0O _[br) 0
k°(t)_[ 0 ao(t)}’ k(t’T)_[ 0 a(t,'r)},

then (4.4) and (6.4) may be combined into the single equation
(1.1)  x(f)= ko(t)x0+fk(t,'r)w(1')d1', tel
1
The affine transformation in (7.1) may be written as
x(t)y=(Xw)(¢), teEL

Let x = (X;>X) € R"TF X R"* ™ ¢ =(¢{,,¢,) € R" X R". Consider the extended
real-valued function f defined by

J(x:8,0) = u(x,,$1,) 0((0) +Y9r(x2:$, 1)

It is clear that f is a normal integrand. The integral functional
(7.2) F(w) =ff((3{w)('r),w('r), ) dv (1)

is defined on all of Bz” (»). Proving (i) and (ii) reduces to showing that F(w) is
upper semxcontlnuous on 82” (v). Consider the function

h(x.§.1) = B(1) = f(x:$,0), B(n)=a(r) 08 '

(5.8) and (6.10) in Assumption 6 imply
(73)  R((Ew)(2),w(1),1) >0 a.e. VweELN(»).
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Since

H(w) = [ h((Fw)(r),w(r), ) dv (r) = B* = F(w)
where by (6.9)-(6.11)

—o0 < fB* =fl,8(fr)dv(1') < o0,

it suffices to show that H(w) is lower semicontinuous on Ef,"(v). Let {w,}>_,
C £2"() be such that

(74) w, > w* asn-> oo, 0(812,”,8[2,,")

and let H, = H(w,), H =lim,,H,, H* = H(w*). (7.3) implies 0 <H = 0. If
H = oo then H* = H. Suppose therefore 0 <H < 0. Let (Wil =1 C{w,}_, be
a subsequence such that

(75 H(w,)=H,>H asm— .
By (3.3) and (3.8), (7.4) is equivalent to

(7.6) lim fl(wm(T) — wH(1)g(r)dv (1) =0, Vg & EX(»).

m—> o0

Let k;(¢,7) denote the ith row of k(z,7). Since by Assumption 5 for
i=1,...,n+k, (6.3) is satisfied and since by Assumption 2 for i=n+ k +

L...,(n+ k) +(n+ m), k,(t,7) is a Volterra kernel, if for each € I and each
i=1,...,(n+k)+ (n+ m) we let
k,-(t,'r)

g(n) = o Tel,
then (7.6) implies
lim flk(z,T)wm(T)dmflk(t,r)w*(f)df, viel,

m-— oo

so that by (7.1)
(7.7 lim x, (1) = lim (Kw,)(1) = (Xw*)(t) = x*(1), Vi€

To be able to apply Fatou’s Lemma we need to improve on the weak* (weak)
convergence (7.4). Let W), = {w,}5_,, k=1,2,..., and let W}", co W, denote
the weak closure and the convex hull of W,. By (1.4), w*€ W}* C co wy,
k=12,....By[19, Theorem V.3.13, p. 422] the weak and strong closures of a
convex _subset of a locally convex space are identical, co WY =co W%, so that
w*ecoWi, k=1,2,... . Thus there exist w, EcoW,, k=1,2,... such that

(7.8) Wi = w*||,>0 ask—> co.
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Let [w,]= {w,,}5_,; then w;, = Q,[w,] where

3 k
(7.9) Q[ Wul = > NewWr Mm =0, S Am=1 k=k< oo,
m=k m=k
k=12,...

Let p = 1. Since convergence in the norm topology in £2" () implies convergence
in measure [40, p. 15] and since by the theorem of Riesz a sequence which
converges in measure contains a subsequence which converges almost everywhere
[48, p. 92], a subsequence {2, [w, ]}, C {Q;[w,]} #— can be selected in such a
way that

(7.10)  lim @,[w, ()] = w*(1), r—a.e.

(7.10) follows at once from (7.8) when p = o0. (7.10) is the desired improvement
in the weak* (weak) convergence (7.4). (7.9) applied to (7.7) gives

(711)  lim Q[ x, ()] = x*(1), r—a.e.

By Assumptions 1 and 4 and by the definitions of f and 4, it follows that 4(-, -,f)
is lower semicontinuous for all ¢ € I. Thus by virtue of (7.10) and (7.11)

h(x*(0),w*(1),1) = lim h(Q,[ X, (1) ], [ wn(1)],1), v—a.e.
Integration yields
(7.12)  H(w*) =flh(x*(t),w*(t),t)du(t)
éflrl_i)_r?oh(ﬂ,[xm(t)],Q,[wm(t)],t)dv(t).

