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Summary. This paper studies the equilibria of a stochastic OLG exchange econo-
mies consisting of identical agents living for two periods, and having the opportunity
to trade a single infinitely-lived asset in constant supply. The agents have uncertain
endowments and the stochastic process determining the endowments is Markovian.
For such economies, the literature has focused on studying strongly stationary equi-
libria in which quantities and prices are functions of the exogenous states of nature
which describe the uncertainty: such equilibria are generalizations of deterministic
steady states, and this paper investigates if they have the same special status as
asymptotic limits of other equilibrium paths. The difficulty in extending the anal-
ysis of equilibria beyond the class of strongly stationary equilibria comes from the
presence of indeterminacy: we propose a procedure for overcoming this difficulty
which can be decomposed into two steps. First backward induction arguments are
used to restrict the domain of possible prices; then if some indeterminacy is left,
expectation functions are introduced to make the forward equilibrium equations
determinate. The properties of the resulting trajectories, in particular their asymp-
totic properties, can then be studied. For the class of models that we study this
procedure provides a justification for focusing on strongly stationary equilibria.
For the model with positive dividends (equity or land) the justification is complete,
since we show that the strongly stationary equilibrium is the unique equilibrium.
For the model with zero dividends (money) there is a continuum of self-fulfilling
expectation functions resulting in a continuum of equilibrium paths starting from
any admissible initial condition: under conditions given in the paper, these equilib-
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rium paths converge almost surely to one of the strongly stationary equilibria-either
autarchy or the stochastic analogue of the Golden Rule.

Keywords and Phrases: Stochastic overlapping generations model, Stationary ra-
tional expectations equilibrium, Indeterminacy, Expectation functions, Martingale
convergence theorem.

JEL Classification Numbers: D50, D84, C62.

1 Introduction

The overlapping generations model has proved to be a useful model for exploring
properties of equilibria over time. It draws on the fact that one of the simplest
sources of heterogeneity of agents comes from the fact they are born at different
dates and the resulting intergenerational trade reflects the differences in agents’
needs over their life cycle. While the model can be studied at various levels of
generality (see Geanakoplos and Polemarchakis, 1991, for a survey), many of its
basic properties and insights can be derived within the simplest class consisting of
identical agents living for two periods, and having the opportunity to trade a single
infinitely-lived asset in constant supply. The deterministic model was analyzed with
great clarity by Gale (1973). For stochastic economies the theoretical literature has
focused on studying strongly stationary equilibria in which quantities and prices
are functions of the exogenous states of nature which describe the uncertainty.
Existence of non-trivial equilibria of this type has been proved by Cass et al. (1992)
and Gottardi (1996), while their normative properties, which are similar to those
of the Golden Rule in the deterministic case, have been analyzed by Peled (1984),
Aiyagari and Peled (1991), Demange and Laroque (1999) and Chattopadhyay and
Gottardi (1999).

In the deterministic model, steady-state equilibria have a special status not only
because they are simple, but also because in standard cases they are the asymptotic
limits of all other equilibrium paths. Strongly stationary equilibria of the stochastic
model are the generalizations of deterministic steady states, and the goal of this
paper is to investigate if they have the same special status as asymptotic limits of
other equilibrium paths.

The difficulty in extending the analysis of equilibria beyond the class of strong-
ly stationary equilibria comes from the presence of indeterminacy. If uncertainty is
modeled by the occurrence of S possible shocks at each date, then at each node of
the associated event-tree the equilibrium equation is a first-order condition relating
the price of the asset at this node to the S prices at the immediate successors:
if the equilibrium equation is read forward then there is an (S − 1)-dimensional
manifold of “candidate prices” for the next period. If the model takes place over a
finite horizon T and if there is a natural terminal condition (typically that the price
is zero) then the equations can be read (solved) backwards to obtain a (typically)
determinate equilibrium. If the horizon is infinite and there is no natural terminal
condition, this way of obtaining determinacy cannot be applied. However backward
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induction can still be useful for finding restrictions on the equilibrium prices: at
each date T in the future the prices have to satisfy certain inequalities (e.g. be
positive and affordable by young agents) and drawing the consequences of these
inequalities by backward induction can substantially restrict the indeterminacy of
the prices. In the case where the asset pays a positive dividend (the asset is “land”
or “equity”) we show that this procedure has a rather dramatic outcome, for it
eliminates all price sequences except the strongly stationary equilibrium, which,
under our assumptions, is thus the unique equilibrium. However if the asset pays
zero dividends (i.e is “money”), then this procedure only eliminates prices which lie
above the stationary equilibrium prices, thus leaving an indeterminacy of dimension
S − 1 at each node.

The hypothesis of rational expectations requires that agents correctly anticipate
both the support and the probabilities of future prices. In a series of papers, Kurz
(1997) has argued that the latter hypothesis is unreasonable because agents can not
be expected to know the stochastic process driving the uncertainty: learning about
frequencies from past data still leaves room for differences in beliefs about the nature
of the stochastic process.1 However in the examples of equilibria with rational
beliefs, Kurz still retains the assumption that agents anticipate the same prices,
which is natural given the strong stationarity of the equilibria. In the stochastic
model with money in which there is a continuum of prices which can be self
fulfilling, it is the former assumption which might seem more restrictive, namely
that agents anticipate the same future prices.

To resolve this difficulty we assume that agents co-ordinate their expectations
through an expectation function, and the set of expectation functions parametrizes
the (S − 1)-dimensions of next period prices at each node. Since we retain a form
of stationarity – the expectations are stationary in that they depend only on the
current price and the current shock – it is perhaps not unreasonable to assume that
agents could learn such an expectation function. Once introduced, the expectation
function leads to a determinate stochastic difference equation for the equilibrium
prices: the price equation at each node can be read forward as in the deterministic
case, and the asymptotic properties of the equilibrium paths can again be studied.
Using a martingale convergence argument we prove, under conditions spelled out
in Section 2, that the equilibrium paths converge almost surely to one of the strongly
stationary equilibria–either autarchy or the stochastic analogue of the Golden Rule.

Thus the general procedure that we propose for extending the analysis beyond
the class of strongly stationary equilibria can be decomposed into two steps. First
backward induction arguments are used to restrict the domain of prices. Then if some
indeterminacy is left, expectation functions are introduced to make the forward

1 More precisely Kurz introduces the concept of a “rational belief equilibrium” in which agents
have differing conditional probabilities for prices at the immediate successors, even though they agree
on the probabilities of tail (or asymptotic or long-run) events. Keynes (1930, ch.15) has emphasized
the importance of differences in investors’ opinions for a proper understanding of the functioning of
financial markets–in the language of Wall Street, it is the changing proportion of the population of
investors between bulls (optimists) and bears (pessimists) which accounts for much of the volatility
of asset prices. The theory of rational beliefs is a way of formalizing this view of the functioning of
financial markets based on short-run differences in beliefs, which are however compatible with the
long-run behavior of prices.
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equations determinate: the properties of the resulting trajectories, in particular their
asymptotic properties, can then be studied. For the class of models that we are
studying this procedure provides a justification for focusing on strongly stationary
equilibria. For the model with positive dividends (equity or land) the justification
is complete in that the the strongly stationary equilibrium is the only equilibrium;
for the model with zero dividends (money) the justification is less complete–indeed
the analysis suggests that it is something of an act of faith to focus attention on
the stationary Golden Rule since many (and for some expectation functions, all)
equilibrium paths converge to autarchy.

