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INFINITE HORIZON INCOMPLETE MARKETS

By MICHAEL MAGILL AND MARTINE QUINZIT

The model of general equilibrium with incomplete markets is a generalization of the
Arrow-Debreu model which provides a rich framework for studying problems of macro-
economics. This paper shows how the model, which has so far been restricted to
economies with a finite horizon, can be extended to the more natural setting of an
open-ended future, thereby providing an extension of the finite horizon representative
agent models of modern macroeconomics to economies with heterogeneous agents and
incomplete markets.

There are two natural concepts of equilibrium over an infinite horizon which prevent
agents from entering into Ponzi schemes, that is, from indefinitely postponing the
repayment of their debts. The first is based on debt constraints which place bounds on
debt at each date-event; the second is based on transversality conditions which limit the
asymptotic rate of growth of debt. The concept of an equilibrium with debt constraint is a
natural concept of equilibrium for macroeconomic analysis; however the concept of an
equilibrium with transversality condition is more amenable to theoretical analysis since it
permits the powerful techniques of Arrow-Debreu theory to be carried over to the setting
of incomplete markets. In an economy in which agents are impatient (expressed by the
Mackey continuity of their preference orderings) and have a degree of impatience at each
date-event which is bounded below (a concept defined in the paper), we show that the
equilibria of an economy with transversality condition coincide with the equilibria with
debt constraints. An equilibrium with transversality condition is shown to exist: it follows
that for each economy there is an explicit bound M such that an equilibrium with explicit
debt constraint M exists, in which the constraint is never binding—this latter property
ensuring that the debt constraint, whose objective is to prevent Ponzi schemes, does not
in itself introduce a new imperfection into the model over and above the incompleteness
of the markets.

Keyworps: Incomplete markets, infinite horizon, Ponzi schemes, debt constraints,
transversality condition, Mackey continuity, degree of impatience, existence of equilib-
rium.

1. INTRODUCTION

THE ANALYSIS OF EQUILIBRIUM on a sequence of markets in which agents
correctly anticipate future prices was first introduced in an abstract setting by
Radner (1972). This model has recently evolved into the model of general
equilibrium with incomplete markets (GEI for short). The analysis of the GEI
model (which is surveyed in Magill-Shafer (1991)) suggests that it may provide a
valuable framework for discussing many issues in macroeconomics. To provide

'We are grateful to Mordecai Kurz, Manuel Santos, Mike Woodford, and Bill Zame for helpful
discussions and to the participants of the Stanford SITE Conference (July, 1991), the Stanford
Theory Workshop (April, 1992), and the Seminaire Fourgeaud (May, 1992) for stimulating com-
ments. Part of the paper was written in the hospitable environment of DELTA (Paris) and research
support from the Deutsche Forschungsgemeinschaft, G. W. Leibnitz Forderpreis, during BoWo
1992 and from the National Science Foundation Grant SS-8911877 are gratefully acknowledged.
The paper has greatly benefited from the perceptive comments of several referees and especially
from the editorial guidance of Guy Laroque who insisted all along that we relate our first results
based on the transversality condition to the debt constraint approach.
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such a framework however the model, which has so far been restricted to
economies with a finite horizon, needs to be extended to the more natural
setting of an open-ended future.

There are two natural ways of extending the analysis of an economy to an
infinite horizon. The first is to assume that there are a finite number of agents
(families) who are infinitely lived; the second is to assume that all agents are
finitely lived and are succeeded by their children in an indefinite sequence of
overlapping generations. The models that arise from these two approaches have
become the basic workhorses of modern macroeconomics (see Blanchard-Fischer
(1989)). In this paper we explore the first type of extension: we study an
exchange economy with a finite number of infinitely lived agents who use spot
markets for the current exchange of goods and a limited array of financial
markets for redistributing their income across time periods and uncertain
events. Such a model provides an extension of the representative agent models
(for example Lucas (1978)) to an economy with heterogeneous agents in which
markets can be incomplete. When the markets are incomplete and agents are
heterogeneous, many phenomena can arise which cannot occur in the represen-
tative agent (complete market) version of the model.

In a model with a sequence of markets over an infinite horizon a new problem
arises which has no counterpart in a finite horizon model: if agents are
permitted to borrow, they may seek to postpone the repayment of their debts by
rolling them over indefinitely from one period to the next and if such Ponzi
schemes are permitted there is no solution to an agent’s decision problem.
Broadly speaking two approaches are used in the macroeconomics literature to
limit the rate at which agents can accumulate debt: the first is to use a debt
constraint which places a uniform bound on debt at all dates; the second is to
use a transversality condition which, in the deterministic case, requires that debt
grow asymptotically slower than the rate of interest (see, for example, Kehoe
(1989) and Blanchard-Fischer (1989, Chapter 2)).

The first approach, which is the most widely used in macroeconomics, has the
merit of simplicity: in principle a monitoring agency could check that no agent’s
debt exceeds some specified bound M. The second approach has the merit of
greater generality and of forming a precise connection between the infinite-
dimensional version of Arrow-Debreu theory and the theory of sequence
economies when markets are complete.

In this paper we extend both approaches to a sequence economy with
incomplete markets. To focus attention on the difficulties created by the
presence of an infinite horizon we restrict attention to the simplest class of
financial assets—short-lived (i.e. one-period) securities which pay dividends in a
numeraire good. Two types of budget sets are introduced: the first with a debt
constraint, the second with a transversality condition. A debt constraint which
asserts that an agent’s debt cannot grow without bound (or more precisely that
it lies in the space of bounded sequences 1) is called an implicit debt constraint.
The more specific debt constraint which requires that an agent’s debt at each
date not exceed some prespecified bound M is called an explicit debt constraint.
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The budget sets defined by these two types of constraints lead to the concept of
an equilibrium with implicit (resp. explicit) debt constraint.

Finding the appropriate way of bounding the rate of growth of an agent’s
debt based on a transversality condition presents some difficulties when markets
are incomplete. In this case there is not a unique, objective market based vector
of present value prices for income in the future that can be used to express the
transversality condition—namely that the average asymptotic present value of
debt be zero. In the absence of a market based present value vector, one
solution is to bound the rate of growth of each agent’s debt by his own present
value vector at the equilibrium. Using this growth condition leads to the abstract
concept of equilibrium that we call an equilibrium with transversality condition.
This concept seems to form a natural bridge between infinite dimensional
Arrow-Debreu theory and the theory of incomplete markets for sequence
economies—permitting the powerful techniques and concepts of Arrow-Debreu
theory to be exploited while moving into the more general setting of incomplete
markets. As an economic concept of equilibrium it may well be considered
controversial (and by many perhaps, as unacceptable) since it calls for far too
much rationality on the part of agents. However as an abstract concept it will be
seen to be most natural since it leads to a relatively direct proof of existence of
equilibrium, exploiting the elegant constructions introduced by Bewley (1972).

Two assumptions play a crucial role in establishing existence of an equilib-
rium with transversality condition. The first is the assumption, introduced by
Bewley (1972), that agent’s preference orderings are continuous in the Mackey
topology: as shown by Brown-Lewis (1981), this is an abstract way of formalizing
the idea that agents are impatient. This assumption permits equilibria of finite
horizon economies to approximate the equilibria of an infinite horizon economy
since consumption in the very distant future is unimportant. The second
assumption is a strengthening of the assumption of Mackey continuity: it
requires that at each node the proportion of his future consumption that an
agent is prepared to give up in order to obtain one more unit of the numeraire
commodity at that node (which measures the agent’s degree of impatience) is
bounded away from zero uniformly across the nodes. This prevents each agent
from having a degree of impatience which vanishes asymptotically.

The assumption of a uniform lower bound on each agent’s degree of impa-
tience permits bounds to be established on the indebtedness of each agent in
equilibrium. These bounds are not only useful for establishing existence of an
equilibrium with transversality condition, they also lead to the following impor-
tant qualitative property: in an economy in which there is a uniform bound on
the impatience of agents the equilibria with transversality condition coincide
with the equilibria with (implicit) debt constraints. Thus an equilibrium with
debt constraints which is most natural as a concept of equilibrium in macroeco-
nomics can be analyzed using the concept of an equilibrium with transversality
condition which is more amenable to theoretical analysis. In particular, estab-
lishing existence of an equilibrium with transversality condition implies the
existence of an equilibrium with implicit debt constraints: the existence of an
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equilibrium with an explicit debt constraint for which the constraint is never
binding follows as a corollary. The fact that the debt constraint is not binding at
the equilibrium is important since it ensures that the debt constraint (whose
object is to prevent Ponzi schemes) does not in itself introduce a new imperfec-
tion into the model over and above the incompleteness of the markets.