(7.3), (7.10), and (7.11) allow us to apply Fatou’s Lemma [48, p. 226]:
(7.13) f lim A(Q,[ x,,(2)], 2,[ W, (1) ], 1) do (1)
[ r—>o0

= Jim [h(@[%,() ] [ wa(0)]: ) (1)

r—oo

From Assumptions 1 and 4 and the definitions of f and 4, it follows that A(-, -,f)
is convex for all t € I. Taken in conjunction with the /inearity of the integral this
yields

(714 tim [ B(@[%,(0)] [ wn(0)]: 1) (1)

érg_rg Q,[J;h(xm(t),wm(t),t)dv(t)}
so that by (7.5), (7.9), and (7.12)—(7.14),
H*= lim Q,[H,|]=H. Q.E.D.

r—oo
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DEFINITION 7.2: § C £2"(p) is said to be uniformly integrable if for any € >0
there exists a > 0 such that

j;( )||w('r)||du(7)<e, YwedF
where I(w,a) = {t € I|||w(?)| Z a}.

I shall use the following classical characterization of weak compactness in
£2'( 1) [40, p. 20];

LeMMA 7.3: Let § be a o(R¥",RY) closed subset of L¥"(p). F is o(R¥", LY
compact if and only if F is uniformly integrable.

To establish weak* compactness in £2”(\) we use the theorem of Alaoglu [19,
p. 424].

LEMMA 7.4: Let V be a normed linear space with dual V* and let § be a
o(V*,V) closed subset of V*. If § is bounded in the norm topology of V*, then ¥ is
o(V*,V) compact.

PROPOSITION 7.5: Let Assumptions 1-3 be satisfied. (i) If the expansion function
y is bounded, then F C £2'(\) is compact in the o(RZ,R%") topology. (ii) If the
expansion function y is unbounded, then § C £3"(u) is compact in the a(£2", %)
topology.

Proor: Proposition 7.1 applied to the integral functional ¥(w) in (5.9) implies
that ¥(w) is upper semicontinuous on £2"(») in the o(£2",£2") topology. In view
of (5.10), § is o(£)", 2" closed. Proposition 7.1 and (6.14) 1mply C is a(R2", £27)
closed. By (6.7) 9 is o(2",£2) closed. Lemma 7.4 with V' = £}"(A), V* = (32"0\)

and Assumption 3 1mp1y (1) To establish (ii) note that Assumption 3 implies
vy € £,(p). Thus by definition, for any € > 0 there exists « > 0 such that

f,( Y (Ddk(n) <e
Since by (5.2) [[w(d)|| = v(1) a.e. Vw €F, I(w,a) C I(y,@), Vw € F. Thus
fl(w,a)“w(T)H A (m éfl(v,a)“W(T)“ dp.(7) éﬁ(v‘a)y("') dp(r) <e

YweF

By definition (7.2), § is uniformly integrable. By Lemma 7.3 & is a(2%",£2")
compact. Q.E.D.

THEOREM 7.6: Let Assumptions 1-6 and P.1 be satisfied. If the preference
ordering of Assumption P.1 is represented by (6.12) and (6.13), then there exists an
optimal infinite horizon program.
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Proor: P.2 is immediate. Proposition 7.1 implies ¥ =@ and P.3 with T
= a(B;",Bf,,”), (p, p) = (o0, 1) or (1, ). Proposition 7.5 implies ¥ is compact in
the same topologies. Theorem 2.5 gives the result. Q.E.D.

DEFINITION 7.7: Let C(f) = R"*¥ X R" a.e. The utility function u(x, {, ) has a
stationary homogeneous decomposition if (i) there exists a continuous increasing
real-valued function ¢(s) and (ii) there exists an upper semicontinuous concave
function A(x, {) satisfying: (a) A(x,§) > 0 whenever 0+ (x,$) = 0; (b) A(Ax, AY)
=M(x$), A >0, 0% (x¢) =0 such that

(115 u(x$.1) = { $(h(x:5)), () =0,

— 00, elsewhere.
I shall let
(7.16)  h*=h(x*$*) = sup h(x$).
x:$)=0
NoGHON=1

CoOROLLARY 7.8: If Assumption 6 is replaced by the following conditions: (i) the
utility function has a stationary homogeneous decomposition; (ii) || 7 (¢)|| = y(¢) a.e.
for all (c,v) €F; (iil) there exists (c,v) € F such that (j(1), ¢(1)) =v(H)(x*,§*)
a.e.;

(ivy - <f¢(y(7)h*)A(7) dr, f¢(y(7)h*)A(f) dr < 0;
I 1

then there exists an optimal infinite horizon program.

ProOOF: We need to establish (6.9)—(6.11). By (5.2) and (i), || 7(?), c(?)|| = v(¢)
a.e. V(c,0) € %. Then (i) and (7.16) imply

(1) u(F(1)e(1) S SV, Y(e0) EF:

(1) and (iii) imply

(118)  u( F(1) (1) Z S(1(Dh(X*);

(@iv), (7.17), and (7.18) give the result. Q.E.D.

