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This paper proves a new fixed-point theorem for establishing generic existence of equilibrium 
with incomplete markets. The theorem can be stated in two equivalent forms: first as a tixed- 
point theorem on the Grassmanian of k-dimensional subspaces of R”: second as a generalisation 
of the Borsuk-Ulam theorem. The proof relies on the methods of algebraic topology: 
geometrically existence follows from the global twisting in the tibres of a naturally induced 
vector bundle. 

1. Introduction 

This paper lays out a general approach to the problem of establishing the 
generic existence of equilibrium in an economy with incomplete markets. The 
general equilibrium model that we study is the model of simultaneous 
equilibrium on a system of real spot markets and financial markets for assets 
studied in Magi11 and Shafer (1990). The basic model admits a rich variety of 
financial market structures and includes the Arrow-Debreu model with 
complete contingent markets [Debreu (1959, ch. 7)] as a special case. 
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Conference ‘Incomplete Markets and Asymmetric Information’ at the University of Paris- 
Dauphine, June 1986. These first drafts contained proofs of theorems (B**,B*,B’,B) and were 
based on the reduction of the equilibrium existence problem to the vector bundle problem 
indicated in Lemma 3. The subsequent work of Hirsch et al. (1990) prompted the formulation in 
terms of theorems (A , , , ** A* A’ A). As Theorem D’ indicates these two sets of theorems lead to 
the ‘same’ underlying vector bundle problem so that existence depends on the same topological 
property (non-zero Euler class) of the ‘same’ vector bundle. 
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In an elegant paper Duflie and Shafer (1985) have recently established 
existence of equilibrium in the same model using mod 2 degree theory and an 
extension of Balasko’s (1975) existence argument based on the projection 
from the equilibrium manifold onto the space of endowment-asset structure 
pairs. Our work, which was undertaken simultaneously, was motivated by an 
attempt to find a general fixed-point argument for existence which would 
reduce to the standard Brouwer fixed-point approach in the case of complete 
markets. In the analysis which follows we prove a general fixed-point theorem 
(in several eqivalent forms) from which the generic existence of equilibrium 
follows directly. This existence theorem turns out to generalise a classical 
theorem of topology and contains the Brouwer Theorem as a special case. 

The basic idea behind the generic existence proof can be broken down into 
three steps. The first is to introduce the definition of a proper pseudo- 
equilibrium and to show that the problem of proving the existence of 
equilibrium is equivalent to proving the existence of a proper pseudo- 
equilibrium. This concept first appears in section 6 in Magi11 and Shafer 
(1990). The basic step in arriving at a pseudo-equilibrium is an arbitrage 
argument which allows asset prices and asset trades to be eliminated so as to 
redefine each agent’s budget constraint in such a way that the basic cause for 
discontinuity in the budget correspondence, which can lead to non-existence, 
is removed. The definition of a pseudo-equilibrium brings with it a trial 
subspace to which agents must confine their income transfers arising from 
trade on spot markets. More precisely, a pseudo-equilibrium consists of a 
price-subspace pair for which the price clears the spot market, while the 
(trial) subspace includes the actual subspace of income transfers achievable by 
trading in assets. In a proper pseudo-equilibrium the trial subspace is 
required to coincide with the actual subspace of income transfers. 

The second and fundamental step consists in showing that a pseudo- 
equilibrium exists. This leads to a new type of fixed-point problem. In the 
basic model there are two time periods (t = 0,l) and n states of nature at date 
1. If there are k assets, then generically trading in assets allows agents to 
transfer income in a k-dimensional subspace L of the Euclidean space R”. 
Thus the fixed-point problem is posed in the space of prices (the simplex) 
and k-dimensional subspaces of R”. 

There are several ways of parametrising the set of all k-dimensional 
subspaces of R”. The first is to consider directly the Grassmanian manifold 
G n*k of k-dimensional subspaces of R”: a point L in Gnqk is simply a 
k-dimensional subspace: this is the approach of Duftie and Shafer (1985). We 
show that the problem of finding an equilibrium subspace reduces to a fixed- 
point problem on the Grassmanian which is similar to the standard tixed- 
point problem for an equilibrium price on the simplex. In fact the basic 
Grassmanianfixed-point theorem (A and A’) can be viewed as an analogue for 
the Grassmanian of Brouwer’s theorem for the simplex in that it ‘almost’ 
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asserts that every mapping of the Grassmanian into itself has a fixed-point 
(see Remark 6). A fixed-point of the induced asset subspace return function is 
then an equilibrium subspace. 

The second approach uses the Stiefel manifold OnVnPk of n-k orthonormal 
vectors in R”: an element Q of 0 ‘vnpk is simply an (n-k) x n orthonormal 
matrix: this is the approach introduced in Magi11 and Shafer (1990). Since the 

span of the rows of Q is an n-k-dimensional subspace, its orthogonal 
complement is a k-dimensional subspace of R”. In this way by letting Q vary 
over the Stiefel manifold On*n-k we can generate all k-dimensional subspaces 
of R”. In this case the map that needs to be zero to obtain an equilibrium 
subspace is the projection onto the orthogonal subspace of the columns of 
the basic asset returns matrix (see p. 5 1). Since the n-k row vectors of Q can 

be rotated within the subspace that they span without altering this subspace, 
the map needs to satisfy an equiuariance property under the action of the 
orthogonal group O,_,. In this way the subspace equilibrium problem on the 
Stiefel manifold leads naturally to a theorem (B and B’) which generalises the 
classical Borsuk-Ulam Theorem [Guillemin and Pollack (1974, pp. 91-93), 
Spanier (1966, p. 266)]. 

In fact we show that Theorems A and B (A’ and B’) are equivalent: either 
can be used to derive the other. We do so by showing that the subspace 
fixed-point problem is equivalent to the property (Theorem C) that a certain 
canonical vector bundle admits no non-zero section. The problem is thus 
reduced to the simplest topological property of a naturally induced vector 
bundle. 