2 The model with money

Consider a one-good overlapping generations exchange economy in which agents
live for two periods and have random endowments. The uncertainty is modeled by
the occurrence of one of a finite number of shocks at each date, s ∈ S = {1, . . . , S},
s0 being the initial shock. Let σt = (s0 , . . . , st) denote the history of the shocks
from date 0 to date t: let Σt = S × · · · × S denote the set of all such histories
up to date t and let Σ = ∪∞

t=0Σt denote the collection of all such histories for all
dates, σ = (s0 , . . . , st, . . .) denoting a typical path of the event-treeΣ. We assume
that the shocks follow a first-order Markov process and denote by P the induced
probability on the event-tree Σ.

Assumption 1. (Markov structure): There exists a Markov transition matrix
ρ = [ρss′ ]s,s′∈S with ρss′ > 0, ∀s, s′ ∈ S such that P (st+1 = s′|st = s) =
ρss′ , ∀s, s′ ∈ S.

At each date-event σt ∈ Σ, n identical agents enter the economic stage:
since we do not consider growth or fluctuations in the cohort size, we may set
n = 1. The representative agent lives for two periods and has the random en-
dowment stream ω(σt) = (ω1(σt), ω2(σt, s

′)s′∈S) which depends only on the
shock st realized when the agent is young, i.e. if σt = (s0 , . . . , st), then ω(σt) =(
ω1

st
, (ω2

st,s′)s′∈S

)
.

Assumption 2. (Positive endowments): ω(s) = (ω1
s , (ω

2
ss′)s′∈S) ∈ |RS+1

++ , ∀s ∈
S.

All agents maximize the expected utility of their lifetime consumption streams,
with the same utility indices. The representative agent born at node σt ranks the

possible consumption streams x(σt) =
(
x1(σt), (x2(σt, s

′))s′∈S

)
∈ |RS+1

+ ac-

cording to a utility function Uσt : |RS+1
+ → |R satisfying:

Assumption 3. (Preferences): There exist increasing, concave, differentiable func-
tions u1, u2 : |R++ → |R such that

Uσt(x(σt)) = u1(x1(σt)) +
∑

s′∈S

ρsts′u2(x2(σt, s
′))
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where for i = 1, 2, limc→0 u
′
i(c) = +∞ and u2 has a coefficient of relative risk

aversion less than or equal to 1: ∀c > 0,−cu
′′
2(c)
u′

2(c)
≤ 1.

To study the consequences of intergenerational trade, we assume that there is
an infinitely-lived asset available in positive supply, normalized to 1, which pays no
dividends (usually called money). The asset is initially held by the representative
old agent at date 0 and is then exchanged (if prices are non zero) at each date
between the old and the young. Let q(σt) denote the price of the asset at node σt.
The young agent at node σt faces the budget constraints

x1(σt) = ω1(σt) − q(σt)z, z ∈ |R (1)

x2(σt, s
′) = ω2(σt, s

′) + q(σt, s
′)z, s′ ∈ S (2)

and chooses z to maximize Uσt(x(σt)). Under Assumption 3 the optimal choice
of z is defined by the FOC for maximizing Uσt under the budget constraints (1),
(2): since the equilibrium condition is z(σt) = 1, ∀σt ∈ Σ, the definition of an
equilibrium takes the simple form:

Definition 1. (q(σt))σt∈Σ is an equilibrium price process if

u′
1(ω

1
st

− q(σt))q(σt) =
∑

s′∈S

ρsts′u′
2(ω

2
sts′ + q(σt, s

′))q(σt, s
′), ∀σt ∈ Σ (E)

It will sometimes be convenient to write (E) in stochastic process notation as

u′
1(ω

1
t − qt)qt = E

(
u′

2(ω
2
t+1 + qt+1)qt+1 |Ft

)
, ∀t ≥ 0 (E ′)

where Ft is the information available at date t.
In the deterministic case the stochastic difference equation (E ′) reduces to a

simple difference equation which, under Assumption 3, defines qt+1 as a function
of qt: an equilibrium is a solution which satisfies some initial condition q0 = q̄0
and respects the non-negativity of consumption at every date. In the stochastic
case (E) gives a single equation at each node σt for determining the S prices
(q(σt, s

′)s′∈S) at the immediate successors, and this suggests that the equilibria will
be indeterminate – unless the assumption of rational expectations which requires
that agents’ expectations be fulfilled at all dates along a trajectory introduces further
restrictions which eliminate this indeterminacy. Most of the current literature on
stochastic OLG models sidesteps the indeterminacy problem by studying stationary
equilibria which depend only on the current shock. Since we will be led to study
equilibria which are stationary on a larger state space, we will refer to equilibria
which depend only on the exogenous shocks as strongly stationary equilibria.

Definition 2. (q∗
s )s∈S is a strongly stationary equilibrium (SE∗) price vector2 if

u′
1(ω

1
s − q∗

s )q∗
s =

∑

s′∈S

ρss′u′
2(ω

2
ss′ + q∗

s′)q∗
s′ , ∀s ∈ S (E∗)

2 We use the short hand SE∗ for strongly stationary equilibria to avoid confusion with the stationary
sunspot equilibria which are often referred to as SSE.
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(E∗) is a system of S equations to determine the S unknowns (q∗
s )s∈S , which typi-

cally has a finite number of solutions. It clear that the trivial (no-trade) equilibrium
q∗
s = 0 for all s is always a solution of (E∗). Cass et al. (1992) and Gottardi (1996)

have proved existence of non-trivial SE∗ in a more general class of models in
which there is intergenerational trade with the same infinitely-lived asset as that
considered here and, in addition, the young at each node are heterogeneous and
trade short-lived assets with members of the same cohort to share their risks. The
model studied here is simplified to focus attention on the intergenerational trade of
the long-lived asset. Cass et al. concentrate on the case in which there is a positive
solution to the system of equations (E∗), while Gottardi studies the general case
in which there is either a positive or a negative solution, a negative solution corre-
sponding to the case where the supply of the asset is negative. We follow the former
authors and focus on the positive case – namely where agents want to transfer in-
come forward and the welfare of all agents can be improved by trading an asset
in positive supply. To express the conditions under which this occurs, consider the
matrix of present-value vectors of the representative agents born in the S possible
states, at their initial endowments

Π0 =
[
π0

ss′
]
s,s′∈S =

[
ρss′ u′

2(ω
2
ss′)

u′
1(ω1

s)

]

s,s′∈S

Since Π0 is a matrix with positive coefficients, by the Frobenius theorem (Gant-
macher, 1959; Takayama, 1974) it has a unique positive eigenvalue (its Frobenius
root) associated with a positive eigenvector. Let λf (Π0) denote this eigenvalue.