2. CHARACTERISTICS OF THE ECONOMY

We use an event tree D to describe time, uncertainty, and the revelation of
information over an infinite horizon. More precisely, let T={0,1, ...} denote
the set of time periods and let S be a set of states of nature. The revelation of
information is described by a sequence of partitions of S, F = (F,,F;,...,F,...)
where the number of subsets in F, is finite and F, is finer than the partition
F,_e. oc€F,, 0’ €F,_=0Co’ or cno'=¢) for all t>1. At date 0 we
assume that there is no information so that F, = S. The information available at
time ¢ (for ¢t € T) is assumed to be the same for all agents in the economy
(symmetric information) and is described by the subset o of the partition [, in
which the state of nature lies. A pair £ =(t,0) with t T and o €F, is called a
date-event or node and t(¢) =t is the date of node £. The-set D consisting of
all date-events (or nodes) is called the event-tree . induced by F, D =
U*tGT,aE[l:,(t70-)'

A node ¢ =(t',0") is said to succeed (strictly) node £ =(¢,0) if t' >t (¢'>¢t)
and ¢’ Co; we write & =& (¢ > £). The set of nodes which succeed a node
£€D is called the subtree D(£) and D* () ={¢ € D(§)|¢' > ¢} is the set of
strict successors of £. The subset of nodes of D(¢) at date T is denoted by
D,(£) and the subset of nodes between dates #(¢) and T by D'(¢):

D.(¢) ={&eD(§)lt(&) =T},

DT(¢) ={¢eD(é)t(¢) <t(¢)<T}.
When ¢ is the initial node the notation is simplified to D*, D, D™.

ET={& e DE)|t(&) =t(£) + 1} is the set of immediate successors of &. The
number of elements of £* is finite and is called the branching number b(£) at
&(b(&) = #&7). If £=(t,0) with ¢t > 1, the unique node ¢~ =(¢—1,0") with
o C o’ is called the predecessor of &.

The economy consists of a finite collection of infinitely lived consumers
(families) I={1,..., I} who purchase commodities on spot markets and trade
securities at every node in the event-tree D described above. There is a set
L=1{1,..., L} of commodities at each node: the set consisting of all commodi-
ties indexed over the event-tree is thus

DXL={(§¢)¢€eD, (eL}.

Let R2*L denote the vector space of all maps x: D X L — R and let ¢(D X L)
denote the subspace of R?*E consisting of all bounded maps (sequences)

¢(DXL) ={x e RP*L|sup; /e pxrlx(§,¢) <o}
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The norm ||+ |l of £(D X L) is defined by llxlle = sup, , < pxrI¥(£, £)I. As in
Bewley (1972) we take the commodity space to be 4 (D X L). Each agent i €1
has an initial endowment process given by o’ = (w'(¢, ¢),(¢, £) € D X L) which
is assumed to lie in the nonnegative orthant £, (D X L). Let '(¢) = (w'(&, ¢),
/€ L) € RY denote the agent’s endowment of the L goods at node &. Agent i
chooses a consumption process x' = (x'(¢, ¢),(¢, £) € D X L) which must lie in
his consumption set X' = £ (D X L); x'(¢) = (x'(¢, ¢), /€ L) € RY denotes the
agent’s consumption at node £. Note that this description of the commodity
space assumes that each good is perfectly divisible and is perishable (no storable
or durable goods) and that the supply of goods does not grow without bound.
The agent’s preference among consumption processes in X’ is expressed by a
preference ordering = ;.

At each date-event there are spot markets on which the L commodities are
traded. Let

p=(p(§,¢),(£,4) €D XL) ERPE

denote the spot price process and let p(¢) = (p(&, ¢), /€ L) denote the vector of
spot prices for the L goods at node £. At each node £, good 1 plays the role of
numeraire good

(2.1) p(¢&1) =1, véeD

so that all payments are denominated in units of good 1.

To focus attention directly on the difficulties created by the presence of an
infinite horizon, we consider only the simplest class of financial assets—the
so-called short-lived numeraire securities. Such a security pays dividends only at
the immediate successors of its node of issue and its dividends are amounts of
the numeraire good. A much more general class of securities is studied in the
companion paper (Magill-Quinzii (1993)).

Let J(¢) denote the set of short-lived securities issued at node £ € D where
j(&)=#J(£) <o is the number of these securities. For a security j € J(&),
A(¢, j) denotes the dividend (in units of good 1) at an immediate successor &’
of ¢ and

A(E) = (A(¢,0),i€1(§)), &<,

is the (row) vector of dividends at &' of the securities issued at node £. The
process of security payoffs is denoted by A:

A=(A(¢), & eD") e [] RO,
¢eD

Let q(&¢) = (q(¢, ), j €J(£)) be the (row) vector of prices of the securities issued
at node ¢ and let g =(q(¢), £ €D) denote the security price process which
belongs to the security price space Q =11, pR7®. Agent i chooses a portfolio
process z°' = (z/(&), £ € D) where z/(¢) = (Zi(¢, ), j €J(€)) is the (column) vec-
tor of security holdings at node &. z° belongs to the portfolio space Z =
IT, < pR®.
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If x=(x4,..., 2D, 0=(0,...,0) denote the profiles of preference or-
derings and endowments of the I agents and A is the security payoff process,
then &(D, =, w, A) denotes the associated economy over the event-tree D.

3. ASSUMPTIONS

This section describes the assumptions imposed on the characteristics of the
economy £ D, =, ). The crucial assumption required to establish existence of
an equilibrium in an infinite horizon economy is the choice of a topology in
which agents’ preference orderings are continuous. Let £,(D X L) denote the
subspace of RP*L consisting of all summable sequences

((DXL) = {PERDXLI Y IP(&,¢) <oo}.

(¢, )eDXL
For Pe /(D X L) and x € £(D X L) the scalar product is defined by

Px = Y P(&4)x(&,4).
(¢,4)eDXL
The Mackey topology on £ (D X L) is the strongest locally convex topology such
that the dual of £(D X L) under this topology is ¢,(D X L). For a discussion of
this topology see Bewley (1972) and Mas-Colell-Zame (1991).

Al (Event-tree): The branching number b(£) = #£T is finite at each node
éeD.

A2 (Endowmen;s): There exists scalars m, m’ with 0 <m <m' such that
V(,¢)eDXL,w'(é,4)>m,Vieland ¥, ;0'(&,4)<m.

Let w=1X, ;' then A2 implies ||wll. <m'. Thus a feasible consumption
process x‘ for agent i must lie in the set

F={ye £ (DXL)llIyll.<m’}.

A3 (Preferences): For i €1, = ; is a transitive, reflexive, complete preference
ordering on X'= ¢ (D X L) which is convex and continuous in the Mackey
topology (i.e. for all ¥ €X' {x' €X'|x' = %} is convex and closed in the
Mackey topology and {x' € X'|x' > %'} is open in the Mackey topology). »= , is
monotone and strictly monotone in good 1 in the sense that for each x' €X' and
for each y€ £;(DXL),x' +yx ;x' with strict preference if y(£,1)>0 for
some &.

Let E C D be a subset of nodes and let y; denote the characteristic function
of E:

1 ifé€E,
XE(§)={0 if¢2E.
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For x € (D X L) define xx = (x(&, O)x(8),(§,£) €D X L). Let €5 € 4(D X
L) denote the process which has all components 0 except for the component of
good ¢ at node ¢ which is 1:

1 if(&,¢')=(¢,4¢),

0 if(&,¢)#(& 7).

A4 (Uniform lower bound on impatience): There exists 3 < 1 such that, for all
iel,

es(¢,¢) =

XX paprey T BX Xprey + € > i % VxieF,V¢eD.

AS (Securities): Every security is a short-lived numeraire security and at each
node ¢ € D the number of securities j(£) is finite.

A6 (Riskless bond): For each ¢ € D there exists j, €J(§) such that
A(E,j,)=1, V&g

ReMARrk: We have repeated Al for completeness: it is essential that at each
node ¢ there are only a finite number of immediate successors. Assumption A2
asserts that the aggregate endowment process w =Y, ;' is bounded above
and hence that each individual endowment process w’ is bounded above; in
addition each agent has an endowment of each good which is uniformly positive
across all nodes. Good 1 plays the role of a numeraire: by Assumption A3 it is
strictly desired by all agents at all nodes and thus has a positive price at each
node.