The topology of vector bundles is well-known and is the subject of an 
extensive theory known as the theory of characteristic classes [see Husemoller 
(1975), Milnor and Stasheff (1974), Osborn (1982)]. Intuitively the character- 
istic classes of a vector bundle are cohomology classes which measure the 
global twisting of the fibers in the bundle. The top class is the Euler class: 
when the Euler class is not zero there is a twisting of the fiber as a point 
completely traverses the zero section which prevents any section from being 
pulled apart from the zero section: a non-zero Euler class is an obstruction to 
any attempt to pull a section apart from the zero section. It is this property 
that ensures the existence of an equilibrium subspace and forms the basis for 
the proofs of all the theorems. 

In this paper we establish the existence result using the methods of 
algebraic topology: we use cohomology theory to show that the Euler class of 
the canonical induced vector bundle is non-zero. An alternative geometric 
approach which is exploited in Hirsch et al. (1990) involves proving directly 
that the self-intersection number of the zero section is non-zero. Thus in the 
latter paper cohomology theory is replaced by intersection theory. 

Having established the existence of a pseudo-equilibrium, the third step is 
the most straightforward and reduces to an application of Transversality 
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Theory: it is shown that generically in the space of endowments and asset 
structure pairs every pseudo-equilibrium is a proper pseudo-equilibrium. 

The plan of the paper is as follows. In section 2 we outline the basic 
economic model of equilibrium, reducing the problem of establishing the 
existence of equilibrium to the problem of proving the existence of a proper 
pseudo-equilibrium. In section 3 we show that the existence of a pseudo- 
equilibrium can be formulated as a fixed-point problem either on a 
Grassmanian or a Stiefel manifold and we state the fixed-point theorems (A 
and B) which imply existence of a pseudo-equilibrium. Section 4 studies the 
equilibrium subspace problem and shows how it can be reduced to a vector 
bundle problem. Sections 5 and 6 prove the basic fixed-point theorems. 

2. Reduction to pseudo-equilibrium 

In this section we will lay out the basic general equilibrium model of an 
economy with real and financial markets in which the asset structure is 
incomplete.’ We introduce the concept of equilibrium for such an economy: 
in this original form the concept is difficult to work with. By a sequence of 
steps we transform this concept into an equivalent concept of equilibrium 
which we call a proper pseudo-equilibrium. This leads us directly to the 
general fixed-point formulation of equilibrium that we seek. 

Consider an economy over two time periods (t =O, 1). To reflect uncer- 
tainty about the future let there be n possible states (s= 1,. . . , n) that can 
occur at date 1: at t=O it is not known which state will occur and at t= 1 
‘nature’ selects some state s. For notational convenience we can let t =0 
denote state s = 0. There are m agents (i = 1,. . . , m) and 1 goods (h = 1,. . . , I) in 
each state s=O,..., n; we let r=l( 1+ n) denote the total number of goods. 
Each agent i has an initial endowment w’=(w’(O), w’(l),. . ., w’(n)) E R’, + and 
chooses a vector of consumption xi =(x’(O), xi(l), . . . , x’(n)) E R’+. Agent i’s 
preferences are represented by a utility function ui: R’+ -+R, i = 1,. . . , m. 

Assumption U (utility function). Each utility function ui, i= 1,. . . , m satisfies: 

(i) uie%?(R’I+), u’~%‘~(Rr++); 

(ii) Du’(x) E R’+ + Vx E Rr+ +; 

(iii) hTD2ui(x)h<OVh#0 such that Du’(x)h=O, VXER’, +; 

(iv) If U’(~)={x~R’,)u’(x)~u’(~)}, then mcR:+, VEER;.. 

The market structure is as follows. There is a spot market for each of 
the 1 goods at t=O and in each state s=l,...,n at t=l: let p= 

(P(O),P(l), *. .? p(n))E R*, denote the induced vector of spot prices. Sometimes 

1 For a fuller analysis of this model with applications to various different types of financial 
markets like futures markets and security markets for equity of firms, see Magi11 and Shafer (1990). 
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it will be convenient to decompose the price vector p into two components, 
for t = 0,l respectively: p = (p,,, pl) = (p(O),(p(s)):, 1). A similar decomposition 
will be used for the endowment and consumption vectors wi=(wb, w’;), 
xi =(x& xi). There are k asset markets with a vector of asset prices 

q=(q1,..., qk) E Rk. One unit of asset j (j = 1,. . . , k) is a contract promising 
delivery of ajh(s) units of good h in state s, h= 1,. . . ,I, s= 1,. . . , n. Let 
A(s)=(aj,(s), j= l,..., k, h= l,..., I) denote an 1 x k matrix for each s = 1,. . . , n 
and let A=(A(l),..., A(n)) E R”, where v= ikn. Thus A summarises the asset 
structure of the economy. Define the n x k matrix V(p; A) =p q A= 

(p(s)A(s)):=,. Let p1 0 x1 =(p(s)x(s)):,,, then the opportunity set of agent i 
who buys zi=(z;, . . . , z:) E Rk units of the k assets is given by 

p(O)(x(O) - w’(0)) = - qz’ 

p1 0 (x1 - w;) = V(p,; A)z’ ’ 
(1) 

and B(p, q; wi) = l,Jz,ERk W,,(p,q; w’) is the budget set of agent i. Let 
&((u’,w’), A) denote the resulting economy in which agent i has utility 
function-endowment pair (u’, w’) and the asset structure is A. 

Definition I. An equilibrium for the economy b((u’, w’), A) is a pair ((Xi, Z’), 
(p, 4)) E R’;’ x Rmk x R’, x Rk such that 

(i) x’= argmax u’(x’) and ZiEB,i(p,q; w’), i=l m ,..., 
x’El(p,q;w’) 

(ii) i$1 (Xi-w’)=O, 

(iii) igl z’=o. 