COROLLARY 7.9: Let ¢(s)=sP/B, B € (—0,1), B#0 or ¢(s) =log, s, k > 1
and let (iv) in Corollary 1.8 be replaced by

(7.19) —o0 < ,BLI(T)'BA(T)dT, Bfly(T)BA(T)dm %,

(720) -0 < fl log( v())A(r) dr, fl log(Y(7))A(T) dr < o0;

then there exists an optimal infinite horizon program.
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ReMARk 7.10: If B8 >0 (<0) only the second (first) inequality in (7.19)
imposes a restriction. The reason is straightforward. When 8 > 0 (< 0) the utility
function is bounded below (above) but unbounded above (below)..

If there is no discounting or upcounting of the future so that A(#) =1 a.e., then
by the second inequality in (7.19) we must have 8 < 0, so that # is bounded
above. The first inequality in (7.19) then requires that y(¢) (and hence y(¢)) grow
at least at a certain rate, so as to force the integral to converge. In this case (7.20)
will not give existence.

If v (and hence y) is bounded,

0<y()=Sv()=b a.e,
then (7.19) and (7.20) reduce to
7.21 A(T)dr< 0.
(721)  [A(r)dr<oo

If =1, then u is homogeneous of degree 1. Two common examples are
obtained by letting 4 in (7.15) be given by
h(x,{)=ax + b{, (a,b)>0,

h(68) = (ﬁkx)(

i=1

n+k n

H fib’)’ (a,b)>0, 3 a+ X b=1.

i=1 i=1 i=1

In this case the existence conditions (7.19) reduce to the single condition
(7.22) fy(’r)A(‘r) dr < .
1
In the case where the functions in (7.19) and (7.20) are constant exponential
functions
y()=v(1)=€", pE(~,0), A(r)=e ¥ &€ (—ow,x),

k=e,

the existence conditions (7.19) and (7.20) reduce to the single condition

(7.23) 6 >pB, BE(—0, 1].
If we let 8 =1 — 5, then (7.23) becomes
(7.24) s+ np>p.

The basic existence condition in this case reduces to the following: the rate of
impatience on a path of maximal growth of consumption must exceed the maximal
rate of growth of output.*

4The existence condition (7.24) is closely related to D. Bernoulli’s solution of the St. Petersburg
Paradox [1, 6], for the condition requires that the marginal utility of consumption fall off sufficiently
fast and the discount rate be sufficiently great relative to the rate at which the maximal consumption
stream increases.
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8. DECREASING RETURNS

In this section I shall consider a simple example of an economy whose
program space is £27(\). I do not strive for generality. Rather, my objective is to
show the way in which the theorem of the preceding section can be applied.

To focus attention on the essential ideas I consider the simplest case where the
preference function u and the technology set I' are time independent. In (6.1) I
take y(#) = y(¢), in (6.2) I let u(r) = u(y(¢),c(t)) where u(-, -) is upper semicon-
tinuous and concave and C(#) = R} X R}, Vit € I. The stocks of durable con-
sumption goods are assumed to be finite lived or more accurately to depreciate
exponentially.

@)  y(O)y=-My@)+c(r), t€L y(0)=y,>0,
where M > 0 is a diagonal matrix. (8.1) implies that (6.4) becomes

82)  y()= e—M'y0+f’e—M<’*f>c(T)d»r, tel.
0
In (6.8) I take A(¢) = e~ ¥, so that (6.12) reduces to
(83)  U(w) = [u(y(r)e(r))e™" dr.
I

On the production side the vector of nonproduced resources and the vector
indicating the current state of technical change, are taken as fixed, £(¢) =&,
Vte I. Thus I may take Z(¢) = z(¢) in (4.1). The technology set is a fixed
compact convex subset of R2" X R" (to allow disinvestment), I'(f)=T V¢ € I.
Depreciation of capital goods which, in conjunction with diminishing returns,
accounts for the boundedness of T, is built into the technology set so that

(84) i(f)y=o(1), tE€L z(0)=2zy>0,

and (4.4) reduces to
(8.5)  z()= zo+ftv(7)dfr, tel
0

Assumptions 1-5 are thus satisfied and the expansion function y in Assumption
3 is bounded. To ensure that Assumption 6 is satisfied I add the following
productivity condition.

ASSUMPTION 7: There exists yo >0 and (z,co00) € T, (y9:20) = (05 20) such
that (co,00) = (M yy, 0). Stocks of capital (consumption) goods are freely disposable.

THEOREM 8.1: If the preferences and technology satisfy the conditions of this
section, including Assumption 7, and if § > O then there exists an optimal infinite
horizon program.
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PRrROOF: It only remains to establish (6.9)-(6.11). Since T is compact, for any
feasible program there exists b >0 such that |c(?)|| = b a.e. By (8.2) || y(9)||

=e M|yl + (/w1 = e ™) =l yoll + (b/p), p>0. Since u(-,-) is upper
semi-continuous there exists # such that u(y(f),c(¥)) =4 < oo a.e. for any
feasible program w. Assumption 7 implies (y(#),c(#)) = (yg.co) >0 Ve €I is
feasible. Thus — oo < u(yy,¢o) =u. Since 8 >0, (6.9)~(6.11) are satisfied with
a() =u, a(t) = i, A(t) = e . Q.E.D.