Assumption A3 is classical since the paper of Bewley (1972). Mackey continu-
ity of the preference ordering >, expresses the idea that agent i prefers early
to more distant consumption: it is a precise abstract way of formalizing Irving
Fisher’s notion of impatience. Araujo (1985) has shown that all agents must
have Mackey continuous preferences if an Arrow-Debreu equilibrium is to exist
for a general class of economies. This assumption permits the infinite horizon
economy to be approximated by truncated finite horizon economies since
consumption in the very distant future is unimportant. The role of this assump-
tion becomes clear when we establish the existence of an equilibrium for the
economy &, by taking limits of equilibria of truncated economies &%: roughly
speaking impatience is a way of coping with the open-endedness of the future
and ending up with an economy which in many respects behaves like a finite
horizon economy (but with no pre-specified terminal date).

As Bewley (1972) has shown, 3x; is Mackey continuous if it is represented by
an additively separable utility function,

(3.1)  wi(x)= X p(£)8Ov'(x'(¢)),

¢eD
where p(¢) is the probability of ¢ (induced by a probability measure p on the
measureable subsets of S), 8, €(0,1) is a discount factor and v:RLY—>R is a
continuous, increasing concave function with v*(0) = 0.
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To explain Assumption A4 it is useful to introduce the concept of the degree
of impatience of an agent at a node £ €D. To this end, pick any feasible
consumption plan for agent i, say x’ € F, and add one unit of commodity 1 at
node ¢ to this bundle. Since commodity 1 is desired, agent i will strictly prefer
this new consumption plan, x’ + ef >; x*. By the Mackey continuity of x; there
exist B, <1 such that agent i still prefers the new consumption plan even if it is
scaled down by the factor B, for all nodes that strictly succeed &:

(32)  X'Xpuore T BeX'Xpr T €5 =, X'

(3.2) can also be expressed by saying that agent i is ready to give up the
proportion 1 — B, > 0 of his future consumption plan in order to have one more
unit of good 1 at node ¢. Let Bi(x) denote the smallest (infimum) of the
numbers B, satisfying (3.2). Then for agent i with consumption plan x’,1—
B §(x ') is a local measure of impatience that we may call the degree of impatience
‘of agent i (with consumptlon plan x‘) at node £. It can be shown that when the
consumption plans x’ belong to a bounded set F, Mackey continuity of >,

implies that the degree of impatience 1 — Bg(x’) of agent i at node £ can be
bounded below by a positive number independent of x’. The new requirement
in A4 over and above Mackey continuity of »; is that the degree of impatience
of agent i be bounded away from zero uniformly across the nodes. There is thus
a uniform lower bound on the degree of impatience of agent i: at each node he is
prepared to give up at least the positive proportion 1 — 8 of his future consump-
tion in exchange for one additional unit of commodity 1 at that node. Since
there is a finite number of agents, 8 can be chosen independent of the agents.
A4 is the only new assumption on preferences and endowments that we add to
the assumptions made by Bewley (1972) in order to obtain existence of an
equilibrium with incomplete markets. Note that A4 is satisfied by a preference
ordering represented by (3.1).

A5 and A6 are assumptions on the securities available to agents on the
financial markets and are thus specific to the GEI model. Since by Al only a
finite amount of uncertainty (b(£¢) < ) is resolved at each node ¢ it seems
reasonable to assume that only a finite number (j(£) < ») of securities are
available for trading at each node. If j(£)>b(¢) and the payoffs of b(€)
securities are linearly independent for all £ € D, then markets are complete; if
j(&€) < b(¢) for some node ¢ € D, then the financial markets are incomplete. The
existence of a portfolio at each node which gives positive returns at each of the
immediate successors is a classical assumption in the analysis of financial
markets: assuming the existence of a riskless (numeraire) bond at each node
(A6) is a convenient way of ensuring that this condition is satisfied.

4. DEBT CONSTRAINT, TRANSVERSALITY CONDITION, AND EQUILIBRIUM

In this section we explain the new conceptual issues involved in extending a
concept of competitive equilibrium to an infinite horizon in a sequence economy
with incomplete markets. The problem is to define a consistent concept of
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equilibrium based on agents’ (perceptions of their) trading opportunities on the
markets. Two elements are involved in the construction of an agent’s budget set;
the first is the usual condition which asserts than an agent’s net expenditure on
the spot markets must not exceed the income earned on the financial markets at
each node; the second is a new element introduced by the sequential nature of
trade combined with the open-endedness of the future.

Let z'(¢) be the portfolio chosen by agent i at node &. At the (unique)
predecessor £~ the agent has chosen the portfolio z/(£7) which, given the
normalization p(&,1)=1 yields the payoff A(£)z'(¢7). The agent’s budget
constraint at node ¢ is thus given by

(41)  p(&)x'(€) =p(£)o'(§) +A(£)2'(¢7) —a(£)2'(€)-
Note that z'(¢;) is not a choice variable for the agent: we assume z'(¢5) =0 so
that agents do not inherit financial commitments from the past. The consump-
tion-portfolio process (x’, z*) which is chosen must satisfy (4.1) at every node.
(Since we have assumed that each agent’s preference ordering is strictly mono-
tone with respect to the first commodity at each node we may replace the
inequality in (4.1) by an equality.)

If the agent is to have a solution to his consumption-portfolio choice problem,
then the prices (p, ¢) must not offer arbitrage opportunities at any node ¢ € D;
i.e., there must not exist a portfolio z'(¢) such that

~a(§)2/(£) 20,

A(£)Zi(£) 20, Ve egr,
with at least one strict inequality. This condition has been extensively discussed
in the finite horizon incomplete markets literature and in the theory of finance

(see, for example, Magill-Shafer (1991)) and is equivalent to the existence of a
process 7 = (1(¢£), £ € D) of positive node ( present value) prices such that

(42)  w(Ha(e)= ¥ w(€)AE), VéeD.
fetr

In view of the open-endedness of the future, even if the prices (p, g¢) do not
offer arbitrage opportunities there will not be a solution to the agent’s choice
problem if a further restriction is not placed on the portfolio processes which
the agent is permitted to consider. For any no-arbitrage prices (p, g) with g # 0
the agent can change any given portfolio (z/ -z’ + Az’) so as to obtain one
more unit of income at node ¢ and can roll over his debt ad infinitum
thereafter. More formally, a change Az’ in the portfolio such that

1=—q(§)Az'(¢),
0=A(¢)AZ'(£7) —q(&)AzZ'(¢), VEeD*(§),
is always feasible from any chosen portfolio z‘ € Z and is preferred by agent i if

his preference for consumption goods is monotone. A portfolio Az’ satisfying
these conditions is called a Ponzi scheme (for a discussion of this, see Levine

(4.3)
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(1989, Section 3) and Blanchard-Fischer (1989, p. 49). Thus some form of
borrowing constraint which limits the amount of debt that an agent can plan to
incur is necessary if his consumption-portfolio choice probem is to have a
solution.

Debt Constraints

One approach often adopted in macroeconomics for limiting the indebted-
ness of agents is to impose a debt constraint of the form

(44)  q(&)2(¢§)z-M, V¢eD,
for some positive number M. This leads to a budget set with explicit debt
constraint M

#Y(p,q,0', A)

3z € Z, such that V¢ € D
a(£)z'(¢) z —M,
p(€)(¥'(§) — @'(¥))
=A(£)2'(£7) —a(§)2'(é)
In an economy with impatient agents, the presence of the bound M puts an end
to Ponzi schemes. For any process of present value prices m satisfying (4.2) and

any date T > ¢(¢), multiplying each equation in (4.3) by the appropriate node
price and summing up to date T gives

(45) w(&)=- ¥ w(&)a(£)A(¢).