Remark I. Let w=(w’ ,. . . , w”‘). It is known that (ui) satisfying Assumption 
U and (w, A) E Ry+ x R’ can be chosen such that no equilibrium exists [see 
Hart (1975) and Magi11 and Shafer (1990)]. Our object is to show that, for 
any fixed choice of (ui) satisfying Assumption U, an equilibrium exists for 
most (w, A) E Ry+ x R’. 

The strategy of the reduction scheme to a pseudo-equilibrium can be 
explained as follows. Non-existence of equilibrium arises from the non- 

compactness of the portfolio trades (zi) and the discontinuity of the budget 
correspondence p~B(p,q; w’): the latter arises from changes in the rank of 
the matrix V(p,; A) in eq. (2) as date 1 spot prices p1 vary, reflecting changes 
in the dimension of the subspace of income transfers spanned by the columns 
of the matrix V(p).* These two difficulties will be circumvented in two steps. 

First, we eliminate the portfolio trades and asset prices ((z’),q): the idea here 

*Sometimes it is convenient to replace p, by p in the expression V(.) with the understanding 
that it does not depend on p,,. 



44 S. Y Husseini et al., Existence of equilibrium with incomplete markets 

is that since assets promise to deliver goods at date 1, their prices must be 
related to the spot prices in such a way as to present no arbitrage 
opportunities to agents. This natural economic condition allows asset prices 
as well as asset trades to be eliminated from the budget equations [the 
analysis here follows that in Magi11 and Shafer (1990)]. This first step leads 
us to the concept of a no-arbitrage equilibrium. 

Second, we replace the actual subspace of income transfers (V(p)) made 
possible by trading in the assets, when spot prices are p, by a fixed trial 
subspace L which is independent of p. Clearly such a trial subspace remains 
fictitious unless in equilibrium (V(p))=L. This second step leads to the 
concept of a regular pseudo-equilibrium. 

For any vector y, let y 2 0 denote y,zO Vi and y,>O for some j. The 
right-hand side of eq. (1) can be written more simply in terms of the matrix 

W(P? 4) = L&I. 

Definition 2. q is a no-arbitrage asset price relative to p if there does not 
exist a portfolio trade ZE Rk which generates a portfolio with a semipositive 
return W(p, q)z 2 0. 

Lemma 1. If q is a no-arbitrage asset price relative to p, then there exists 
BE R”,+,’ such that q=cI= 1 &p(s)A(s), 8=(1/P& 

Proofi This is an immediate consequence of the separation theorem [Gale 
(1960, Cor. 2, p. 49)] which asserts that for any (n+ 1) x k matrix W exactly 
one of the following holds. Either there exists z E Rk such that Wz 2 0 or there 
exists j3 E R”=,’ such that b’W=O. 0 

Remark 2. If ((Xi, z’),(& 4)) is an equilibrium and if we define p=bo p, then 
((Xi,?), (p, 4)) is an equilibrium: this simply expresses the fact that period 1 
spot prices can be resealed without affecting the equilibrium. 

It is clear, however, that in an equilibrium ((Xi,,?),& 4)) the asset price 4 
must be a no-arbitrage price relative to p. This suggests using a fl defined by 
Lemma 1 to rescale spot prices. If we do this note that the period 0 budget 
constraint becomes 

p(O)(x(O)--w’(O))= -qz’= - i p(s)A(s)z’= - i, p(s)(x(s)-w’(s)) 
i=l s= 1 

which is equivalent to p(x- wi) =O. The period 1 budget constraint can then 
be written as p1 0 (x1 - wi) E (V(p)), where (V(p)) denotes the subspace of R” 
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spanned by the k columns of V(p). Each agent i’s budget set has thus been 
reduced to the form 

G?(p; wi) = (x E R: \p(x - w’) = 0, p1 0 (x1 - w;, E (V(p)>) i=l,...,m. 

(2) 

This leads to the following simplified concept of equilibrium. 

Definition 3. A no-arbitrage equilibrium for the economy 8((ui, wi),A) is a 
pair ((~‘),p) such that 

(i) Xi = arg max u’(x’), i=l , . . . , m, 
x’eB(p; w’) 

m 
(ii) i;I (Xi- wi) =o. 

Remark 3. Thus given an equilibrium ((Xi,Fi),(p, 4)) there exists /? such that 
if p=flo p, then ((Xi),p) is a no-arbitrage equilibrium. Conversely if ((z?),p) is 
a no-arbitrage equilibrium and if we define ((Fi),q) by 

V(p)2= p1 q (Xi, - w’;), i = 2,. . . , m, 

fl = _ f si, 4= i P(+W 
i=2 s=l 

then ((?,Fi),(p,q) is an equilibrium. Thus the problem of establishing the 
existence of an equilibrium has been reduced to the problem of establishing 
the existence of a no-arbitrage equilibrium. 

Remark 4. There is still some freedom in the choice of p^ which it is 
- - 

convenient to exploit. Let ((Xi,f’),(p,q)) be an equilibrium and consider the 
constrained maximum problem solved by each agent i. From the first-order 
conditions for the Lagrangean 

L’(x’, 2,/i’) = u’(x’) - nb[p(o)(xi(o) - w’(0)) + (?z’] 

We note that if we choose p^=p where &=( l/&)Ai, then 

Xi = argmax u’(x’) where B(p; wi) = (x E R’, Ip(x - w’) = 0} (3) 
XiPB(p; w’) 
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so that agent i can choose his consumption vector as if he faced complete 
contingent markets. 

If we choose p^=,!?‘, then we obtain the following concept of equilibrium. 

Definition 4. A normalised no-arbitrage equilibrium for the economy 
&‘((ui, wi), A) is a pair ((Xi), p) such that 

(i) X’ = arg max u’(x’), Xi = argmax u’(x’), i=2,...,m, 
x’ EB(p; WI) x’El(p; W’) 

(ii) j1 (Xi-w’) =o. 