ExampLE 8.2 (Koopmans [29]): Suppose » = 1 and that the consumption good
is not durable so that (8.2) is absent. (8.3) reduces to

U(w) =f1u(c('r))e_'s’d7,

C =domu = [0, ). (8.4) and (8.5) are unchanged. Let the marginal product of
capital be a positive, nonincreasing function g(z) which is integrable on any finite
subinterval of [0, c0) and let A > 0 denote the depreciation rate of the capital
good. Assumption 7 is replaced by the following assumption:

AsSUMPTION 7’: (i) A < g(0) and there exists 0 < z' < oo such that g(z") < A; (ii)
the capital good is freely disposable.

Assumption 7’ (i) implies that there exists Z such that
(8.6) fz(g(f) ~N)d&=0, 0<z< .
o

As stressed by Koopmans [29, p. 237] there is no loss of generality in assuming
0 < zy = z. I therefore introduce the function

L}a)a,zemj}
— o0, 265[0,2],

@7  fl9=

and let the technology set I' be given by
I'={(z,c,0)|c+v=f(2) — Az,(2,¢,0) = (0,0, —Az)}.

By the definition of g(z), Assumption 7', (8.6) and (8.7), I' is a compact convex
subset of R i X R, which satisfies Assumption 7. By Theorem 8.1, if § > O there is
an optimal infinite horizon program.

ReMARK 8.3: The assumptions of Example 8.2 are those of Koopmans [29,
p. 261, 275], with two exceptions. First, I make no differentiability assumption on
u(c) or f(z). Second, I avoid the assumption

8 <g(0)—A
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needed in Koopmans’ analysis to ensure the existence of a positive steady state
solution of the Euler equations. Neither assumption has a good economic
justification. An attempt to relax either of these assumptions leads to complica-
tions in the analysis of Koopmans® differential equations (65) [29, p. 276]. These
difficulties are inherent in the differential equation approach to existence. The first
difficulty is more of a nuisance—since subgradients can replace gradients. The
second presents a more serious difficulty since u'(c)—> 0 as ¢—>0 leads to a
singularity in the differential equations (65).

9. CONSTANT RETURNS

In this section I establish the existence of an optimal infinite horizon program
in a model of an expanding economy that generalizes the classical model of Von
Neumann [53]. The current utility function u and the technology set I' are again
taken to be time-independent. In addition the utility function u exhibits a
regularity property akin to asymptotic homogeneity, while the technology set I’
exhibits constant returns to scale. For this latter property to be meaningful it
must be assumed that nonproduced resources are always available in whatever
amounts are required by the production sector.

Stocks of durable consumption goods live indefinitely so that (6.4) becomes

(9.1) y(t)=yo+j(;tc('r)dfr, Y0>0,

while the current utility function (6.2) satisfies the following conditions.

AssuMPTION U.1: u(w,t): R X I-> R satisfies (i) u(w,t) = u(w) a.e.; (ii) u(-)
is upper semicontinuous and concave; (iii) C = domu = R>"; (iv) &' > w, with
w € R?", implies u(w') > u(w).

DEerINITION 9.1: If u(w) is bounded above, the least upper bound may be
taken to be zero. With this normalization, the function n(w,A) defined for all
(w,\) € R X R, with (w,A) > (0, 1), by

(9.2) n(w,A) = 1 — log\|u(Aw)| or equivalently |u(Aw)| =A'~"(N

is called the exponent of u at (w, A).

REMARK 9.2: It can be shown under Assumption U.1 that the following limits
are independent of w [38, p. 269]:

7= Iimn(w,A), n= limn(w,A), ©>0.
A->00 T Ao

If in addition ij =7 = 7, we say that u has an asymptotic exponent n. We impose
‘the following important regularity condition on u.

AssUMPTION U.2: The utility function u has an asymptotic exponent .
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REMARK 9.3: I shall say that u is asymptotically homogeneous if there exist
functions ¢(-) and A(-) satisfying the conditions of Definition 7.7 such that

(9.3) lu(w) — ¢(h(w))| >0 as ||| .

If u is asymptotically homogeneous and if its associated ¢ function has an asymp-
totic exponent B, then U2 is satisfied and 1 — n = (.

REMARK 9.4: The following result is an immediate consequence of Definition
9.1. Let the utility function u satisfy U.1 and U.2. For any & > 0, € > 0 there exists
A such that

(94) A< |u(w) <A, VAR,

where B=1—-n—¢ B=1—n+e.