&'eDp(§)

={x'e I (DXL)

If there exists a present value process m satisfying (4.2) with 7 € £,(D)—so that
the present value of income in the distant future goes to zero sufficiently
fast—then the equality (4.6) can be satisfied only if —q(£¢)Az/(¢) grows
without bound so that sooner or later —g(&'Xz/(¢") + A(¢)) will exceed M.
Debt constraints can be introduced for a variety of reasons (for example to
model capital market imperfections in addition to those introduced by the
incompleteness of markets), but if the only role that we want the debt con-
straints to perform is to discourage agents from entering into Ponzi schemes
then they should not per se introduce imperfections into the model. However, if
M is chosen arbitrarily—that is, independently of the characteristics of the
economy—then there will always be economies £(D, = ,w, A) for which M is
too small so that the debt constraints are binding and prevent agents from
borrowing amounts which would otherwise be justified given their anticipated
future income. What we want to establish is that for each economy
. &(D, = ,w, A) there is a bound M which is well adapted to the economy in the
sense that it prevents Ponzi schemes but is sufficiently large to permit all
justified transfers of income—in short which is never binding.
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One way to establish such a result is to leave the bound unspecified in the
budget sets of the agents, imposing instead an implicit debt constraint of the
form

(46)  (az') = (a(£€)z'(¢),£€D) € 4(D)

which prevents each agent from considering trading strategies that lead to debt
which grows without bound. This leads to a budget set with implicit debt
constraint

#P°(p,q,0', A)

3z' € Z with (gz°) € 4(D) such thatV ¢ €D
= {x'e £ (DXL)|p(&)(x'(§) — w'(£))
=A(§)2'(£7) —a(£)z'(§)

If (x%, z¥) is a consumption-portfolio plan for agent i satisfying the constraints
in the budget set Z*(p, q, w', A) (where * takes the place of the superscript
indicating the type of constraint involved in the budget set), then z% is said to
finance x' and with a slight abuse of notation we write

(x%;z) € B¥(p.q, o', A).
(%:7%) is said to be x, maximal in B*(p,q, o', A) if z' finances ¥’ and
%y, x for all (x;z') € B¥(p,q, o', A).
The budget sets #P2¢ and #M lead to the following two concepts of
equilibrium for an infinite horizon sequence economy.

DEerFINITION 4.1: An equilibrium with implicit debt constraint (resp. with ex-
plicit debt constraint M) of the economy &AD, =, w, A) is a pair

((%,2),(P,q)) €4 (DXLXI)xZ'XRP*E X Q

where (%, 2) =(x',..., %% z,..., 27), such that:

(i) (%% ') is x=; maximal in BP(p,q, o', A) (resp. in BM(p, G, ', A)), for
each i €1,

() Z,c (F - 0)=0;

(i) T, .,z = 0.

Remark: Establishing existence of an equilibrium with implicit debt con-
straint shows that a solution to an agent’s maximum problem exists as soon as
trading strategies are eliminated which lead to debt that grows without bound.
This property can be given either a subjective (self-monitoring) or an objective
(market based) interpretation. In the first interpretation each agent conceives
that there is a bound beyond which he will not be able to finance further debt in
the market and he restricts his trading strategies accordingly: the mere fact that
agents perceive that there is a limit to indebtedness leads to an equilibrium. The
fact that existence of an equilibrium with implicit debt constraint implies
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existence of an equilibrium with an explicit bound M which is never binding
leads to the second interpretation: a monitoring agency can announce an
explicit bound M on the debts which are permissible for the agents in the
economy (M is any number larger than —g(¢)z(¢) for all i €I and all £ € D).
The mere fact that this bound is announced is sufficient to discourage agents
from attempting to indefinitely postpone their debts and the bound never needs
to be enforced. The latter interpretation is close in spirit to the equilibrium
concept considered by Levine-Zame (1992) who show that there is a system of
debt constraints which satisfy certain consistency conditions and in addition are
nonbinding which are sufficient to ensure the existence of an equilibrium.
Corollary 5.3 will show that under the assumptions given in Section 3, the
constraints can take the simple form of a uniform bound on the debts of the
agents.

RemMARK: In view of the normalizations of the spot prices p(£,1)=1,Vé€D
adopted above, the constraints (4.4) or (4.6) imply that the real value of debt is
bounded. If the price level grows over time (for example as a result of a
continually growing supply of outside money) since the securities are real their
prices g will grow in the same way and these constraints would not make sense:
they would need to be replaced by

a(£)z'($) qz'
mg—M, VéeD and (p(.,l))E/w(D)

respectively (for (4.4) and (4.6)), since it is the real and not the nominal value of
debt which must be bounded. Note that p(¢£,1) in the denominator can be
replaced by any price index (for example p(¢)X; . ,w'(¢)) which represents the
level of prices at each node.

Transversality Condition

The other approach which is used in the literature to prevent Ponzi schemes
is based on the use of a transversality condition. This more abstract approach
has behind it both the tradition of Arrow-Debreu equilibrium theory and much
of modern capital theory. Its use until now has been restricted to economies
with complete markets. The idea which motivates it can be expressed as follows.
If (p, q) is a no-arbitrage system of prices for a financial structure with complete
markets then there exists a unique (up to normalization) vector of present value
prices 7 such that (4.2) is satisfied at every node. If the trading activity (x’, z°)
of an agent satisfies the budget equation (4.1) at each node ¢, then multiplying
this equation by 7(¢) and summing over all nodes to date T gives

Y m()p(§)(x'(§) —o'(€))=— L m(£)a(£)2'(¢).

tepT ¢eDy
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If the transversality condition

(47)  lim 3 w(&)q(¢)2'(¢) =0

—> 00 ngDT

holds, then the consumption plan x’ of agent i satisfies the Arrow-Debreu
budget constraint

L m(&)p(§)(x'(¢) —w'(§)) =0 X P(£)(x'(§) —o'(§)) =0

§€eD teD

where P(¢) =w(£€)p(€) is the vector of Arrow-Debreu present value prices of
the goods (deliverable) at node £. It is clear that the transversality condition
(4.7) forms the bridge between equilibria of sequence economies with complete
markets and the standard Arrow-Debreu equilibria.

Our object is to show that there is an appropriate extension of the transversal-
ity condition (4.7) to economies with incomplete markets which can be used to
place a bound on the rate at which agents accumulate debt. This leads to a
more abstract concept of equilibrium which has closer links with Arrow-Debreu
theory than the concept of a debt constrained equilibrium and which can be
exploited to obtain a relatively direct proof of existence of an equilibrium.
Existence of a debt constrained equilibrium follows as a corollary.

The heuristic argument behind the transversality condition that we propose
can be explained as follows. If agent { has an optimal consumption-portfolio
plan (x!, z%) subject to the budget equation (4.1) and an appropriate growth
condition on his debt, then there is associated with this plan a present value
vector 7' = (7'(¢), ¢ € D) where m(¢) is the multiplier (dual variable) induced
by the budget equation (4.1) at node &. The vector 7' describes how agent i
translates (discounts) a stream of income in the future to date 0. If the plan
(x*, z%) is optimal, then 7' must satisfy first order conditions (4.2) which express
the fact that for agent i the marginal cost of each security at each node is equal
to the marginal benefit of its return at the following nodes. In addition at each
node ¢ €D, (7', z') must satisfy the condition

(48) limsup Y wi(&)q(¢)zi(¢) <0

Too  geDi(é)

which asserts that an optimal portfolio does not leave value (make agent i a
lender) at infinity. If (4.8) were not satisfied, agent i could find a preferred
consumption stream by decreasing his lending (which is always possible even if
markets are incomplete), thereby increasing earlier consumption.

This is the first part of the argument—on which there is no disagreement.
The next step, which seeks to use (4.8) and the rationality of agents to obtain a
self-imposed restriction on the indebtedness of agents, is more controversial.

Even if trade is anonymous and agents do not know more about the charac-
teristics of other traders than that they are rational, impatient and prefer more,
no agent should count on finding lenders on the markets who would finance a
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portfolio z’ that permits him to be a borrower at infinity:

(49) liminf ), w(&)q(£)zi(¢) <0
== pep®

since this would oblige some other traders to be lenders at infinity. Strictly
speaking, since markets are incomplete, agents on the other side of the
transaction will evaluate their lending with different present value vectors, for
when markets are incomplete the no-arbitrage equations (4.2) admit many
solutions. But if markets are large and anonymous agent i cannot be expected
to know the present value vectors of all other agents. In such circumstances it
has become usual in the incomplete markets literature to make the assumption
of competitive perceptions introduced by Grossman-Hart (1979): an agent uses
his own present value vector to fill in the information regarding valuations
which cannot be deduced from observed or anticipated prices. Using this
convention, agent { will not attempt to finance a portfolio satisfying (4.9). Thus
(recalling that (4.8) must be satisfied) the candidate growth (transversality)
condition? on an agent i’s debt is given by

(410)  lim ) 7(¢)q(¢)z'(¢) =0, VéeD.