Assumption 4. λf (Π0) > 1.

When Assumption 4 is satisfied, by the Frobenius theorem, there exists3 a vector
of transfers dx = (dxs)s∈S � 0 such that

Π0dx = λf (Π0)dx � dx

which can be expressed as

−u′
1(ω

1
s)dxs +

∑

s′∈S

ρss′ u′
2(ω

2
ss′)dxs′ > 0, ∀s ∈ S

Thus if an infinitely-lived benevolent planner were to transfer the amount dxs from
the young to the old at each date-event when the shock is s, (s ∈ S), the welfare of
all agents would be improved. In short when λf (Π0) > 1, agents need to transfer
income to their old age, and an asset in positive supply permits such transfers to
occur.

Proposition 1. Under Assumptions A1–A4, there exists a unique positive strongly
stationary equilibrium.

3 We use the following notation for vector inequalities. For x ∈ |RS , x ≥ 0 implies xs ≥ 0, ∀ s (x
non-negative); x > 0 implies xs ≥ 0, ∀ s, and xs′ > 0 for some s′ (x semi-positive); x � 0 implies
xs > 0, ∀ s (x positive).
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Proof. For a price vector q ∈ |RS for whichω1
s −qs > 0,ω2

ss′ +qs′ > 0, ∀ s, s′ ∈ S,
define

Π(q) = [πss′(q)]s,s′∈S =
[
ρss′ u′

2(ω
2
ss′ + qs′)

u′
1(ω1

s − qs)

]

s,s′∈S

Equation (E∗) for a SE∗ can be written as

Π(q∗)q∗ = q∗ (3)

which implies that the Frobenius root λf (Π(q∗)) = 1. It can be deduced from
Gottardi (1996) that if λf (Π0) �= 1 there exists either a positive or a negative
solution to (3). By concavity of u1 and u2, if q∗ � 0, πss′(q∗) > π0

ss′ so that, by
the Frobenius theorem, λf (Π(q∗)) > λf (Π0). Thus if the initial endowments of
the economy satisfy λf (Π0) > 1, (3) cannot have a negative solution: it follows
that it has at least one positive solution.

To prove uniqueness of this solution, construct by induction the following se-
quence of prices: let q(0) = ω1 where ω1 = (ω1

s)s∈S . Note that, for any SE∗ price
vector q∗, u′(ω1

s − q∗
s ) must be well defined so that q∗ � q(0). Define the next

price q(1) by

u′
1(ω

1
s − q(1)s )q(1)s =

∑

s′∈S

ρss′u′
2(ω

2
ss′ + q

(0)
s′ )q(0)s′ , ∀s ∈ S

By concavity of the functionu1, the function y → u′
1(ω

1
s −y)y is increasing. By

the Inada condition it increases from 0 to +∞ when y increases from 0 to ω1
s : thus

q(1) is well defined and, sinceu′
1(ω

1
s−q(1)s ) is also well defined for all s, q(1) � q(0).

By Assumption 3, the functions hss′ defined by hss′(y) = u′
2(ω

2
ss′ + y)y are

increasing for y > 0 since

h′
ss′(y) = u′

2(ω
2
ss′ + y)

(
1 +

u′′
2(ω2

ss′ + y)y
u′

2(ω
2
ss′ + y)

)

> u′
2(ω

2
ss′ + y)

(
1 +

u′′
2(ω2

ss′ + y)(ω2
ss′ + y)

u′
2(ω

2
ss′ + y)

)
≥ 0

Since, for any SE∗, (E∗) holds, q∗ � q(0) implies q∗ � q(1). It is now easy to see
that the sequence (q(n))n≥1 defined by

u′
1(ω

1
s − q(n)

s )q(n)
s =

∑

s′∈S

ρss′ u′
2(ω

2
ss′ + q

(n−1)
s′ )q(n−1)

s′ , ∀s ∈ S (4)

is a decreasing sequence such that q∗ � q(n) for all n. It converges to q̄ which,
since the functions in (4) are continuous, is a SE∗.

Suppose that there is a SE∗ price q∗ < q̄. Then by the monotonicity properties
shown aboveπss′(q∗) ≥ πss′(q̄), with at least one strict inequality. By the Frobenius
theorem, λf (Π(q∗)) > λf (Π(q̄)), which contradicts λf (Π(q∗) = λf ((Π(q̄)) =
1. Thus q̄ is the unique positive SE∗. ��
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Enlarging the class of equilibrium solutions. Our objective is to study a broader
class of solutions of the equilibrium equations (E) than the strongly stationary
solutions defined by (E∗). The equilibrium conditions (E) assert that at any given
node σt of the event-tree Σ, given a current price y ∈ |R+, there is a-priori an
(S− 1)-manifold Φσt

(y) of prices of the asset at the S immediate successors of σt

Φσt(y) =





q′ ∈ |RS

∣
∣
∣
∣
∣
∣

∑

s′∈S

ρsts′ u′
2(ω

2
sts′ + q′

s′)q′
s′ = u′

1(ω
1
st

− y)y






which justify an agent paying y for the asset at node σt. There are thus two possible
ways of studying a broader class of solutions of (E): the first is to study the solutions
of the system of stochastic inclusions q(σ+

t ) ∈ Φσt(q(σt)),∀σt ∈ Σ, where q(σ+
t )

denotes the vector of prices at the S immediate successors of σt; the second is to
pick selections φσt

(q(σt)) ∈ Φσt
(q(σt)) and then study the stochastic difference

equation q(σ+
t ) = φσt(q(σt)),∀σt ∈ Σ. We follow the latter approach.

Given the Markov structure of the endowments, Φ only depends on the current
price y and the current shock st: Φσt(y) = Φst(y). Although the selection in
Φσt(q(σt)) could depend on properties of the trajectory before date t, we restrict
attention to selections which depend only on the current variables: φσt(q(σt)) =
φst(q(σt)). Under this stationarity requirement a selection of the correspondence
Φ is a family of S functions qs → φs(qs) such that φs(qs) ∈ Φs(qs) for all s ∈ S,
and such a family of functions will be called an expectation function. This function
must be restricted to prices which are feasible, i.e. it must be restricted to a domain
of prices affordable by the young.

Definition 3. An expectation function for state s is a function φs : Qs → |RS
+,

whereQs ⊂ [0, ω1
s), which associates with every current price qs a vector of prices

(φs1(qs), . . . , φsS(qs)) which justifies the purchase of the asset at price qs, i.e.
which satisfies

u′
1(ω

1
s − qs)qs =

∑

s′∈S

ρss′ u′
2(ω

2
ss′ + φss′(qs))φss′(qs), ∀ qs ∈ Qs (5)

If (φs)s∈S is a family of expectation functions for the S states then the function

φ : Q× S → |RS
+ defined by φ(q, s) = φs(qs), where Q =

∏

s∈S

Qs

is called an expectation function for the economy.