Our final step consists in replacing the actual subspace of income transfers 
(V(p)) achievable by trading in assets, with a trial subspace L. When there 
are k assets, then generically3 the actual subspace (V(p)) will be a k- 
dimensional subspace of R”. 

If we are to find an appropriate subspace we will need to have at our 
disposal a way of parametrising such subspaces so as to generate a sufficiently 
rich family of subspaces from which to seek out an equilibrium one. We 
consider two ways of doing this. The first is to use the approach of Duffie 
and Shafer (1985). This consists in considering the Grassmanian manifold G”*k 
of all k-dimensional subspaces of R”. A point LE G”sk is simply a k- 
dimensional subspace. 

If we examine the budget sets (2) and (3) of agents in a normalised no- 
arbitrage equilibrium, we note that we can choose one more normalisation of 
spot prices. Let us do this in the standard way of placing p in the non- 
negative simplex 
-&pi=l). w 

d;-‘={pER:ICi=,pi=l}, letting dy:={p~R’,+) 
e are now ready to complete the tinal step in the derivation of 

a pseudo-equilibrium. Replacing the subspace (V(p)) in the budget set (2) by 
the subspace L E Gn*k, we obtain a budget correspondence B: AT 1 x Gnqk x 
R: .+R:, 

B(p, L; wi) = {x E R’, Ip(x - w’) = 0, p1 •I (x1 - w;) E L}, i=2 , . . . , m. (4) 

Definition 5. A pseudo-equilibrium for the economy &((u’, w’), A) over the 
Grassmanian is a pair ((Xi), (p, L)) E R’;’ x A:-: x GnTk such that 

(i) X’ = argmax u’(x), Xi = argmax u’(x’), i=2 , . . . , m, 
x’EB(p;w’) XiEiJ(&E ; W’) 

(ii) f (Xi-ww’)=O, 
i=l 

31n the space of spot prices and asset structures (p, A). 
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(iii) (VF))cL. 

A pseudo-equilibrium is proper if 

(iii’) (V(p)) = L 

The second way of parametrising k-dimensional subspaces of R” is perhaps 
less intuitive, but intimately related. Suppose we choose an (n-k) x n 
orthonormal matrix Q, then (QT), the span of the columns of the transpose 
of Q, is an n-k-dimensional subspace of R”. The orthogonal decomposition 
R”=(Qr) @(Q’)’ leads to a k-dimensional subspace (Q’)‘. We can 
generate all k-dimensional subspaces of R” in this way by letting Q vary over 
the Stiefel manifold On*n-k= {Q E R(“-k)nlQQT = I> of all (n-k) x n orthonor- 
ma1 matrices. Clearly there are many points QEO”*“-~ which generate the 
same subspace. In fact if we let O,_I, denote the orthogonal group of 
(n-k) x (n-k) orthogonal matrices, then 

(Q'>=(kQ)=) vgEO,-k. 

We will need to add this condition as an extra restriction whenever Q 
appears in the analysis, to be sure that the mathematical formulation depends 
only on the subspace in question and not on its particular representation. 

If we use the Stiefel manifold representation for subspaces, then when we 
replace the subspace (V(p)) in (2) by a subspace (Q’)’ with QEO”*“-~, we 
obtain a budget correspondence b: A’,- ’ x On,n-k x Rr+ + --+R’, , 

(5) 

b(p,Q;w’)={xER;Ip(x-w’)=O, pl~(x,-ww’,)~(QT)‘}, 

i=2,...,m, (6) 

where in view of (5), b(p, - ; wi) is O,_, invariant: 

bh sQ; w’) = b(p, Q; w’), Vg E 0, -k. (7) 

Definition 6. A pseudo-equilibrium for the economy b((u’, w’), A) over the 
Stiefel manifold is a pair ((X’),(p, Q)) E R’;’ x A’,-: x O”*“-k such that 

(9 

(ii) 

(iii) 

X’ =argmax a’(~‘), Xi= argmax u’(x’), i=2,...,m, 
x’Etr(&i; w’) xisb(P,a;wi) 

@-wi)=O, 

<I%))> c <P-Y. 
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A pseudo-equilibrium is proper if 

(iii’) (V(p)) = (Q’)‘. 

Lemma 2. Zf ((9),(&L)) or ((Xi),@, Q)) is a proper pseudo-equilibrium, then 
there exists ((Z’), q) E Rmk x Rk such that ((Xi, Fi), (p, 4)) is an equilibrium. 

Proof The result follows from Remark 3, noting that a proper pseudo- 
equilibrium is a normalised no-arbitrage equilibrium ((Xi),& since the budget 
sets in (2) and (4) or (6) coincide. 0 

We have thus reduced the problem of establishing the existence of an 
equilibrium to the problem of establishing the existence of a proper 
pseudo-equilibrium. 

3. Existence of equilibrium 

Consider an economy &((ui, wi), A) for which the preferences of agents 
embodied in (u’) are fixed, then the economy can be parametrised by the 
endowment-asset structure pair (w, A) =(wr, . . . , w”‘, A) E Ry+ x R”. In this 
section we will show that the following existence result is a consequence of a 
general tixed-point theorem for incomplete markets (Theorem A or B below). 

Theorem 1 (existence of pseudo-equilibrium). Let the utility functions (u’) 
satisfy Assumption U, then for every (CO, A) E R”’ x R’ the economy &‘((ui, w’), A) 
has a pseudo-equilibrium. 

By a transversality argument, which is by now familiar [see Duffie and 
Shafer (1985, p. 297)], one then establishes that generically pseudo-equilibria 
are proper. More precisely we leave it to the reader to establish the following 
result: there exists an open set Q c Ry+ x R’ whose complement is null such 
that for every (w, A) ~0 every pseudo-equilibrium is proper. This leads to the 
basic existence theorem. 