% geD@)
This leads us to define the budget set with transversality condition for agent i
BI(p,q, 7' ', A)
3z'eZ,suchthatVéED
lim T w(#)a(£)2(¢) =0,
£'eD(§)
p(€)(x'(§) —0'(§))
=A(£)z'(£7) —a(§)2'(¢)

={x'e ¢ (DXL)

where 7' is the present value vector of agent i defined by condition (ii) below.
The budget set Z7€ leads to the following concept of equilibrium.

DEerFINITION 4.2: An equilibrium with transversality condition of the economy
&(D, = ,w, A) is a pair

(iaf),(l_”a,(ﬁi)iEI)
€4 (DXLXI)XZ'XRP*E X QX ¢ (D XI)

2In an earlier draft we imposed condition (4.10) solely at the initial node; in this case (as was
pointed out by a perceptive referee), even if markets are incomplete, any Arrow-Debreu equilibrium
can be achieved as a sequence equilibrium. It was by establishing necessary and sufficient conditions
for an Arrow-Debreu equilibrium to be achievable as a sequence equilibrium only if markets are
complete that we were led to condition (4.10); this result has been omitted in this paper. Note that
when markets are complete (4.7) is sufficient to ensure that (4.10) is satisfied.
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where (x,2)=(x%,...,x% z\,..., z%), such that:
() (x;z%) is »; maximal in ZT°(p, g, 7, 0, A), for each i €I,

_(ii) for each i €1, (a) 7(£)>0, Vé€D and P'e /(DX L) where P'=
(P(é), £ € D) = (F(&)p(£), £ €D); (b) X' is »; maximal in B(P,w)={x'e
4, (DX L)IP(x'~ o)) <0} (©) F(OG(E,J) =L,y e T (EVAE, ), Vi),
VéeD;

(iii) Eiel(ii - wi) = 0;
(v) L,z =0.

Remark: Condition (ii) characterizes the equilibrium present value vector 7*
of agent i. (b) and (c) express the fact that the first order conditions for the
maximum problem of agent i are satisfied at (¥',z7) if 7(¢) is the multiplier
associated with the budget constraint at node &, for each £ € D. (b) is simply a
way of expressing the first order conditions with respect to x’: more abstractly it
asserts that the discounted price vector P! supports the preferred set of agent i
at X' or equivalently that X’ is the agent’s most preferred bundle in his induced
Arrow-Debreu budget set Z(P’, w’). Mackey continuity of the agent’s prefer-
ence ordering will be shown to imply that P’ lies in ¢(D X L), the condi-
tion required in (a). With the normalization (2.1) this implies that 7 lies in
£(D). (c) expresses the first order conditions with respect to z'.

Remark: If the preferences of the agents are represented by additively
separable utility functions of the form given in (3.1), then the transversality
condition (4.10) can be written in standard stochastic process notation as

E(8Tvj(x7)ar2z5|F, ) =0 whenT—w, VieT.

REeEmMaRrk: In a model with incomplete markets over an open-ended future in
which there are no objective present value prices for future income, an agent
has no market-based way of assessing his ability to borrow from the market. In
the absence of such prices to guide the actions of the agent, the idea of
competitive behavior is blocked. It is at this step that we follow Grossman-Hart
(1979) and use their concept of competitive price perceptions—the agent’s own
present value vector 7 being used as the agent’s stand-in to calculate what he
expects to be able to borrow from the market. The nonobservability of the
agent’s 77 vector implies that the transversality condition must be self-imposed
since it cannot be objectively monitored by an agency (auctioneer)—and it is
this step that some readers may find hard to accept. For such readers the
concept of equilibrium in Definition 4.2 should be considered as an abstract
construct which is used for proving existence of a debt constrained equilibrium.
The full power of this abstract approach becomes clear when the proof of
existence is extended to the case of infinite-lived securities (such as equity of
firms): obtaining meaningful prices for such securities must be based on estab-
lishing the summability of the present value vectors in terms of which their
fundamental values are calculated (see Magill-Quinzii (1993)).
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5. EXISTENCE OF EQUILIBRIUM

Our object is to study the two concepts of equilibrium introduced in the
previous section. We have argued that from a theoretical point of view an
equilibrium with transversality condition is attractive because it permits con-
cepts and techniques of infinite dimensional Arrow-Debreu theory to be carried
over to a model with incomplete markets: this will become clear in the proof of
existence of an equilibrium with transversality condition. On the other hand an
equilibrium with debt constraint is simpler and probably provides a more
plausible concept of equilibrium from the perspective of applied macroeco-
nomics. In this section we show that for an economy satisfying Assumptions
A1-A6 these two concepts lead to the same equilibria: every equilibrium with
transversality condition is an equilibrium with debt constraints and conversely.
Thus establishing existence of an equilibrium with transversality condition
implies the existence of an equilibrium with debt constraints.

THEOREM 5.1: Each economy &(D, x ,w, A) satisfying Assumptions A1-A6
has an equilibrium with transversality condition.

TueEOREM 5.2: If (D, = ,w, A) is an economy satisfying Assumptions A1-A6,
then (%, 2),(Pp, q)) is an equilibrium with implicit debt constraints if and only if
there exist present value vectors (7'); o, such that (%,2),(p,q,(7);<,) is an
equilibrium with transversality condition.

CoROLLARY 5.3: For each economy &(D, = ,w, A) satisfying A1-A6 there is
a bound M >0 such that the economy has an equilibrium with explicit debt
constraint M which is never binding.

Proor: For the given economy let ((%,2),(p,q)) be an equilibrium with
implicit debt constraint and let M* =max; ., sup,c ,I7(£€)z'(¢€)|. Choose
M >M*. Q.E.D.

ReMark: When markets are complete an equilibrium with transversality
condition exists without Assumption A4. This follows from Bewley’s theorem
(1972, Theorem 2) asserting that an Arrow-Debreu equilibrium exists under
Assumptions A1-A3. In fact when the security payoff process A is complete,
Arrow-Debreu equilibrium allocations coincide with the equilibria with
transversality condition. However there exist economies for which an equilib-
rium with transversality condition is not an equilibrium with debt constraint as
shown by the following example.

ExampLE 5.4: Consider a one good economy (L = 1) with no uncertainty
(D =Z%, the nonnegative integers) and two (types of) agents with utility
functions

2
W) =x W)= T
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and endowments

> 1
w'=(0,1,1,...,1,...), w’= Z-t—z,0,0',.. ,0,
t=1
The Arrow-Debreu equilibrium is given by
1
¥l =w?, P’ =0l =1 1_7,=t—2, t>1

If there is a one-period bond at each date, then the sequence equilibrium with
transversality condition has the same allocation (¥, ¥2) and

© 1 t2

=1 2 - -

I=—(+1)" ¥ =, §=1, §g=—>7, tz1

t ore1 0 ° ' (H‘l)z
so that

- 1 i 1

Trdrit= — a2

o=1 (T+6)°
and
oo 2
= g (T+0) - —oo, as T — oo,

The Arrow-Debreu prices (after date 1) are determined by the marginal utility
of agent 2. Since agent 2 becomes progressively more patient as time evolves,
the present value at date T of agent 1’s annuity X3 _ 71, ./ tends to infinity.
It is the fact that the present value of agent 1’s future income keeps growing
that gives him the right to go progressively deeper into debt.

" Assumption A4 (uniform lower bound on impatience) prevents agents from
becoming progressively more patient and cuts out the phenomenon of agents
going progressively deeper into debt. In fact Theorem 5.2 shows that A4 is
precisely the assumption which makes the equilibria with transversality condition
coincide with the equilibria with (implicit) debt constraint for any economy
E(D, = ,w,A).

Proor orF THEOREM 5.1: With short-lived numeraire securities, redundant
securities can be removed without changing the exchange opportunities of the
agents. We may thus assume, without loss of generality, that the returns on the
securities j € J(¢) are linearly independent, i.e.,

(5.1) rank [ A(¢', j)] peer =J(€) <b(€).

i€t
The proof of existence of an equilibrium for the infinite horizon economy is
obtained by taking limits of equilibria in truncated economies in which trade

stops at some finite date. Let &(D, = ,w, A) be an infinite horizon economy.
The associated T-truncated economy &(D, = ,w, A) is the economy with the
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same characteristics as &, in which agents are constrained to stop trading at
date T. If (p;, g;) € RP*E X Q is a commodity and security price process, then
the budget set of agent i in the truncated economy & is defined by

@T(pT, ar, o', A)
3'eZ,Z(&)=0ift (&) 2 T,
pr(€)(x'(§) —w'(§))

=A(£)2'(€7) —ar(§)2'(§) if t(§) =T,
xi(¢) = (&) if t(E) >t
Even though the consumption-portfolio process of an agent is defined over the
whole event-tree, a T-truncated economy is essentially a finite horizon economy

with T + 1 periods since the consumption-portfolio process of an agent is fixed
after date 7.