Definition 4. (q(σt))σt∈Σ is a rational expectations equilibrium with expectation
function φ if at each node σt ∈ Σ, with σt = (s0 , . . . , st), the prices at the S
successors satisfy

q(σt, s
′) = φsts′(q(σt)), ∀s′ ∈ S (Eφ)

Note that the assumption of rational expectations requires that all agents have
the same expectation function φ: since the function φ is stationary on the state space
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Q× S it is perhaps not unreasonable to think that agents could learn to coordinate
on a function φ. To generate a solution to (Eφ), at each node σt ∈ Σ and for each of
its successors s′ ∈ S, the expectation function φsts′(q(σt)) must select a feasible
price to which the function φs′ can be applied to form the expectation for the next
date, i.e. φsts′(q(σt)) ∈ Qs′ , and so on indefinitely. Thus to show that a rational
expectations equilibrium in the sense of Definition 4 exists, one must exhibit an
expectation function which is defined on a self-justified domain4 Q̄ i.e. a domain
such that φ(Q̄× S) ⊂ Q̄.

For any a, b ∈ |RS such that a ≤ b let [a, b] =
∏

s∈S [as, bs] and (a, b) =∏
s∈S(as, bs).

Proposition 2. Let q∗ denote the positive strongly stationary equilibrium of Propo-
sition 1. (i) The maximal domain Q̄ for which there exists an expectation function
φ such that φ(Q̄ × S) ⊂ Q̄ is Q̄ = [0, q∗]. (ii) There is a continuum of candidate
expectation functions φ : Q̄×S → Q̄, and they all satisfy φs(0) = 0, φs(q∗

s ) = q∗

for all s ∈ S.

Proof. (i) Consider the sequence q(0), q(1), . . . , q(n), . . . constructed in the proof
of Proposition 1, which converges to the unique SE∗ price vector q∗. The domain
Q of an expectation function must satisfy Q ⊂ [0, ω1]. Since by Assumption 3 the
functions y → u′

2(ω
2
ss′ + y)y are increasing, in order that the next period price

expectations can be chosen in the domain Q, the price qs observed in state s must
be such that

u′
1(ω

1
s − qs)qs ≤

∑

s′∈S

ρss′ u′
2(ω

2
ss′ + ω1

s′)ω1
s′

=
∑

s′∈S

ρss′ u′
2(ω

2
ss′ + q

(0)
s′ )q(0)s′ , ∀s ∈ S

Thus Q ⊂ [0, q(1)]. By the same reasoning, since φs(qs) needs to be in [0, q(1)] for
all s, qs must be less than q(2). Thus

φ(Q× S) ⊂ Q =⇒ Q ⊂
⋂

n≥0

[0, q(n)] = [0, q∗]

To show that there is an expectation function defined on Q̄ = [0, q∗] whose
range is in Q̄, define φss′(qs) = λq∗

s′ where λ is the solution to

u′
1(ω

1
s − qs)qs =

∑

s′∈S

ρss′ u′
2(ω

2
ss′ + λq∗

s′)λq∗
s′ (6)

The function hs(λ) =
∑

s′∈S ρss′u′
2(ω

2
ss′ + λq∗

s′)λq∗
s′ is increasing (by As-

sumption 3), and such that hs(0) = 0 ≤ u′
1(ω

1
s − qs)qs ≤ u′

1(ω
1
s − q∗

s )q∗
s = hs(1)

for qs ∈ [0, q∗
s ]. Thus for any qs ∈ [0, q∗

s ], there is a solution λ ∈ [0, 1] and the
function φ = (φs)s∈S maps Q̄ into itself.

4 Using the terminology of Duffie et al. (1994).



444 M. Magill and M. Quinzii

(ii) Note that if 0 < qs < q∗
s , then the solution λ of (6) satisfies 0 < λ < 1

and the intersection of Φs(qs) and the S-dimensional open set (0, q∗) is a (S − 1)-
dimensional manifold of possible expectations q′ ∈ Q̄. Thus for each s ∈ S and
each qs ∈ (0, q∗

s ) there is a continuum of possible choice for φs(qs). However since
q′ ≤ q∗ implies

∑

s′∈S

ρss′ u′
2(ω

2
ss′ + q′

s′)q′
s′ ≤

∑

s′∈S

ρss′ u′
2(ω

2
ss′ + q∗

s′)q∗
s′ = u′

1(ω
1
s − q∗

s )q∗
s

the only expectation in Q̄which justifies the price q∗
s in state s is q∗. Since it is clear

that the only price expectation which justifies a zero price is zero, the properties
(ii) hold. ��

Thus the global requirement that agents must anticipate prices which can be
continued to form an infinite horizon equilibrium forces the feasible initial condi-
tions to lie in [0, q∗

s0
] and constrains agents’ expectations of next period prices to

lie in Q̄ at every date. This property leads to a minimal stability property for the
positive SE∗ : if at some node where the current shock is s, the observed price of
the asset is q∗

s , then the only expectation compatible with equilibrium is q∗, and
the equilibrium coincides with the strongly stationary equilibrium forever after.
The same stability property clearly holds for the no-trade equilibrium. However if
the initial condition lies in the intermediate range, 0 < q0 < q∗

s0
, then there is a

continuum of possible price expectations for the next period which can be fulfilled
in equilibrium, so that there is a continuum of equilibrium trajectories starting at
q0 .

In many deterministic OLG models the equilibrium conditions do not determine
the initial conditions (prices and consumption at date 0) and these initial conditions
must be specified exogenously: in these models, the dimension of indeterminacy
is equal to the number of initial conditions which must be exogenously specified.
For the deterministic version of the model that we are studying the dimension of
indeterminacy is 1, since there is an equilibrium trajectory starting from any initial
price q0 for money such that 0 ≤ q0 ≤ q∗, where q∗ is the Golden Rule price.
In the stochastic case, not only is there an equilibrium starting at q0 ∈ [0, q∗

s0
],

but if 0 < q0 < q∗
s0

there is a continuum of such equilibrium paths. Thus the
indeterminacy associated with the choice of the expectation function is over and
above the indeterminacy present in the deterministic model.

The indeterminacy studied here has interesting connexions with the indetermi-
nacy created by sunspots. The literature on sunspots has analyzed the conditions
under which an economy with deterministic fundamentals (preferences and en-
dowments) admits stochastic equilibria in which agents co-ordinate their beliefs
on an exogenous stochastic process (see e.g. Chiappori and Guesnerie, 1991, or
Guesnerie and Woodford, 1992, for surveys). The exogenous state space (extrinsic
uncertainty) is introduced as a device to show that when agents believe that exoge-
nous events can influence the economic outcome, such beliefs can be self-fulfilling
– as a result the exogenous events end up influencing the equilibrium. The sunspot
literature has focused on conditions under which economies with deterministic
fundamentals have strongly stationary sunspot equilibria in which the equilibrium
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variables are functions of the extrinsic state. Because of this strong stationarity
requirement no explicit expectation function φ is needed to describe the equilibria.