Theorem 2 (generic existence of equilibrium). Let the utility functions (u’) 
satisfy Assumption V, then there exists an open set Q in the space of 
endowment-asset structure pairs Ry+ x R’, whose complement is null, such that 
for every (CO, A) EC? the economy &((u’, w’), A) has an equilibrium. 

Our problem thus reduces to establishing the existence of a pseudo- 
equilibrium. Consider first the formulation of a pseudo-equilibrium over the 
Grassmanian (Definition 5). Under Assumption U the solution of each 
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agent’s utility maximising problem in Definition 5(i) exists, is unique and 
leads to individual demand functions on the spot markets: 

F’: A’+-: x R++R’+, Fi:A’-1 XG”,kXR’ 
++ +++R:v i=2 m, ,..., 

F’(p; pw’) = argmax u’(x’), F’(p, L; w’) = argmax u’(x’), 
x’pB(fi; w’) X’EB(p,L:w~) 

i=2,...,m (8) 

Remark 5. It is readily shown that F’, i= 1,. . . , m are 9’ functions. 

The functions in (8) lead naturally to the aggregate excess demand function 
on the system of spot markets, Z: A’,-: x G”sk x Ry+ -+R’, 

Z(p, L; w) = F’(p; pw’) - w1 + ‘f (F’(p, L; w’) - wi). 
i=2 

(9) 

The asset markets are characterised by the asset return function Y: A;-’ x 
G”* k x R” -+ Rnk defined by 

The conditions (i)-(iii) in Definition 5 thus reduce to 

Z(P, L; 0) = 0, (Y@,L;A)cL. (11) 

It follows from (10) that Y is %’ and from Remark 5 that Z is %?I. It is 
convenient for the rest of this section to omit the explicit dependence of 
(Z, Y) on the parameters (0, A). 

Let E*~l={~~R’~~~~lzi=l} d enote the r - l-dimensional afine subspace 
containing A:- ‘. To show that (11) has a solution we consider the price 
adjustment function M: A’,-: x G”,k-+E’-l defined by 

M(P, u = P + P 0 Z(P, u 

whose fixed points coincide with the zeros of Z. By a standard argument it 
follows from the fact that Z is bounded below and that pme A’I,T’ such that 
p”+p~ aAl+- ’ implies /Z(pm, L)ll -*CO, that M is ‘essentially’ inward pointing 
on ad’,-‘. This property needs to be made more precise. In Lemma 4 of the 
appendix we extend the aproach of Dierker (1974, p. 79) by showing that 
there is a function 6: A’,- 1 x G”sk +[O, I] such that the modified price adjust- 
ment map @: AZ-’ x G”tk+E’-l defined by 
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@(P, L) = @P, GWP, L) + (1 -&P, wo 

where u=(l/r,..., l/r) is inward pointing on ad;-’ 

@(p,L)~d:-’ VpEaA:-‘, VLLEG”,~, 

and its fixed points coincide with the zeros of Z 

@(p, L) = p if and only if Z(p, L) = 0. 

Thus if we use the price adjustment and asset return functions (@, Y), the 
existence of a pseudo-equilibrium reduces to the following 

Pseudo-equilibrium fixed-point problem A. Find (p, L) E A7 i x G”*k such that 
@(F,E) =@, (!?Q, E)) CL 

If we let m=r-1, C=A’+-‘, H”‘=E’-I, then the following theorem 
provides the solution. 

A. Grassmanian fixed-point theorem. Let H” be an m-dimensional affine 
subspace, CcH”’ a compact convex subset with non-empty relative interior. Let 
(@, Y) be continuous functions @: C x Gnsk*Hm, Yy: C x G”3k+R”k such that 
@(aC, L) t C, Q L E G”+k, then there exists (p, L) E Gnqk such that 
@(P, g = p, (Y(P, L)) c L. 

Proof See section 6. 

This theorem contains as a special case the standard theorem [Dierker 
(1974, Theorem 8.2, p. 77)] which is used to establish existence in the case of 
complete markets [Dierker (1974, Theorem 8.3, p. 78)]. The component of the 
theorem which is new is the subspacefixed-point part. This property, which is 
examined in section 4, can be given several equivalent formulations, which 
we call Theorems A’, B’ and C’ respectively. Theorem B’ will be related to 
the Stiefel manifold approach induced by Definition 6, to which we now 
turn. 

The reduction of the pseudo-equilibrium problem over the Stiefel manifold 
to a system of equations follows the same procedure as above. Demand 
functions f’(p, Q; w’), i = 2,. , . , m, which in view of (7) are O,_, invariant, 
f’(p,gQ; wi) = f’(p, Q; w’) Vg E 0, _ k, and the aggregate excess demand function 
z(p, Q; w) = F’(p; pw’) - w1 +x7= 2 (f’(p, Q; wi) - w’) are introduced. If m(p, Q) = 
p+p 0 z(p,Q), then again by Lemma 4 in the appendix there is a function 
6: AT’ x On9n-k+[0, I] such that the modified price adjustment function 
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&p, Q) = 6(p, Q)m(p, Q) +( 1 - 6(p, Q))u is inward pointing on ad7 ’ and its 
fixed points coincide with the zeros of z. 6 and hence C#J is O,_,-invariant. 

The asset market function is derived as follows. Let F(p) denote column j 
(j=l , . . . , k) of the matrix V(p). To show property (iii) in Definition 6, namely 
(V(p))c(QT)‘, we need to show V@)E(Q’)‘, j= l,..., k. This is equi- 
valent to showing that for each j the projection of VI(p) onto (Q’) is zero. 
Let QF, i=l,..., n-k denote the columns of Qr, then (QT) is a basis for 

<QT> and 

n-k 

71<QT>I/;(Fl)= C (Qi~(Fl)QT=07 j=l,...,k, 
i=l 

which is equivalent to QiV#) = 0, i = 1,. . . , n-k, j = 1,. . . , k, or in matrix form 

NP, Q) = Q UP) = 0 

where II/: A’,-’ x On,n-k+(R n-k)k is the desired asset market function. Note 

that Icl(p, sQ)=gti(PvQ)y~g~On- k. 