={x'€4/(DXL)

DEFINITION 5.5: A GEI equilibrium of the truncated economy &(D, =, », A)

is a pair
((%7,27),(Pr-dr)) € 42 ((D XL XI)) X Z' X RP*Ex Q

such that:

(M (x7; Z7) is z; maximal in B(Pr, qr, o', A), Vi,

(i) Ty (B — ') = 0;

Gi) X, ;27 =0;

Gv) p(&)=0if t(E)>T, g (&)=0if t(£)=T.

Since only the prices of the commodities and securities which are traded in
&y are well-determined, (iv) is a natural way of extending these prices to the
whole event-tree. Since in an equilibrium of the truncated economy the terminal
condition zi(¢) =0 for all ¢ with #(¢) > T replaces the transversality condition
(4.10), the present value vectors of the agents do not appear explicitly in
Definition 5.5. Each agent has, however, a well-defined present value vector in
an equilibrium of &, which is characterized as follows.

LemMma 5.6: Under Assumptions A1-A3, if (X, Z7),(Pr,dr)) is a GEI equi-
librium of &p(D, = ,w, A) then each agent i €I has a present value vector
7 € RP satisfying:

@ FHO>0if ()< T, 77(&) =0 if t(§) > T;

(b) x4 is »=; maximal in

Br(Pi, o) = {x' € £1 (D X L)|P{(x' — o) £0; x'(§) =o' (£)
if t(¢) > T}
where 13’T =(Pi(¢),6€D) = (Ei(f)ﬁr(f), £ D),
(©) TG (€, J) = Ly +TH(EVAE, ), Vi €J(), (&) T — 1.

Proor: See Appendix.
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Since all securities are short-lived numeraire securities, under A1-A6 every
truncated economy has an equilibrium (see Geanakoplos-Polemarchakis (1986)).
This existence result will be used to prove existence of an equilibrium for the
infinite economy. The proof can be decomposed into three steps. The first
consists in establishing uniform bounds (in T') on the truncated equililbria. The
second is to take an appropriate limit of these equilibria. The final step is to
show that this limit is an equilibrium for &.

Step 1—Uniform Bounds: For every T €T there exists a GEI equilibrium
(X4, 27),(Py,@p)) for the truncated economy &. Recall that the spot prices
have been normalized by setting p,(£,1)=1, V¢ DT, For each i€l let
(7%, PT) denote the present value vector and the vector of discounted prices of
agent i defined in Lemma 5.6. Since the relations satisfied by (wT,PT) are
homogeneous we may normalize P by setting

(52) Pil= Y P& ¢)=1, Viel, VTeT,
(¢,0)eDTXL

where 1 =(1,...,1,...) € £(D X L) denotes the vector whose components are
all equal to 1. We shall now find bounds independent of T for
(Z4&, ), Z(&, 1), 7(£) and (Br(£, ¢), 3 (&, 1), Vi €LY (€, £, /) €D XL X J.

(i) Bounds on x%(&,¢): Since x5p(£,¢) 20 and L, ; X5(&, () =L, c j0'(€,¢)
<m,0<x:(£,4)<m, V(§,()eEDXL,ViEL

(u) Bounds on 7(§) and pr(§&, ¢): 1t suffices to consider T > t(£) since for
T <t(¢), ET(f) 0,Viel and p (¢ ¢)=0,V/€ L. Since Pi(¢£,1) =75(¢) and
Tie,cye pTxL Pi(¢,4)=1,0 <1T-T(§) < 1. Let us show that 75(¢) is uniformly
positive for T > t(¢). This is a consequence of the continuity of the agents’
preferences and their strict monotonicity with respect to good 1, which imply
the following property.

LemMa 5.7: For each & € D there exists a; <1 such that Vi€l

a,x'+ef> x', Vx'eF.
Proor: See Appendix.

By Lemma 5.6, X} is x; maximal in B(P}, »"). Consider scaling down agent
i’s consumption up to date T to a,X7. This would free the income (1 — & §)PTxT
=1 - a,)Pjo' 2 (1 — a,)m which could be converted into (1 — a,)m /PL(E )

units of good 1 at node § By Lemma 5.7 we must have for T > #(£)

(1 —a;)m Bi —i
(5.3) —:—gl@P}(g,l);(l—ag)mew’r(g)g(l—ag)m
Pr(¢,1)
- since otherwise the new con_spmption would be preferred to X%, contradicting
the optimality of x4 in B;(P}, w').
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Since 0 < Pi(¢, ) = 7(E)p (&, ¢) < 1, (5.3) implies

1
54 O0<p L) £ i, Ve L.

(iii) Bounds on gr(¢,j): Since g (£)=0 for T <t(¢) it suffices to consider
T > t(¢). Since T, ,Z2i(€) =0= X, ;3,(£)Z7(£) =0 there exists at least one
agent i € I with g;(£)z7(£) = 0. Consider the following change in the portfolio
of this agent: he scales down the portfolio Z% from node ¢ onwards:

zr(¢§)  VEED($),
Bzr(¢) V¢ eD(¢),

where B <1 is the factor defined by A4. Agent i can still consume w'(¢) if
t(E)>T, x4(¢) if £ eD\D*(§), and Bx(¢) if € eD*(§) with t(¢)<T
since

(55) zi—s

pr(€)w'(§) + A()27(€7) — Bar(€)27(€) zbr(£)X7(€)
and for all £ € D*(¢) with (&)< T
pr(&)w' (&) +A()Bzr(¢7) —ar(€)Bz7(¢)
=Bor(£)Ep(€) + (1-B)Br(£)w'(&).
This change frees the income
(1=-B)pr(£)'(¢) 2z (1-B)m

at each node & €D*(¢) with ¢(¢') < T and in particular at each successor
¢ € ¢". By going short (i.e. borrowing) (1 — B)m units of the riskless bond j,
(which exists at each node ¢ by A6) agent i can then increase his consumption
of good 1 at node ¢ by at least (¢, j, X1 — B)m. By A4 we must have

1
(56)  @r(é,J)(1-B)m<1e=qr(é,j;) < A=pym’

since otherwise th§ new consumption would be preferred to ¥4, contradicting
the optimality of x4 in B (Pr, Gr, »', A). (5.6) then implies (with (c) in Lemma
5.6)
Y 7€)
§,5f+ < 1
Tr(§) T (A-B)m
For an arbitrary security j €J(&), (5.6) implies

(&), , . 8(¢)
l4(¢, )l < a=pym

qr(f:jg) =

(57 lar(& ) §§,£+ 77 (€)
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where
8(¢) =max{lA(&,)), £ €£%,j€](€)}.

(iv) Bounds on g(£)zi(£): As before, let T > t(£). Consider an agent who is
a net lender at node ¢, i.e., gr(£)z5(£) 2 0. This agent can consider scaling
down his portfolio as in (5.5); he can then consume at least BXx5(¢') for
& e DVY(€) and increase his consumption of good 1 at node & by
(1 - BNg(£)z5(€). By A4 this increase must be less than 1 so that

Gr(6)z7(£) 20=q,(£)z7(¢) < 1-8°
Since ¥, < ;3 (€)Z:(¢) = 0 agents who are net borrowers must find net lenders.
Thus

@70 50~ - 15 | s ()

so that

(58) - (--) <qr(£)Z7(¢) <

1
ey =5’ Viel

Note that these bqunds do not depend on &.
(v) Bounds on zZi(&,j): Let T > t(§). For all ¢ € ¢*

A(€)z27(€) =br(&)X7(¢') —Pr(£)w'(¢) +ar(€) 21(€).
(5.4) implies the inequalities

’ !/

Oépr(f)xr(f)ém, 0§Dr(§)w(§)§m,
which with (5.8) imply for each ¢ € ¢*
Lm (I-1) Lm 1

(5.9) SA(§)zr(¢) <

_(1—a§/)m_ 1-8 (1—a§,)m+l—B'

Since by (5.1) there are no redundant securities, (5.9) bounds z:.(¢). This can be
seen as follows. Let & € R be defined by #(¢') =A(£)z5(¢). Consider the
system of equations

Y A(E,))z(¢,))=u(¢), &€&
jer®

By (5.1) there exists a j(¢) X j(¢) determinant in [ A(£', )]y < ¢+ 5y Which is
not zero. Keeping the corresponding equations and applying Cramer’s formula
to compute (Z4(¢, j), j € J(£)) shows that there exists a bound y(¢) such that

Z7(6, ) <y(§),  J€I(£).
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Step 2—Limits: For a convenient summary of the notation and results from
functional analysis that we use in the rest of the proof the reader is referred to
the mathematical -appendix of Bewley (1972). Let ba(D X L) =1*(D X L) de-
note the norm dual of £(D X L) consisting of bounded finitely additive set
functions on D X L and let || ||, denote the norm of ba(D X L). The prices
(Pi,TE€T),., can be viewed as elements of ba(D X L).