Our motivation for introducing a state space is quite different – we study equi-
libria of economies in which the fundamentals are stochastic, and this brings with it
the natural state space required to describe the uncertainty. If agents’ endowments
are stochastic, then agents’ beliefs must depend on the state of nature and this “in-
trinsic uncertainty” creates a continuum of possible beliefs. However the argument
in the proof of Proposition 2 does not rely on the property that agents’ endowments
are random. Thus in the case where endowments are non-random (ω1

s = a,∀s and
ω2

s,s′ = b,∀s, s′) Proposition 2 shows that there is a continuum of sunspot equilib-
ria, stationary on the state space Q × S. However there is no strongly stationary
sunspot equilibrium i.e. one for which the price is a non-trivial function of the
exogenous state.5

The choice of an expectation function φ is less crucial if the asymptotic prop-
erties of the equilibria do not depend too much on the particular choice of φ. To
study these asymptotic properties we need to introduce some additional notation.

Any vector q ∈ Q̄ can be written as q = λ ◦ q∗ where q∗ = (q∗
1 , . . . , q

∗
S) is the

positive SE∗ price vector, λ = (λ1, . . . , λS) ∈ [0, 1]S is the vector of scale factors
relative to this price vector, and ◦ denotes the component-wise multiplication:
λ◦q∗ = (λ1q

∗
1 , . . . , λSq

∗
S). An expectation functionφ : Q̄×S → Q̄ has associated

with it a unique function ψ which determines the scale factors expected for next
period. We define the scale function for state s, ψs : [0, 1] → [0, 1]S , induced by
the expectation function φ, by:

ψs(λs) ◦ q∗ = φs(λsq
∗
s ) = φs(qs)

where ψs(λs) = (ψs1(λs), . . . , ψsS(λs)). The family of functions (ψs)s∈S can
be summarized by the function ψ : [0, 1]S × S → [0, 1]S defined by:

ψ(λ, s) = ψs(λs), ∀λ ∈ [0, 1]S , s ∈ S

The requirement that φ satisfies the equilibrium condition (5) is equivalent to the
requirement that ψ satisfies the condition

u′
1(ω

1
s − λsq

∗
s )λsq

∗
s =

∑

s′∈S

ρss′ u′
2(ω

2
ss′ + ψss′(λs)q∗

s′)ψss′(λs)q∗
s′ , (7)

∀ λs ∈ [0, 1], ∀ s ∈ S

If, for s, s′ ∈ S, we define the function

Γss′(x, y) =
u′

2(ω
2
ss′ + xq∗

s′)q∗
s′

u′
1(ω1

s − yq∗
s )q∗

s

, ∀x, y ∈ [0, 1]

5 It is well known that under Assumption A3 there is no non-trivial strongly stationary sunspot
equilibrium. This can be seen as a simple consequence of Proposition 1. For if y∗ is the Golden Rule
price of the deterministic model, namely the positive solution of u′

1(a − y∗)y∗ = u′
2(b+ y∗)y∗, then

q∗
s = y∗, ∀s ∈ S, is a stationary equilibrium (which is trivial) and by Proposition 1 it is unique.
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then (7) can be written as

λs =
∑

s′∈S

ρss′Γss′(ψss′(λs), λs)ψss′(λs), ∀λs ∈ [0, 1], ∀ s ∈ S, (8)

A rational expectations equilibrium generated by an expectation function φ:
[0, q∗] × S → [0, q∗] can thus be equivalently described by its associated scale
function ψ as:

q(σt) = λ(σt)q∗
st
, (9)

λ(σt, s
′) = ψsts′(λ(σt)),

∀σt = (s0 , . . . , st) ∈ Σt, ∀ t ≥ 0

where ψ satisfies (8).

Proposition 3. Let (q(σt))t≥0 be a rational expectations equilibrium associated
with an expectation function φ. (i) If φ is continuous and such that the associated
scale function ψ satisfies

λs ≥
∑

s′∈S

ρss′ψss′(λs), ∀λs ∈ [0, 1], ∀ s ∈ S (10)

then for almost all σ ∈ Σ the equilibrium path (qt(σ))t≥0 converges to a strongly
stationary equilibrium. (ii) If 0 ≤ q0 < q∗

s0
, equilibrium paths converge to the no-

trade equilibrium with positive probability, i.e. there existsΣ′ ⊂ Σ withP (Σ′) > 0
such that qt(σ) → 0 for all σ ∈ Σ′.

Proof. Let q0 be the initial condition with q0 = λ0q
∗
s0
, 0 ≤ λ0 ≤ 1 and let λ(σt)

be the stochastic process defined by (9), which can also be written in stochatic
process notation

λt+1(σ) = ψstst+1(λt(σ))

Note that the two strongly stationary equilibria of the economy, the no-trade and
the positive stationary equilibrium, are characterized respectively by λt = 0 and
λt = 1 for all t ≥ 0. Thus to prove convergence of an equilibrium path to a SE∗ we
need to prove that the sequence (λt(σ))t≥0 converges either to 0 or 1. Condition
(10) implies that for all t ≥ 0, λt ≥ E(λt+1|Ft), i.e. that the process (λt)t≥0 is a
supermartingale. Since it is bounded below by 0, for almost all σ ∈ Σ the sequence
(λt(σ))t≥0 converges. Let σ be a path on which the sequence converges and let
λ̄ ∈ [0, 1] denote the limit.

Let us show that for any s, s′, ψss′(λ̄) = λ̄. Note that

|ψss′(λ̄) − λ̄| ≤ |ψss′(λ̄) − ψss′(λt(σ))| + |ψss′(λt(σ)) − λ̄|
Since ρss′ > 0, with probability 1 the succession of states s and s′ occurs an infinite
number of times on a trajectory. Thus w.l.o.g we can assume that the trajectory σ
is such that for any T > 0 there exists τ ≥ T such that sτ = s, sτ+1 = s′. For
any such τ

|ψss′(λ̄) − λ̄| ≤ |ψss′(λ̄) − ψss′(λτ (σ))| + |λτ+1(σ) − λ̄| (11)
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Since ψ is continuous and λt(σ) → λ̄, for any ε > 0, there exist T > 0 such that
if τ ≥ T each term of the right side of (11) is less than ε. Since this is true for any
ε > 0 it follows that ψss′(λ̄) = λ̄.