To complete the specification of preferences I let A(f) = e~ % so that (6.12)
reduces to

(9.5)  U(w)= f u(y(r),c(r))e > dr.
1
On the production side the basic accumulation equation is

(9.6) z(t)= zo+f'u(7)d7, 20>0, €L
0

DEFINITION 9.5: A reduced process is a pair of nonnegative vectors (z(%),g())
where g() = c(t) + v(?) is the current output producible with the stocks z(¢). The
set of all reduced processes available at time ¢ is called the production set 11(t).

AssumpTION T.1: TI(£): I > R, X R’} is a closed, convex valued correspondence
satisfying (1) II(t) =II a.e.; (ii) II is a cone; (iii) (x,$) € I with x =0 implies
¢ =0; (iv) there exists (x,{) EII with { >0; (v) (. EIL X =x, 0={'=¢
implies (x',§") €1II.

ExaMpPLE 9.6: The production set IT in Von Neumann’s model [S3] is a convex
polyhedral cone

O T={(65)I(—x8) = (~4,B)6Z 0, Z0)

where (4, B) is a pair of n X m matrices satisfying (i) a;, b; = 0; (ii) for any j
there exists / such that a; > 0; (iii) for any / there exists j such that b; > 0.

(i)—(iii) imply (9.7) satisfies Assumption T.1I.

ExaMpLE 9.7: Let f(x): RT > R", f=(f',..., ") satisfy (i) f(-) is upper
semi-continuous and concave, i =1, ..., n; (ii) f/(-) is homogeneous of degree
1, i=1,...,n; (i) x' = x implies f(x)= f(x) and f(x)> f(x) for some
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ig{j| X > X} if x’ % x. (1)—(iii) imply that the production set

©8)  II={(xIF=1(0),(x$)=0)

satisfies Assumption T.1. As a special case let f(x) = Ax where 4 is a nonnega-
tive indecomposable n X n matrix. Example 9.7 is a generalization of [S0].

To complete the specification of technology, I let T be defined in terms of the
production set IT as follows:

(99  T={x$0)I0S+r) eIl (§x) =0}

DeriNITION 9.8: For any (x,{) €11,

p(x:$) = sup {p|{ = px}
PER

is called the expansion rate of the process (x, {).

REMARK 9.9: Let x € R". I let x > O denote x; > Ofori=1,...,nand x; >0
for some j.

The following result was established by Von Neumann [53] in the case where
the production set IT is given by (9.7) and was extended to the general produc-
tion set IT of Assumption T.1 by Gale [23].

THEOREM 9.10 (Von Neumann): If I1 satisfies Assumption T.1, then there exists
a vector of prices and an interest rate (p* 6*), a commodity vector and an
expansion rate (x*, p*) such that

() (0*p* p*)(—x:8) =0 forall (x,{) €1L;
(1) p* =p(x*§*) = sup p(x:$), §*=p*x*;
HEN
(iii) 0<p*=06*<o0, p*>0, x*>0.
REMARK 9.11: Theorem 9.10 asserts the existence of a price supported process

of proportional expansion, or more succinctly, a proportional expansion equilib-
rium, in which the interest rate coincides with the expansion rate.

DEFINITION 9.12: The production set II is said to be regular if (x,{) € II with
o(x, $) = p* implies x > 0.

ExaMpLE 9.13: (i) It is easy to check that IT in Example 9.7 is regular. (i) A
sufficient condition for regularity of the Von Neumann model (Example 9.6) has
been given by Gale [23, p. 295]. I C N = {1, ..., n} is an independent subset of
goods if there exists / C M = {1, ..., m} such that for eachi € M\I andj € J,
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a; = 0, while for each i € I, b,.j >0 for some j € J. The Von Neumann model
(4, B) is irreducible if N has no nontrivial independent subsets. If the Von
Neumann model (A, B) is irreducible then it is regular.

AssuMPTION T.2: The production set 11 is regular.

REMARK 9.14: To be able to use Theorem 9.10 in a meaningful way it is
important that there be a minimal amount of interdependence in the way
commodities are produced from one another, for otherwise the economy can
break up into subsystems in which the maximal expansion rate p* no longer has
any real economic significance. The regularity Assumption T.2 prevents this kind
of degeneracy.

THEOREM 9.15: Let Assumptions (U.1, 2; T.1, 2) be satisfied. If the preference
ordering is represented by (9.5) and if

(9.10) & + np* > p* where p*= sup p(x.$),
hHell

then there exists an optimal infinite horizon program.

ProoF: Let 7 ( p; x$) = p¢ — (p* + €)px. Theorem 9.10 (i), (iii), and Assump-
tion T.2 imply p*p*x* >0, . (p*;x.$) = 7. (p*; x*,{H) =7} <0 V(x,i‘)EI'I,

(x$)#0, for any € > 0. Let h(p)—sup(xg)ennz'rr (p;x,$) where == {(x,{)
€ R |2 (x; + &) =1}. Since m,(-; -) is continuous on R" X R?" and since

IIn 2 is compact, h(p) is upper semicontinuous [S, Theorem 2, p. 116]. Hence
for any » > 0 such that 7* + » < 0 there exists p > 0 such that it nER", >0
satisfies ||n|| < p, then h(p* + 1) < m}* + » <O0. But then by T.1 (ii) 7. (p* +n;
%$) <O0V(x$) €I, (x,§) # 0, where p* + 1 > 0. Thus if we let p = p*+ 1

O11) R <(@E*+px (68)EM (x5)#0.