Pseudo-equilibrium fixed-point problem B.4 Find (p, Q) E A!,- 1 x Onqnpk such 
that 4(P, Q) = P, $(P,Q) = 0. 

The following theorem, which will be shown to be equivalent to Theorem 
A above, provides the solution. 

B. Stiefel manifold fixed-point theorem. Let H”, C be as in Theorem A and 
let (4,II/) be continuous functions 4: C x On*n-k+Hm, II/: C x On*n-k+(Rn-k)k 
such that ~(X,Q)~CVQEO”~“-~, &p, sQ)= NP, QL $(p>gQ)=gv%,Q) 
QgeO,_,, V(~,Q)ECXO”*“-~, then there exists (P,Q) EC x Onqnmk such that 

G, Q) = P, $(P, Q) = 0. 

Proqf: See section 6. 

4. Vector bundles and the subspace fixed-point property 

The proof of Theorems A and B is complicated by the fact that there is a 
simultaneous fixed-point problem in prices (on the simplex) and a fixed-point 
problem in subspaces (on the Grassmanian or Stiefel manifold). For this 
reason, and to bring out the essentially new ideas involved in the equilibrium 

4For convenience we refer to both an equation of the form f(Z)=zZ and an equation of the 
form f (2) = 0 as a ‘Jxed-point’ problem. 
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subspace problem, we first consider this component by itself: this leads us to 
Theorems A’ and B’ below which are shown to be equivalent to a canonical 
vector bundle problem, Theorem C’. This vector bundle problem has the merit 
of focusing attention directly on the essential topological problem involved in 
finding an equilibrium subspace. In the next section the mathematical 
approach that we use allows us to prove a more general version of these 
theorems (A*, B*, C*), where B* has the important property of being the 
natural generalisation of the well-known Borsuk-Ulam Theorem. The idea 
that underlies the proof of B* (non-zero Euler class) also forms the kernel for 
the proof of Theorems A and B in section 6. We hope that in decomposing 
the analysis of proof of the general theorem in this way that we succeed in 
achieving two objectives: first to explain the new ideas involved in the 
equilibrium subspace problem and second to show how an economic 
problem can lead to an interesting generalisation of a classical theorem of 
topology. 

Consider the equations for a pseudo-equilibrium over the Grassmanian 

An economist would argue, at least initially, as follows. If we impose a 
subspace L on the agents in their spot market trades, then the spot markets 
will generate an equilibrium price which depends on L, p = p(L). This leads to 
a matrix of actual asset returns Y(L) = V(p(L)). The equations for a pseudo- 
equilibrium reduce to 

(Y(L))cL. (13) 

Equilibrium is reduced to a subspace equilibrium on the asset markets. This 
involves finding a subspace Z such that after determining the equilibrium 
spot price implied p(E) the asset return matrix Y(L)= IQ(Z)) generates a 
subspace of actual income transfers consistent with the imposed subspace L. 
The economic intuition behind this approach leads to the essence of the 
subspace problem: however, we cannot hope in general to solve for spot 
prices p as a continuous function of the subspace L - a priori there may be 
several spot price equilibria associated with a given subspace. 

The problem (13) will be called the subspace fixed-point problem A’. 
Theorem A restricted to the Grassmanian asserts that a solution to (13) 
exists. 

Theorem A’ (Grassmanian). If Y: G”g k + Rnk is a continuous matrix-valued 
function, then there exists LE G”*k such that (Y(L)) c E or in component form: 
tf Yi:G”~k+R”, i=l,..., k are continuous functions, then there exists L E G”*k 
such that Yi(L)~L, i= 1,. . . , k. 
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Remark 6. This theorem is ‘almost’ a Brouwer theorem for the 
Grassmanian: it ‘almost’ asserts that every mapping of the Grassmanian G”3k 
into itself has a fixed point. The map Lw(Y(L)) associates with each k- 
dimensional subspace a new subspace: this new subspace need not be k- 
dimensional - but ‘generically’ it will be. Since (Y(L)) can be ‘smaller” than 
a k-plane, we define a fixed point by (Y (L ) c L , but when it is a k-plane we 
have Y(L)) =L: in this sense we can say that ‘generically’ we have an 
analogue of the Brouwer theorem for the Grassmanian. 

We can analyse the equations for a pseudo-equilibrium over the Stiefel 
manifold in a similar way. Thus given the equations 

do, Q, = P> QV(FJ =o, (14) 

if we impose the subspace (Q’)’ on the agents in their spot market trades, 
then the spot markets will generate an equilibrium price which depends on 
Q,p=p(Q). Since this price depends only on the k-dimensional subspace and 
not on its representation, p(gQ) =p(Q) VgE On-k. Let $(Q) = QV(p(Q)), then 

Thus the equations for a pseudo-equilibrium reduce to 

where $ is On_k equivariant [eq. (15)]. This will be called the subspace 
fixed-point problem B’. Restricting Theorem B to the Stiefel manifold gives: 

Theorem B’ (Stiefel manifold). If t+l~:O”,“-~ +(R”-k)k is a continuous function 
satisfying $(gQ) =g$(Q) Vge On-k, VQ EO”‘~-~, then there exists Q E On,n-k 
such that $(Q)=O. 