Since ψ satisfies (8)

λ̄ =
∑

s′∈S

ρss′Γss′(λ̄, λ̄)λ̄ ⇐⇒ λ̄



1 −
∑

s′∈S

ρss′Γss′(λ̄, λ̄)



 = 0,∀s ∈ S(12)

If 0 < λ̄ < 1, then Γss′(λ̄, λ̄) > Γss′(1, 1) = u′
2(ω

2
ss′+q∗

s′ )q∗
s′

u′
1(ω1

s−q∗
s )q∗

s
and, since

∑
s′∈S

ρss′ Γss′ (1, 1) = 1, 1 − ∑
s′∈S ρss′Γss′(λ̄, λ̄) < 0 . Thus the only solutions to

(12) are λ̄ = 0 or λ̄ = 1, which proves that the equilibrium path converges either
to the no-trade equilibrium or to the positive SE∗.

(ii) Let λ̄(σ) denote the random variable (defined almost everywhere) which is
the limit of (λt(σ))t≥0. If λ0 = 0, then λt(σ) = 0 for all t and all σ ∈ Σ, so that
(ii) clearly holds. If 0 < λ0 < 1, by property (10), λt ≥ E(λt+1|Ft): it follows
that the sequenceE(λt) is non-increasing andE(λt) ≤ λ0 . Since λt(σ) converges
almost surely to λ̄(σ) and is dominated by the integrable constant function 1, by
the dominated convergence theorem, E(λt) → E(λ̄). Thus E(λ̄) ≤ λ0 , which
implies that λ̄(σ) can not be equal to 1 on a set of probability 1, and thus must be
equal to zero on a set of positive probability. ��

In order to use the martingale theorem to prove convergence of the equilibrium
paths, we had to impose condition (10) on the expectation function.6 The strength
of Proposition 3 depends on whether or not condition (10) seriously restricts the
admissible expectation functions. First note that this condition is not vacuous. Con-
dition (8), which is satisfied by any admissible function ψ, can be written as

λs = Es

(
Γs(ψs(λs), λs)ψs(λs)

)

= Es

(
Γs(ψs(λs), λs)

)
Es

(
ψs(λs)

)
(13)

+covs

(
Γs(ψs(λs), λs), ψs(λs)

)

where ψs(λs) denotes the S-vector (ψss′(λs))s′∈S , Γs(ψs(λs), λs) denotes the
vector (Γss′(ψss′(λs), λs))s′∈S andEs is the expectation with respect to the prob-
ability conditional on state s. Since λs and ψss′(λs) are less or equal to 1 and Γss′

is decreasing in both components, Es (Γs(ψs(λs), λs)) ≥ Es (Γs(1, 1)) = 1 with
a strict inequality if either λs or some component ofψss′ is strictly less than 1. Thus
if the covariance term is either non-negative or negative and small, the inequality

6 For any expectation function, the price process (qt) is a supermartingale with respect to the measure
P̃ on Σ induced by the Markov chain ρ̃ss′ = ρss′Γss′ (1, 1). Thus for a set of measure 1 with respect
to P̃ , the equilibrium paths qt(σ) converge. Unfortunately in the infinite horizon case a change of
conditional probability does not result in an “equivalent martingale measure” since the measure P̃ is
not absolutely continuous with respect to P : convergence on a set of measure 1 for P̃ essentially proves
nothing for the typical trajectory σ ∈ Σ under the measure P . We are indebted to Jean Francois Mertens
for pointing out this mistake in an earlier version of this paper.
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(10) will hold. In particular if ψss′(λs) is constant as in the expectation function
constructed in the proof of Proposition 2 then (10) is satisfied. (10) essentially
places restrictions on how different the scale factors for each future state can be.

When the scale factors are not constant, the greater the term Es

(
Γs(ψs(λs), λs)

)
,

the more negative the covariance term in (13) can be without violating (10). Intu-
itively since for given x, y, the function Γss′(x, y) increases when ω2

ss′ decreases
(or ω1

s increases), condition (10) will tend to be satisfied if the endowments of the
old are sufficiently small relative to that of the young. Although we do not have an
argument which applies to the general case, we can show that for log and power
utilities, if the endowments of the old are sufficiently small relative to those of the
young, then condition (10) is satisfied by any expectation function φ.

Example. Let S = 2, S = {a, b}, and assume that the shocks are i.i.d with
conditional probabilities ρa and ρb. The preferences of the representative agent
born at any node are defined by the utility function

U(x) = log(x1) + ρa log(x2
a) + ρb log(x2

b)

We assume that the endowments (ω1
a, ω

1
b , ω

2
a, ω

2
b ) satisfy Assumption 4 which, in

this case, reduces to ρa
ω1

a

ω2
a

+ ρb
ω1

b

ω2
b

> 1: if the endowments of the young are on

average greater that those of the old, then agents want to transfer forward. A strongly
stationary equilibrium is a solution of the system of equations

qa
ω1

a − qa
=

qb
ω1

b − qb
=

ρaqa
ω2

a + qa
+

ρbqb
ω2

b + qb

which is equivalent to the system

qa
ω1

a

=
qb
ω1

b

, qa



 1
ω1

a − qa
− ρa

ω2
a + qa

− ρb

ω2
bω1

a

ω1
b

+ qa



 = 0 (14)

which has the solution q = 0 and a positive solution q∗ whose analytical expression
is too complicated to be interesting. We will however use the fact that whenω2 → 0
this solution tends to (ω1

a/2, ω
1
b/2).

An expectation function φ = (φa, φb) is such that, for qa ∈ [0, q∗
a], φa selects

a point in the set

Φa(qa) ∩ [0, q∗] =
{

(q′
a, q

′
b) ∈ [0, q∗]

∣
∣
∣
∣
ρaq

′
a

ω2
a + q′

a

+
ρbq

′
b

ω2
b + q′

b

=
qa

ω1
a − qa

}

and, for qb ∈ [0, q∗
b ], φb selects a point in the set

Φb(qb) ∩ [0, q∗] =
{

(q′
a, q

′
b) ∈ [0, q∗]

∣
∣
∣
∣
ρaq

′
a

ω2
a + q′

a

+
ρbq

′
b

ω2
b + q′

b

=
qb

ω1
b − qb

}

From the analysis above we know that the sets Φa(qa)∩ [0, q∗] and Φb(qb)∩ [0, q∗]
are non empty if 0 ≤ qa ≤ q∗

a and 0 ≤ qb ≤ q∗
b .
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When the price vectors in the cube [0, q∗] are expressed in terms of the scale
factors, q = λ ◦ q∗ with λ ∈ [0, 1]2, a function φ is equivalent to a scale function
ψ where, for each λa ∈ [0, 1], ψa selects a point in

Ψa(λa) ∩ [0, 1]2 =
{

(λ′
a, λ

′
b) ∈ [0, 1]2

∣
∣
∣
∣
ρaλ

′
a

e2a + λ′
a

+
ρbλ

′
b

e2b + λ′
b

=
λa

e1a − λa

}

and for each λb ∈ [0, 1] ψb selects a point in

Ψb(λb) ∩ [0, 1]2 =
{

(λ′
a, λ

′
b) ∈ [0, 1]2

∣
∣
∣
∣
ρaλ

′
a

e2a + λ′
a

+
ρbλ

′
b

e2b + λ′
b

=
λb

e1b − λb

}

where ei
s denote the normalized endowments: ei

s = ωi
s/q

∗
s , i = 1, 2, s = a, b.