Consider a path of pure accumulation, c(¢) =0, a.e.
(zo+fotv(1')dr,v(t)) = (Z().5()) €N a.e.

By (9.11)
PE(t) <(p* + €)pz(t) a.e.

so that

(9.12)  pz(f) <(Pzo)e"*9' a.e.

Thus if we consider an arbitrary feasible path with ¢(¢) =0 a.e.,

(zo +f0'v('r)d7,0(t) + v(t)) =(z(t),q(t)) €N a.e.,
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then by (9.11) and (9.12)

(9:13)  pg(r) <(p* + €) pz(t) <(p* + €)(pzo)e®” ™" a.e.
Since p > 0 there exists y, € R, v, > 0 such that

(9:14)  le(0),0(D)]| = 7Pt a.e.

for any feasible path. Thus Assumption 3 is satisfied.

To obtain the upper and lower bounds @, a of Assumption 6, we need to
consider two cases. In case one, u is unbounded from above, so that 0 < < 1. In
case two, 7 > 1, so that u is bounded from above. Consider first the upper bound

a. (9.13) and (9.1) imply that there exist a,, b, € R", a, > 0, b, > 0 such that for
any feasible path

c()=q(r)<ae®*, y(r) =y, +f0tc(7)dfr< be®**9', a.e.
In case one, if we apply U.1 (iv) and (9.4), then there exists 7, < oo such that
u(y(1),c(t)) < u(b:e("'“)’,ﬁce(”‘“)’) <eWHOB gy T,.
Thus for any € > 0 there exists & > 0 such that
u(y(t),c(t)) < aeP tIB 4 e,

Since Y(€) = 6 — (p* + €)(1 — n + €) is continuous and ¢(0) > 0 by (9.10), there
exists € > 0 such that y(¢) > 0. Thus

(9.15)  @(r)=ae IO ace.

satisfies (6.9) and (6.10). In case two, since u is bounded from above by zero, it is
immediate that a(f) =0 V¢ € I satisfies (6.9) and (6.10).

Consider the lower bound a. Since z, > 0 there exists # > 0 such that 0x* = z,.
By Theorem 9.10 (ii) and Assumption T.1 (v), for any 0 < € < 1, the path

o(t)y=2(t)=(1—-¢€)p*z(t), c(t)=-ep*z(t) a.e., z(0)=0Ox*

is feasible. But then c(f) = ep*@x*e(' "9, ae. Thus for some a., b € R",
g_E >O, b_( > O’

(9.16)  ¢(f) >ae~9e, y(t)=y0+ft£('r)d'r>gze(1_‘)"", a.e.
- 0

Since (9.16) implies (y(#),¢(?)) is positive and increasing, it follows from U.1 (iii)
and (iv) that

(9.17) u(l(t),g(t)) > u(l(O),g(O)) = U, > —0o0, a.e.

In case one, if we apply U.1 (iv) and (9.4) to (9.15), then there exists 7, < co such
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that
(918)  u( y(1),c(t)) > u(bee!' ", g TIPN) > (1T LS 0, WS 7,
Thus in case one, (9.17) and (9.18) imply that

, 0,71,
9.19)  a(f)= { '(‘)" i S(T a]))’

satisfies (6.9) and (6.11). In case two, if we apply U.1 (iv) and (9.4) to (9.16), then
there exists 7, < co such that

(9:20) u( y(t).c(t)) > u(bel' "9, ae! ") > — eU=90"Bi = o (1), Vi>r,.

Since ¢(e) = 8 — (1 — €)p*(1 — n + ¢€) is continuous and ¢(0) > 0 by (9.10), there
exists € > 0 such that ¢(e’) > 0. Thus in case two, (9.16) and (9.20) imply that

Uy, tE [O,'r(,],

(921) «a(f)= {(x(:(t), t € (1o, ®),

satisfies (6.9) and (6.11). Applying Theorem 7.6 completes the proof. Q.E.D.

10. TECHNICAL CHANGE

In this section I consider a simple canonical example of a one commodity
economy with technical change. I allow the current utility function to depend not
only on current consumption, but also on past and future consumption. To direct
attention to this interdependence I make the conventional assumption that
output devoted to consumption is a perishable commodity so that no stocks of
the consumption good are accumulated.