Let o(ba, £) denote the weak* topology of ba. Since Pil =|Pill,, =1,
VT €T, Vi €I and since by Alaoglu’s theorem the unit sphere in ba(D X L) is
o(ba, ¢,) compact there exists a directed set (A, >), and a subnet {(PT ,iel),
A € (A, =)} such that PT converges to P’ in the o-(ba ¢,) topology, Viel

Let Y=RP*LXI % ZI x RP*L x Q x RP*! In view of the bounds established
in (i)-(v) of Step 1 it follows from Tychonov’s theorem (Dunford-Schwartz
(1966, p. 32)) that there exists a set KCY which is compact in the prod-
uct topology on Y such that (X7, Z7, Pz, 47, (TH)ie Drer ©K. Thus by ex-
tracting an appropriate subnet, (X7, Z7, Pr,, dr, (‘n'TA),E ;) converges to
(x,z,p,3,(F"), <) in the product topology By Theorem 9 (p. 292) and Theo-
rem 1 (p. 430) of Dunford-Schwartz (1966) the Mackey topology and product
topology coincide on bounded subsets of £(D X L). Since xz, €F, VT,, Vil
it follows that xT converges to x' in the Mackey topology Vi € I.

Step 3—Limit Is an Equilibrium: We begin by showing that X’ is »; maximal
in agent i’s induced Arrow-Debreu budget set
B(P', ') ={x'€ £ (DXL)P(x' - o) <0}
To this end we first show that
(5.10) x‘e ¢S (DXL), x'x; ¥ =Pix'zPlw

If x' =, X then for any £ >0, x' + &1 >, X'. Since x, pr converges to zero in
the Mackey topology,

(x'+el)xpr+@'xp pr—x' +el

in the Mackey topology. Since fiTA converges to ¥’ (Mackey) there exists A € A
such that A > A implies

(x*+el)xpn+ wiXD\DrA > )?%A.

The consumption vector on the left side of this relation could be considered by
agent i in the economy é”T since it coincides with o' after date T,. Since by
Lemma 5.6 X7 is x; maximal in BT(PT, ') we must have

=i
F}Axi +e> Pﬁfh = P}Awi, VA > .
Since P, converges to P’ in the o(ba, 4,) topology and since x & 4, (D X L),

Pixi+¢ > Pio'.
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Letting £ — 0 gives (5.10). It is now easy to show that
(511) x‘e4f(DXL), x'> x'=Px'>P.
For suppose x'>, &'; then by continuity of =, there exists & <1 such that
ax'> %' By (5.10), aP'x' > Plw' = P'x' > P'w'.
Since for each £ €D
pr(€)(Tr(€) — '(§)) =A(E) Z5(£7) — Gr(£) 21 (£)
in\{olves only a finite number of terms, the equation is satisfied in the limit. Thus
(x%, ") satisfy the budget equations:
(5.12)  p(&)(X'(&) —o'(€))=A(£)Z'(¢7) —q(§)Z'(¢), VEéeD.
For the same reason the first order conditions for agent i,
(5.13) T(&)q(¢,5)= L T(EAE,)), JEI(§), VéED,
§re§+
are satisfied in the limit. _

Since P'€ba(D X L) and P' > 0, it follows from the Yosida-Hewitt theorem
that there exists a unique decomposition P’ = P’ +Pf where Ple /] (D XL)
and Pf is a nonnegative purely finitely additive measure (sometlmes called a
pure charge). Furthermore Pf y =0 whenever y € /(D X L) has only a finite
number of nonzero components. Since

Pief=P(£,¢) =T(£)Pr(£,¢), V(§¢)EDXL,
passing to the limit gives
Piet=Pi(¢,¢) =7 (€)P(&,¢), V(& ¢)eEDXL.

Multiplying the budget equation (5.12) for node ¢ by Pi(¢£,1) = 7(¢), adding
the resulting equations for all nodes ¢ with #(£) < T and using the equations
(5.13) gives

(514) X Pi(&)(F(&) —o'(§))=— X F(HA(£)Z'(¢).

teD” ¢€DT
By (5.8), Gr(£€)z7(¢) .is bounded uniformly in 7, and ¢ so that (gz')=
(q(&)zi(¢),£ € D) € (D). Since

LiepT (&) = Z§EDPC(§’ 1= Z(g,z)erLFci(f’ ) =1
implies 7 € ¢,(D), the term on the right side of (5.14) tends to zero in the limit
and
(5.15) Pi(x'-w')=0
Suppose 13} > 0. Then o’>ml implies F;wi > 0. By (5.15) P'¥' = Plo' < P''.
By the strict monotonicity and Mackey continuity of x; for all >0 there
exists 7 > 0 such that

(5.16) (x'+al)ypr>; X'
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Choose 0 < a < Pjw'; then
(517) Pi(x'+al)xpr<Pi(# +al) <Pix'+a <P

(5.16) and (5.17) contradict (5.11). Thus Pf 0 so that P'=P! and by (5.15),
Pi(% —w')=0. By (5.11) ¥ is x, ‘maximal in the agent’s mduced Arrow-
Debreu budget set B, (P’ ') and (7, P?) satisfy (a)-(c) in Definition 4.2(ii).

Let us show that (x z)is x; maximal in the budget set Z7°(p, g, 7, o', A).
(gz") € 4(D) and 7' € £{(D) implies lim; ., T, ‘e D) i )q(§ )Zi(E) = 0, V¢
€D. Since the budget equations (5.12) are satisfied, Z° ﬁnances %' and
¥ e BT°p, g, 7, w', A). Since for any (x%; z') € BIPp, q, 77 o', A),
limy o, Xeep, ™ (f)q(g)z’(f) 0 replacing (x/, z’) in (5.14) by (x}, z’) gives
Pi(x'— ') = 0 so that

BT°(p,q, 7, w', A) CB (P, w'), Viel

Thus X’ »; maximal in BP’, »') is also 3x; maximal in Z7°(p,3, 7, w', A),
Viel.
Since in the limit

Y (¥-0)=0 and Y z'=0

iel iel
the limit (%, 2),(p, g, (7"), < ;) is an equilibrium with transversality condition of
the economy &(D, =, w, A)) and the proof is complete. Q.E.D.

Proor oF THEOREM 5.2: (<) Let (%, 2),(p, 3, (F); <)) be an equilibrium
with transversality condition of the economy &(D, = ,w, A). The argument in
(iv) of Step 1 in the proof of Theorem 5.1 can be applied to this equilibrium,
since an agent who is a net lender at a node ¢ can scale down his portfolio on
D(¢) without violating the transversality conditions (4.10). This leads to the
inequality

I-1 1
(1 B) q(f)z(f)_l_B, VéeD, Viel,
which implies that (gz’) € (D) for each agent i €I. Thus for all i €1, (X,
z') e #BP°(p,q, w', A) c BI°(p,q, 7, w', A) and since (¥';Z) is =, maximal
in the larger budget set Z7C, it is =, maximal in ZP€. Thus (%, 2),(p, ) is
an equilibrium with implicit debt constraint.

(=) Let ((x, 2),(p, @) be an equilibrium with implicit debt constraint of the
economy &(D, = ,w, A). To show that this is an equilibrium with transversality
condition we need to recover the agents’ present value vectors and this can be
done by extending the separation argument in Lemma 5.6 to the infinite
horizon.

Lemma 5.8: If (%, 2),(p, q)) is an equilibrium with implicit debt constraint of
an economy &AD, = ,w, A) satisfying A1-A3, then there exists a present value
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vector 7 € £(D) satisfying conditions (a)-(c) in Definition 4.2 (ii), for each
iel

Proor: See Appendix.