Note that by (14) e1a = e1b , so that Ψa(λ) = Ψb(λ) for any λ ∈ [0, 1] . Furthermore
since the function x → x

α+x is concave for all positive values of α, the level curves
Ψs(λ) (s = a, b) have the shape of standard indifference curves. A selection ψs

is represented by a curve in the box [0, 1] × [0, 1], ψs(λ) being at the intersection
of the curve with the level curve Ψs(λ). Figure 1 represents one of these possible
selections. While the level curves Ψa(λ) and Ψb(λ) are the same, the selections ψa

and ψb can differ.
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2
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A

λ
a

λ
b

O 

Figure 1

When the selection ψs is given by the intersection of the level curves with the
diagonal of the box OABC then the covariance term in (13) is zero and (10) is
satisfied. The further the selection ψs is from the diagonal, the greater the variance
of ψs and the greater the likelihood that inequality (10) is violated. The maximum
variance is obtained when the (scale) expectation function selects the pointA orB
of Figure 1. The pointAwith coordinates (1, 0) is on the level curve corresponding
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to λ1 = ρae1
a

1+ρa+e2
a

, while the point B with coordinates (1, 0) is on the level curve

corresponding to λ2 = ρbe1
b

1+ρb+e2
b

. If the inequality (10) is to be satisfied when λs =
λ1 and the expectation function selects A, or when λs = λ2 and the expectation
function selects B, then the following inequalities must be satisfied

e1s ≥ 1 + ρs + e2s, s = a, b (15)

When these inequalities are satisfied any expectation functionψ satisfies inequality
(10).

Lemma 1. If conditions (15) are satisfied, then (10) holds for any expectation
function ψ.

Proof. See Appendix.

Since ei
s = ωi

s/q
∗
s , inequalities (15) involve the SE∗ prices which are difficult

to express in closed form. However when the endowments of the old tend to zero,
q∗ → (ω1

a/2, ω
1
b/2), so that e1s → 2 > 1 + ρs and in the limit (15) is satisfied with

strict inequalities. Thus there exist ε such that if ω2
s ≤ ε, s = a, b, then (15) hold. In

this case Proposition 3 implies that for any admissible expectation function almost
all equilibrium paths converge to an SE∗. Note that the equilibrium path may not
converge with probability 1 to the no-trade equilibrium. If the expectation function
selects scale factors on the segment AC or BC and if the initial condition satisfies
λ0 ≥ λ1 or λ0 ≥ λ2 then, with positive probability, some paths converge to the
positive SE∗ (1, 1).

For power utilities, conditions analogous to (15) can be derived, expressing the
condition that inequality (10) is satisfied if the expectation function selects point
A and/or B of Figure 1 and Lemma 1 holds with this appropriate version of (15).
However it is no longer possible to compute explicitly the limit of the price vector
q∗ when ω2 → 0. For all numerical examples that we considered we found that
the appropriate version of (15) holds in the limit with strict inequalities. Thus it
seems that, at least when ω2 is small, convergence of the equilibrium path to an
SE∗ is independent of the expectation function chosen–although the probability
of converging to the no-trade or to the positive SE∗ may depend on the choice of
the expectation function.

3 The model with equity

The problem of indeterminacy disappears if the asset used for intergenerational
transfer gives positive instead of zero dividends, i.e., if the asset is “equity”7 instead
of being “money”. To see this, consider the same economy as in Section 2, with
agents’ characteristics satisfying Assumptions 1–3, the only change being that the
infinitely-lived asset gives a dividend of Ds ≥ 0 units of good at every date when
the state of nature is s, for all s ∈ S, with at least one strict inequality. At date 0 the
asset, whose supply is normalized to 1, belongs to the representative agent of the

7 It can be the equity of any productive asset like “land” or a Lucas “tree”.
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old generation and is then exchanged at each date between the old and the young
agent. The budget constraint of the representative agent born at node σt is now

x1(σt) = ω1(σt) − q(σt)z, z ∈ |R (16)

x2(σt, s
′) = ω2(σt, s

′) + (Ds′ + q(σt, s
′))z, s′ ∈ S (17)

where we retain the notation q(σt) for the price of the asset. We assume free disposal
of the (property right to the) asset so that the price q(σt) must be non-negative. An
equilibrium price process for the economy with equity is a process (q(σt))σt∈Σ

such that q(σt) ≥ 0 for all σt ∈ Σ and

u′
1(ω

1
st

− q(σt))q(σt) =
∑

s′∈S

ρsts′u′
2(ω

2
sts′ +Ds′ + q(σt, s

′)) (EQ)

(Ds′ + q(σt, s
′)),∀σt ∈ Σ

A strongly stationary equilibrium price vector is a non-negative vector (q∗
s )s∈S

such that

u′
1(ω

1
s − q∗

s )q∗
s =

∑

s′∈S

ρss′u′
2(ω

2
ss′ +Ds′ + q∗

s′)(Ds′ + q∗
s′), ∀s ∈ S (E∗

Q)

Proposition 4. Under Assumptions 1-3 the economy with equity has a unique
equilibrium which is a positive strongly stationary equilibrium.

Proof. Let (q(σt))σt∈Σ be an equilibrium price process. Let σt be a node where
the current shock is s. To be affordable by the young the price of the asset at a
successor node (σt, s

′) of σt must be strictly less than ω1
s′ . As before let q(0) = ω1

be the vector of the initial endowments of the young. Then by monotonicity of the
functions y → u′

1(ω
1
s − y)y and y → u′

2(ω
2
ss′ + y)y, q(σt) must be less than q(1)s ,

where q(1)s is defined by

u′
1(ω

1
s − q(1)s )q(1)s =

∑

s′∈S

ρss′u′
2(ω

2
ss′ +Ds′ + q

(0)
s′ )(Ds′ + q

(0)
s′ ), ∀s ∈ S

Note that q(1) � q(0). If we define the sequence (q(n))n≥0 by induction

u′
1(ω

1
s − q(n+1)

s )q(n+1)
s =

∑

s′∈S

ρss′u′
2(ω

2
ss′ +Ds′ + q

(n)
s′ )(Ds′ + q

(n)
s′ ), ∀s ∈ S

then the equilibrium price process must be such that q(σt) ≤ q
(n)
st for all n and

all σt ∈ Σ. Since q(1) � q(0) the sequence is decreasing, and since it is bounded
below by zero it converges to a vector q∗ satisfying (E∗

Q). Since a vector with zero
components cannot satisfy (E∗

Q), it follows that q∗ � 0 and q∗ is a positive SE∗.