We want to show that Theorems A’ and B’ are equivalent: either can be 
used to derive the other. We do this by showing that they are equivalent to a 
third theorem, C’, where this latter theorem reveals most clearly the 
topological property in which the three fixed-point theorems share their 
origin. To exhibit this equivalence we need the concept of a vector bundle.5 

Definition 7. An n-dimensional vector bundle 5 =(E, M, 7~) is a triple such 
that (i) E and M are topological spaces, (ii) z: E-t M is a surjective map,6 

‘See Husemoller (1975), Milnor and Stasheff (1974), Osborn (1982). 
6Note that throughout the paper a map between topological spaces mean a continuous 

function. 
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(iii) K’(x) =E, is an n-dimensional vector space, (iv) for each XE M there 
exists a neighborhood in M and a homeomorphism (U, h), h: U x R”+n-l(U) 
such that the restriction h,: x x R”-+E, is a vector space isomorphism for 
each XE U. M is called the base space, E the total space, n the projection and 
E, the fibre over x E M. 

Definition 8. A section of a vector bundle 5 is a map 0: M+E such that 
ore,, VXC M. The zero-section oO: M+E satisfies ~Jx)=OEE,, VXG M. o 
is a non-zero section if (r n bO = @. 

The fundamental question that interests us is the following 

Vector bundle problem. Does a vector bundle 5 admit a non-zero section? 

This is a special case of a whole class of topological questions that have 
been studied for vector bundles which leads to the theory of characteristic 
classes.7 The question posed leads to one such cohomology class of t, called 
the Euler class e(t). The following property is the basis for the proofs of 
Theorems A and B in section 6. 

Theorem D. If the Euler class of a vector bundle is not zero, then the vector 
bundle admits no non-zero section, i.e. if e(5) #O and (T: M+E is a section, then 
ona,#0. 

Remark 7. Mas-Cole11 (1985, pp. 188-214) has emphasised the importance 
of the Poincare-Hopf theorem in the analysis of price equilibria. Note that 
there is a closely related result here for subspace equilibria. Let 5 = (E, M, 71) 
be an n-dimensional vector bundle over a compact, connected n-dimensional 
manifold M, let e(t) denote its Euler class (taken over Z if 5 is orientable and 
over Z, otherwise) and let pM denote the fundamental homology class of M. If 

# (60 . a,) denotes the self-intersection number of the zero section (over Z if 5 
is oriented, over Z2 otherwise) and let (., .):H”(M) x H,(M)+Z(Z,) denote 
the Kronecker index. then 

(40, fh) = + (0,. go) = # (0. go) (16) 

for any section 0: M+E. Thus the ‘integral’ of the Euler class over the 
manifold, the Euler number, which is a basic invariant of the vector bundle, 
equals the algebraic number of intersections of any section with the zero 
section. If 5 =z~ the tangent bundle of M, then (e(TM),pM)=X(M), where 

‘An example familiar to the reader is the following: is there a uector field on the sphere S’-’ 
which is non-zero at every point on the sphere? In this case <=rS’-‘, the tangent bundle of the 
sphere. The answer is yes when r- 1 is odd and no when it is even. The theory of characteristic 
classes is studied in Husemoller (1973, Milnor and Stasheff (1974), Osborn (1982). 
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X(M) denotes the Euler characterisic of M. In this case (16) reduces to the 
PoincarbHopf theorem. Note that if we use Poincare duality theory, then 
(16) can be stated more generally as follows: the locus of intersection of any 
section with the zero section is the Poincart dual of the Euler class of the 
vector bundle. The Euler class is thus a basic invariant of a vector bundle by 
means of which one can describe the zero locus of any section of the vector 
bundle [Bott and Tu (1982, pp. 122-135)]. Before making explicit use of the 
Euler class let us study the vector bundles induced by problems A’ and B’. 

Let us first reduce problem B’ to a vector bundle problem. Let X and Y 
be topological spaces on which a group G acts, i.e., g: X+X, g: Y + Y Vge G 
and let f:X+Y be a map such that f(gx)=gf(x)VgEG, VXEX. Such a 
map f is called a G-map. Consider also the quotient map (projection) 
rcG:X-+X/G defined by no(x)= {gx[Vg E G) = [x] where [x] denotes the 
equivalence class of x. We are interested in the case where 

X=On-n-k, y=Rk’“-k), G=O,_,. (17) 

In this case G acts freely on X (i.e. {gE Glgx =x> =I, VXEX where I is the 
identity of G) so that X/G is a manifold. We may thus consider the vector 
bundle 5 = (E, M, rc) =(X x o I: X/G, rt) where X x G Y = (X x Y)/G. Every G- 
map f defines a section of 5, a,:X/G+X x G Y by af[x] =[x,f(x)] where the 
latter denotes the equivalence class of (x, f(x)) in X x c Y Conversely, every 
section o: X/G+X x G Y defines a G-map f,: X+ Y by letting a[x] = [x&(x)]. 
This simple observation leads to the following. 

Lemma 3. Let X and Y be G-spaces with X, Y G given by (17), then the 
following two properties are equivalent: 

Property (a). The vector bundle 5 =(X x o I: X/G, n) admits no non-zero 
section. 
Property (/I). If f: X+ Y is a G-map, then f-‘(O) # 0. 

Thus the Borsuk-Ulam property (fi) has been transformed into an equivalent 
vector bundle property. Since under the map [Q]H(Q’) the quotient space 
Gn’n~kfGn_k is identified with the Grassmanian G”*“-k of n-k-dimensional 
subspaces of R”, our next vector bundle problem should seem most natural. 
Consider the canonical vector bundle yn*“-k=(F-k, Gnvnmk, rc’) with total 
space F’*“-k= {(L, u) E G”T”-~ x R” 1 v E L} and the k-fold Whitney sum 

Y;.n-k=yn.n-k 0.. .@ yn.n-k=(r~.n-k,Gn,n-k,7CI) 

where 
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r ~‘“-k={(L,U)EG”‘“-kXRnk~U=(Y~,...,Uk),ViEL,i=1,...,k}. 

Theorem C’ (vector bundle). The vector bundle yE3”-k admits no non-zero 
section. 