In accordance with (6.1) and (6.4) the current state of tastes at time ¢ is given
by a function ¢ = (0,,0,) € M? where

o,(t) = e "'a,(0) +f’e“m<"*>c(¢)d¢, 0,(0)>0, €I,
0
(10.1) .
0,(1) =f e"‘Z(T_’)c('r)d'r, tel,
t

and where p, > 0, p, > 0 satisfy (6.3), so that ¢,(7) is today’s weighted average of
past consumption, while o,(¢) is today’s weighted average of prospective future
consumption. The preference ordering is represented by the integral functional

(102)  U(w) =£u(d(7),c(’r))e—8‘rd’r,

where u satisfies Assumptions U.1, U.2 of Section 9.
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On the production side output devoted to investment leads to an accumulation
of capital, according to (9.6). The production set II(z) satisfies the following
assumptions.

AssUMPTION T.1": The production correspondence 11(t): 1—> R, X R, is given
by
() = {019 =400, (x9)=0} ae

where (i) f(x): R—> R, dom f= R, ; (i) f(+) is upper semicontinuous and concave;
(i) f(0) = 0; (iv) X' > x with x = 0 implies f(x') > f(x); (v) &) = N, N> 0, ae.

AsSUMPTION T.2": The production function f has an asymptotic exponent v with
0<r<l.
The technology set I'(¢) is defined in terms of II(¢):

()= {(x:$0) [ (8 + k) ET(r), ($k)Z0) a.e.

THEOREM 10.1: Let Assumptions (U.1, 2; T.1', 2') be satisfied. If the preference
ordering is represented by (10.2) and if

A

(103) p; >0, ppy>p, 6+np>p where P=q

’

then there exists an optimal infinite horizon program.

ProOF: Consider the path of pure accumulation (z(¢),z(#)) € II(¢) a.e. or
equivalently z(¢) = eMf(z(?)), a.e., z(0) =z, > 0. In view of T.l’, z(f)—> o0 as
t—>o00. By T.2” and (9.4), for any » < 7 <1, there exists ¥ < oo such that
(1) < eNz(1), Yt > 7. Let 2/(¢) satisfy 2'(r) = €Mz/(¢), then z(f) < z'(¢) for t > 7
if z(7) = z/(7). Let p=A/(1 — 7) and let z*(¢) = z'(t)e "; then 2*(¢) = z*(¢)’ —
pz*(t) so that z*(¢)—> z* = (1/p)"/(' =" as t > c0. But then z/(f) > e”z* as t — co.
Thus for any € >0, if we let p=p + ¢, there exist 7. < oo, Z, > 0 such that
z(t) < z_e, YVt > .. But then
(104)  q(1) = eMf(z(1)) < eMf(z.e™) < eM(z,e™) = Z)e®, Vi> 1.

Since ¢(¢) + v(f) = q(¢) and (c(¢),v(#)) = 0 a.e. there exists y, > 0 such that for
any feasible path

lle(r),0(D)|| = v.e®*9" a.e.

so that Assumption 3 is satisfied. By (10.3) there exists € > 0 such that y, > p + €.
By (10.1) and (10.4) there exist @, > 0, b, = (b}, b?) > 0 such that for any feasible
path

(a(1),c(1)) < ( :,Ef)e("“)' a.e.
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It follows, as in the proof of Theorem 9.15, that when 0 = n = 1, a(¢) defined by
(9.15) and when 1 > 1, a(r) =0 V¢ € I, satisfy (6.9) and (6.10). To obtain the
lower bound a(t), we note that if 0 < § < 1 the path

o(f)=z2(t)=(1-0)f(z(1)),  c(t)=0e"f(z()), 2(0) =z
is feasible. In view of T.l’, z(f)> 0 as t—> . By T.2’ and (9.4) for any
0 <p < », there exists 7 < co such that z(¢) > (1 — §)eMz(¢)t, Vt >7. Let z/(¢)
satisfy 2'(¢) = (1 — 0)e™z' (1), p=A/(1—-p), z*()=2z(t)e” e’ so that Z*(¢)
= z*(t)ﬂ —pz*(t), implying z*(1)—>z*=((1—6)/p)"/'~ Y and hence z'(f)
—>efz* as t— o0. Thus for any € >0, if we let p=p — ¢ there exist 7. < 0,
z > 0 such that z(¢) >zce?, YVt >7.. But then

c(t) = Ge)"f z(1)) > HeA'f(gieB’) > 0e)"(££eﬂ’),£= fzle?’, Vit >r.

Let
0,(f) = e M, (0) + f’e—'“("*)g(f) dr,
0

ax(?) =ft°°e_"2(’”’)g('r)d7, tel.

(o(2),c(?)) is positive and increasing V¢ € I. It follows, as in the proof of Theorem
9.15, that when 0 = n = 1, a(¢) defined by (9.19) and when 5 > 1, a(¢) defined by
(9.21) satisfy (6.9) and (6.11). The result follows by applying Theorem 7.6.

Q.E.D.