Since an equilibrium price process must satisfy q(σt) ≤ q
(n)
st for all n and all

σt ∈ Σ, it must be such that q(σt) ≤ q∗
st

for all σt ∈ Σ.
Since an equilibrium price process (q(σt))σt∈Σ must satisfy (EQ) at each node

and the right side of (EQ) is strictly positive, the price must be positive at each



452 M. Magill and M. Quinzii

node. Let q̃(0) = 0 (the zero vector of |RS). Since the prices at the successor nodes
(σt, s

′) of σt must be strictly positive, by monotonicity, q(σt) must be greater than
q̃
(1)
s , where q̃(1)s is defined by

u′
1(ω

1
s − q̃(1)s )q̃(1)s =

∑

s′∈S

ρss′u′
2(ω

2
ss′ +Ds′ + q̃

(0)
s′ )(Ds′ + q̃

(0)
s′ ), ∀s ∈ S

Note that q̃(1) � q̃(0). If we define the sequence (q̃(n))n≥0 by induction

u′
1(ω

1
s − q̃(n+1)

s )q̃(n+1)
s =

∑

s′∈S

ρss′u′
2(ω

2
ss′ +Ds′ + q̃

(n)
s′ )(Ds′ + q̃

(n)
s′ ), ∀s ∈ S

then the equilibrium price process must be such that q(σt) ≥ q̃
(n)
st for all n and

all σt ∈ Σ. Since q̃(1) � q̃(0) the sequence is increasing, and since it is bounded
above by q(0) it converges to a SE∗ price vector q̃∗ � 0. Any equilibrium price
process must be such that q(σt) ≥ q̃∗

st
for all σt ∈ Σ. Combining the two previous

steps we find that all the equilibria must satisfy

q̃∗
st

≤ q(σt) ≤ q∗
st
, ∀ σt ∈ Σ (18)

For a vector q ∈ |RS such that 0 ≤ q � ω1 define the matrix

Π̂(q) = [π̂ss′(q)]s,s′∈S =
[
ρss′u′

2(ω
2
ss′ +Ds′ + qs′)

u′
1(ω1

s − qs)

]

s,s′∈S

If q is a SE∗, it satisfies

(I − Π̂(q))q = Π̂(q)D

Since Π̂(q) is a positive matrix and D > 0, Π̂(q)D � 0. Thus for the vector
q � 0, (I−Π̂(q))q � 0. It follows that the matrix I−Π̂(q) is diagonal dominant,
invertible, and (I − Π̂(q))−1 = I + Π̂(q) + . . . + Π̂n(q) + . . . (see McKenzie,
1960; Takayama, 1974). Thus for any SE∗ vector q

q = (Π̂(q) + Π̂2(q) + . . .+ Π̂n(q) + . . .)D (19)

Consider the stationary equilibria q∗ and q̃∗. Since q∗ ≥ q̃∗, and since the functions
q → π̂ss′(q) are decreasing, Π̂(q∗) ≤ Π̂(q̃∗). By (19), q∗ ≤ q̃∗. Combining with
(18) gives q∗ = q̃∗, so that the equilibrium is unique. ��

Note that, for an economy with equity, the existence of a positive SE∗ does
not require Assumption 4, or rather its modified version λf (Π̂(0)) > 1. Even if
the agents have greater endowments in old age than in their youth, there is always
a positive price – perhaps small – at which young agents will want to buy an asset
yielding positive dividends.
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From the positive point of view, the model with positive dividends is better be-
haved than the model with money, since it does not exhibit the same indeterminacy.8

It would be interesting to know if there are assumptions under which the uniqueness
result extends to the more complicated models with heterogenous agents and sev-
eral securities – typically bonds and equity – which are used in financial economics.
This is left for future research.

Appendix

Proof of Lemma 1. Since e1a = e1b and for all λ ∈ [0, 1], Ψa(λ) = Ψb(λ) we omit
the subscript a or b from e1, Ψ and λ. Because of the shape of the level curves, if the
2 points at which a level curve Ψ(λ) intersects the boundary of the boxOABC are
below the line with equation ρaλ

′
a +ρbλ

′
b = λ, i.e. if these points have coordinates

such that ρaλ
′
a + ρbλ

′
b ≤ λ, then the same inequality will hold for all the points on

the level curve Ψ(λ) which are inside the box.
The level curve Ψ(λ) intersects OB at the point with coordinates λ′

a(λ) =
0, λ′

b(λ) = λe2
b

ρbe1−λ(1+ρb)
, if λ is such that λe2

b

ρbe1−λ(1+ρb)
≤ 1 or equivalently

λ ≤ λ2 =
ρbe

1

e2b + 1 + ρb
(20)

Note that when (15) is satisfied, λ2 ≥ ρb. When λ ≥ λ2 then Ψ(λ) does not interset
OB and it intersects BC at the point (λ′

a(λ), 1) where λ′
a(λ) is the solution of the

equation

ρaλ
′
a

e2a + λ′
a

=
λ

e1 − λ
− ρb

e2b + 1
(21)

Let us show that in both cases the inequality ρaλ
′
a(λ) + ρbλ

′
b(λ) ≤ λ holds. If

λ ≤ λ2, then ρaλ
′
a(λ) + ρbλ

′
b(λ) = ρbλ

′
b(λ) and

ρbλ
′
b(λ) =

λρbe
2
b

ρbe1 − λ(1 + ρb)
≤ λρbe

2
b

ρbe1 − λ2(1 + ρb)
=
λρbe

2
b

λ2e2b
=
λρb

λ2
≤ λ

since ρb/λ2 ≤ 1. If λ ≥ λ2, ρaλ
′
a(λ) + ρbλ

′
b(λ) = ρaλ

′
a(λ) + ρb. Differentiating

(21) gives
d

dλ
(λ′

a(λ)) =
e1(e2a + λ′

a(λ))2

e2a(e1 − λ)2
, which, since λ′

a(λ) is an increasing

function of λ, is increasing. Thus the function λ → ρaλ
′
a(λ) + ρb − λ is convex

and if it is non-positive for λ = λ2 and for λ = 1 it is non-positive in the interval
[λ2, 1]. λ′

a(λ2) = 0 and λ2 ≥ ρb implies that it is non-positive for λ = λ2, while
λ′

a(1) = 1 implies that it is non-positive for λ = 1. The analysis for the intersection

8 However the positive SE∗ of the model with equity has less good normative properties than that of
the model with money. Since λf (Π̂(q∗)) < 1, it can be deduced from Aiyagari and Peled (1991) that
the equilibrium is Pareto optimal, or dynamically efficient, but is not optimal in the set of all feasible
stationary allocations. This lack of the “Golden Rule property” can be deduced from Peled (1984) or
seen directly by considering a transfer dx = (dx1, . . . , dxS) � 0 from the old to the young, where
dx is an eigenvector associated with the eigenvalue λf (Π̂(q∗)).
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of Ψ(λ) with either OA or AC is similar and leads to the result that the inequality
(10) holds for any functionψ which selects points on the boundary or in the interior
of OABC. ��
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