Since for each i €I, BP(p, G, o', A) C BI°(p,q, o', 7', A) C_B(Fi, ') and
since (¥%; z') € #PC is », maximal in the larger budget set B(P', o'), (¥'; z%)

~1

is »; maximal in &€ Thus (%, 2),(p,q,(7);<,) is an equilibrium with

~1

transversality condition. Q.E.D.
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APPENDIX

PROOF OF LEMMA 5.6: For an infinite dimensional vector x! € RP*L, let £/ € RP"™*L denote the
date T truncation of x', i.e., the components of x’ up to data 7. Since the two convex subsets of
T
RPTXL,

i _ [ i DTXL| pi i =i
U= {x‘ER+ Ix’,\/Dr+w‘,\/D\Dr>i x’T},

@ = {fi € RQTXLI 2xpr+ w'xp\ pr € Br( Br,dr, ', A)},

satisfy %}ﬂ .@} = (J, by the standard separation theorem there exists a vector P; € RP*L whose
. Ai T .
truncation Pie RP *L is nonzero, such that

A . AL
sup Prx'< inf Ppx’.
seB e Xy

Since £i.€ %k N @i (where Z% denotes the closure of %),

(A1) Pigiz PL3i, Viie %,

(A2) iR < PLRL,  Vi'e @i

Monotonicity of »; implies P4(¢£) = 0, V¢ € DT. By (A2), when the system of linear inequalities

(A3) Br(§)(x'(§) —0'(§)) —A(§)2'(§7) +ar(§)2'(§) <0,  V¢eDT,

is satisfied by a vector (£, £%) such that x‘(¢) 2 0, V¢ € DT, z/(¢,) = 0 =2(¢) if t(£) =T, then the
inequality

Y. PR(E)(x'(€) -7 (£)) <0

tepT
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holds. It follows fromT Theorem 21.2 in Rockafellar (1970) that there exists a nonnegative vector
(i (€),£€DT) e RP" such that

(A4) Pi(§) =7 (§)Pr(§),  VEEDT,

(a5)  F(Oa(§) - YL FH(E)AE)=0, Veed ™
fegt
(A6) Y F(E)br(6)o'(§) = X PH(EF(E).
=0 cepT
Since (%%, £4) satisfy (A3), by a standard summation argument (A5) implies
(A7) Y. #F(OPr(E)F(E) s Y, Tr(E)Br(£)e'(§) = Y, PH(E)ER(E)
¢cepT £eDT ¢epT

where the last inequality comes from (A6). It follows from (A7) that the inequality in (A4) can be
strict only if ¥'(¢, ) =0 for some good ¢. Thus if we define the new vector of discounted prices
Pr by

p;(§)={17ir(§)ﬁr(§)7 gepT,

0, £e DT,

then Piii = Phoi = PL£:> 0 where the positivity follows from 0 < Pi. _A‘T, 51+ 0, and w'(£, )
>m, Vé€ DT, V¢e L. Thus if £/ %%, then I_;‘Ti?‘ 2 Pii' 2 PLRh=PLit= I_;’Ta‘)‘ Strict mono-
tonicity with respect to good 1 and P%x4 > 0 imply Pr(¢,1) > 0 and hence 74(¢) > 0 for all ¢ € DT,
}_;‘T)"?’I> 0 also implies that if ‘€ %i. then Piii>Phfi= I-s}cf)i. Thus X% is »x; maximal in
Br(PL, »') and the proof is complete. Q.E.D.

bIA

R

PrOOF OF LEMMA 5.7: Let a,(x') be defined by
a;(x")=inf{a€R|0<a<1, ax’+ef >, x}.

By Assumption A3, « g(xi) < 1. Fc4f(D X L) is compact in the product topology. Let us show that
x'+ a,(x") is upper semi-continuous on F in the product topology. Let (x;,) be a sequence of F
converging to x¥‘ € F componentwise and suppose that for ¢ > 0, there exists a subsequence (which
without loss of generality we call (x%)) such that

ag(x)) >a (%) +e.
Then, by definition of a,(x.)
xt z,-(ag(i") + s)xf, +ef.

Since on bounded sets the product topology and the Mackey topology coincide, x! converges to x‘
in the Mackey topology and by Assumption A3

- (g (X)) +8) % +ef.
But this contradicts the definition of a,(x’) since by monotonicity of the preferences if a €
(ag(%),1), then ax’ +ef >; %"

Thus a, is upper semicontinuous for the product topology on F and attains its maximum on the
compact set F. Then max, ¢  max,: ¢ r{ag(x')} <1 and there exists a, <1 as asserted in Lemma
5.7. Q.E.D.

Proor oF LEMMa 5.8: Let (%, 2),(p, @) be an equilibrium with implicit debt constraint and let

%' ={x'e ¢ (DXL)|x" > %'}
be the strictly preferred set of agent i at X'. Since

%' N BL(5,q,0', A) =D
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and since both sets are convex and by the monotonicity of »; (Assumption A3), %' has a
nonempty interior in the norm topology of (D X L), it follows from the separation theorem
(Kelley-Namioka (1963, Theorem 14.2, p. 118)) that there ex1sts a continuous linear functional
P eba(D X L), P*+ 0 which separates the two sets. Since %’ belongs to the closure of %’ in the
norm topology it follows that

(A8) Pixi > Pixt, VY xie %,
(A9) Pixi<Pix', V¥ xie ZPC.
Monotonicity of x; implies P’> 0. Mackey continuity of > », implies that P’ can be chosen in

Zf (D X L). This can be seen as follows. By the Yosida-Hewitt theorem there exists a unique
decomposition Pi= P’ + Pf where P‘ e/ +(D X L) and Pf is a nonnegative purely finitely additive

measure. Suppose P’x’ =¢&> 0. Choose a > 0 such that aP’ 1 <. By the monotonicity and Mackey
continuity of x; there exists 7> 0 such that (x*+ a]l)x,,r> %' and

Pi(x'+al)x,r<Pi(%¥ +al) <Pixi,

contradlctmg (A8). Thus Pfx‘=0. It follows that (A9) holds with P/, since x’e ZP€ implies
Pix! < Pix' < P'x' = Pix’, Suppose (A8) does not hold with P/; then there exists x' € %' such that
P’x’ < Pix'=P's' By Mackey continuity of »; there exists T sufficiently large such that x‘y,r >; x*
and P‘x‘x,,r < Pix' < P'%, contradicting (A8) Thus (A8) and (A9) hold with P'e ¢ (D X L).
For each T e T, consider the consumption-portfolio plans (x‘, z%) such that z‘(§0) 0, zi(&) =
i) if t(&) =T, x{(&)=%(¢) if t(£€)>T. By (A9), whenever such plans satisfy the linear
inequalities

PO(H(E) ~0'())) ~A()Z(E) +a(O)7() 50, V¢eDT,
then the inequality
Y PUE)(X(€) —7(£)) =0
geDT

is satisfied. By the same arguments as in the proof of Lemma 5.6 there exists 7€ RP (with
77(€) = 0 if 1(£€) > T) such that

(A10) PY(&,¢) <7 (€)P(€,¢)  withequality whenever  ¥(¢,¢)>0, V¢eDT,

(A1) 7)) - X Fr(E)AE)=0, VeeD™
fegt
(A12) Y F(OP(E)e'(§) s L TH(E)D(§)F(£) s P
teD” teDT
By (A12), since p(¢£,1) =1 and '(£,1)> 0, the sequence {Fo(E)}r ey 1§ bounded for each £ €D.

By Tychonov’s theorem there exists a subsequence {11-7 }_ 1 such that an converges to 7' € R? in
the product topology. By Fatou’s lemma

Y F(€)B(£)w'(¢) <PE.

éeD

Thus if P’ is defined by Pi(¢) = 7(£)p(&), since w'(&,¢)>m, ¥V (£, ¢) €D X L it follows that
O0sm Y, P& )2 Y 7(E)B(E)0'(£)

(¢,{)eDXL (€D

so that P' e ¢(D X L). _

Since (A10) and (A11) hold for the limit 77* for all £ € D, arguments similar to those used in the
proof of Lemma 5.6 show that X' is »; maximal in B (P w"). Thus 7 and P’ satisfy (a)—(c) in
Definition 4.2(ii) and the proof is complete Q.E.D.
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