REMARK 10.2: Consider the case where u(s,c)=c?/B, 0= B =1, f(z) = z’,
0 < » < 1. The change of variables

_ ot . _
z¥=¢e Pz, c*=e P, ov¥=:Z% P=7

i 4

leads to the preference function

C*(T)B
10.5 Uw*) = | —s—e =P gy,
(105)  Uw) = [ —5

Let Z = (1/p)!/(!="; then the technology set reduces to

I'={(z*c*v*)|c* + 0* = 2% — pz*, (c* 0*)Z(0, —pz*),0=z*=7Z}.
By Koopmans’ result [29, Theorem K, p. 252, pp. 539-545] if

80— pB <0 orequivalently &+ np <op,

where =1 — n, then there is no optimal infinite horizon program. When & + np
< p the preference function (10.5) ceases to be upper semicontinuous. In this case
if we consider a sequence of finite horizon problems on intervals I, =[0,n],
n=12,..., then the optimal finite horizon program w, converges almost every-
where to a program W which is not optimal over the infinite horizon. To establish
this result more generally requires a rigorous analysis of the existence of support-
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ing prices for an optimal infinite horizon program, a topic to which I shall return
in a subsequent paper.

REeMARK 10.3: It is of interest to note the relation between nonexistence and the
problem of overaccumulation (see Cass [13]). The limit program #w = (¢, D) fails to
be optimal by being inefficient: there is another feasible path which provides at
least as much consumption at every instant ¢ € I and for t € 4 C I provides
more consumption, where A(4) > 0. Under the investment program o, z*(¢) > z*
=@/8+1p)/1"Y > (v/p) /=" = £* where £* is the golden rule capital
stock. When the asymptotic rate of impatience (8 + np) is less than the asymptotic
rate of growth of output (p), the limit of the finite horizon optimal programs is a
path of overaccumulation.’

11. IMPATIENCE

We have seen that under natural economic conditions it is possible to choose a
program space 9 and a topology T such that the set § of feasible programs is
T-compact. Given this technologically determined program space and topology
(W, T), the force of the existence conditions lies in the requirement that the
preference ordering > be upper semicontinuous on ¥ in the T-topology.

DErINITION 11.1: Let x, denote the characteristic function of 4 C 9;

I tedq,
x"(')={o’ tEA

Let U C M, w € W. The program wy = w - X[,y for any T € [ is called the
T-period deferred annuity of w.

DEFINITION 11.2: Let (U, T) be a program space with topology T, U C 9. T is
a topology of discounting if for any w € A the sequence of deferred annuities w,,
n=1,2,... converges to zero in the T-topology.

LEMMA 11.3: The weak* topology on £2(\) and the weak topology on £3"( ) are
topologies of discounting.

ProoF: Consider the topology (3.3) and y € £2/(A). Since ||y /| = || yll, n =1,
2,... by [4, Theorem 2, p. 123], it suffices to show that ®,(y,)—>0 as n— oo for
all fina fundamental® subset of £2"(\). The characteristic functions X[o.] » for all

51t can be argued that capital markets lead to an intertemporal allocation that is the limit of the
finite horizon optimal programs. In such a framework, an economy with substantial technical change
may be led to overaccumulate.

Linear combinations of its elements are dense.
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t € I, {Xq0,)> t € I}, meet this requirement. It thus suffices to show

fX[((;,)x)}’n(’r) d’f=fty,,(’r) dr=J(t,n)>0 asn—> co.
1 o

But this is immediate, since J(¢,n) = 0 for n > ¢. Consider the topology (3.8) and
y € L3"(p). Since {y,}7.; is uniformly integrable and [{y,(r)du(r)=0 for
n > t, the result follows by the theorem of Lebesgue [4, p. 8]. Q.E.D.

DEFINITION 11.4: 9 C 9. A preference ordering = exhibits impatience on
F C A if for any w, w' € § such that

W>W

and for any y € U such that w + y € F, if y; = y - X{1,0) there exists 7 € I such
that

w>w+y, VYT >r

An immediate consequence of Definition 11.4 and Lemma 11.3 is the following
behavioral implication of the requirement of upper semicontinuity (Assumption
P.3).

PROPOSITION 11.5: If the preference ordering . is upper semicontinuous in the
weak* topology on £2(\) or the weak topology on £¥'(u), then = exhibits
impatience.

REMARK 11.6: Since under Assumption 4 the preferred sets (2.1) for the
preference ordering defined by (6.12) and (6.13) are convex, the weak and strong
closures coincide [19, Theorem V.3.13, p. 422]. Thus U(w) is upper semicontinu-
ous in the o(Bﬁ" Bz”) topology if and only if U(w) is upper semicontinuous in the
Mackey topology 1-((32" 82") When p = oo this is part of the assumption made by
Bewley [7, Theorem 1 (m)] When p =1, (83", 22" is just the norm topology.
This leads to a very direct form of Proposition 11.5 since the norm topology in
27 ) is a “pure” topology of discounting.

University of Southern California
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