Theorem D’. Theorems A’, B’ and c’ are equivalent. 

Proof (i) (A’sC’). Let h: Gn*k+Gn,n-k be the homeomorphism h(L)=L’ 
and let c~~:G”*“-~+r~‘“-~ be a section of yi.n-k, a&L)=(L,$(L)) with 

5(L) =($1(L), . . .? gk(L)). The section 06 induces a function rj =(tj~~, . . . , tjk), 
I,!I~:G”*~+R”, i=l,..., k defined by $i= Gio h. By Theorem A’ there exists 
LEGngk such that rji(L)~L, i=l,...,k. Since $,(L)EE’+$~(~)=O*$,(~‘)= 
0, i=l,...,k,=ogna,#@. (@*A’). The map $:G”*k+R”k induces a section 
aSZ Gn,n-k_,q-k by defining ~i=n,oll/ioh-‘, i=l,...,k, $=($IY...Y$k)? 
odL) =(L, g(L)). By Theorem C’ there exists i; such that t&E) =O= 
$i(E’) E z’-, i = 1,. . . , k. 

(ii) (B’oC’). By Lemma 3 it suffices to note that the vector bundles 

~=(O”‘“-kX0,~rRk(n-k’,0n’n-k/0,_kr71) 

y~.n-k=[r~."-k,G"."-k,711) 

are isomorphic. The isomorphism is constructed 

and 

in the obvious way: 

p-k Rk(n - W 
9 

x 0,-r 
,ry-k 

For any [Q] E 0 n’n-k/Gn_k there exists a unique L=(Q’)EG”*“-k. For any 
u E Rk(n-k) and L E Gnqnmk there exists a unique u’ E L @ ... @ L (k-fold). Let 
g:o n,n-k 

XOn-k Rk(“-k)-+r:*“-k be defined by g([Q,u])=((QT),u’). g is an 
isomorphism of 4 and Y[E,“-~. Thus if 5 admits no non-zero section, then 
yi*“-k admits no non-zero section and conversely. 0 

The subspace existence property can thus be thought of as reducing to the 
topological property that the k-fold Whitney sum of canonical vector bundles 

Yk n*n-k admits no non-zero sections. 

5. Proof of subspace fixed-point property 

In this section we prove the subspace Theorems A’, B’ and C’. The 
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approach we use allows us to prove a more general version of these 
theorems: this generalisation is most readily explained in terms of the 
Borsuk-Ulam property (p) of Lemma 3. If we replace the orthogonal group 
On-k in eq. (17) by the subgroup Tn_k of unit diagonal matrices 

K-k= zi~{l,-l}, i=l,..., k , 

then Lemma 3 remains valid. The quotient map rrc:On,n~k+On*“-k/G which 
with G = O,_, leads to the Grassmanian Gnqnmk, under the group G = T,_, 
leads to the flag manifold FnTnpk of all n-k mutually orthogonal one- 
dimensional subspaces (lines through the origin) in R”, 

F “.n-k={l(l=(ll,..., ln-k), li a line through 0 in R”, li I lj, i # j>. 

An equivalence class [QJ E 0 “*“-k/Tn_k generates an n-k flag I= 
(~,,...,~n-k)EF”‘“~k as follows. Write Q’=(QT)TZ: as n-k column vectors 
Q~E R”, then each column generates a line through the origin in R”, li= (QT) 
and since the columns (Q’)yZ: are mutually orthogonal the map [Q]H 
((QT),...,(QI-k)) identifies the quotient space O”~“~k/T,_k with the flag 
manifold F”T~-~ of n-k flags in R”. For any k flag ke FnFk let (I) denote the 
k-dimensional subspace spanned by 1, then Theorems A’ and B’ generalise as 
follows. 

Theorem A* (f7ag manifold). If y/z Fn*k+Rnk is a continuous function, then 
there exists iE Fn,k suck that (Y(i)) c (i). 

Theorem B* (general Borsuk-Ulam). If $:O”~“-k-+(Rn-k)k is a K-k map, 
then $ ‘(0) #a. 

Theorem B* is the true generalisation of the classical Borsuk-Ulam 
theorem [Guillemin and Pollack (1974, pp. 9l-93)]. When n-k= 1, O”,’ = 
S-l, the n- l-dimensional sphere, Theorem B* reduces to the statement 
that if $:S”-l+R”-l is a continuous function satisfying II/(-Q) = -II/(Q) for 
all QES-‘, then there exists QES’-’ suck that t,+(Q) =O, which is the 
Bursuk-Ulam theorem. 

Consider the vector bundle E;*~ =(EE*k, Fnqk, z) with total space 

E;‘k=((I,u)~F”*k~R”k\u=(ul ,..., uk) USER, i=l,..., k}. 

Theorem C* (flag vector bundle). The uector bundle eiqk admits no non-zero 
section. 
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We leave it as an exercise for the reader to show 

Theorem D*. Theorems A*, B* and C* are equivalent. 

Remark 8. We shall prove Theorem B* using the methods of algebraic 
topology. The reader should recall the following basic facts from cohomology 
theory.* Let A4 be a manifold of dimension m (more generally a topological 
space) and let P(M;Z,) denote the space of singular cochains of dimension k 
on M with coefficients in Z,. A boundary operator 6,:Sk+Sk+’ is defined 
satisfying 6, + I o & = 0. The modules of cocyles Z”( M; Z,) = ker 8k = {w E Sk 1 
6,w=O} and coboundaries Bk(M;Z2)=Im6k_,={w~Sk~w=~k_1b,b~Sk-1} 
lead to the kth cohomology module 

Hk(M;Z,)=Zk(M;Z2)/Bk(M;Z2) and H*(M)= 6 Hk(M), 
k=O 

where H* is the graded module formed from the direct sum of the modules 
Hk. Introducing the cup product of cochains c UC’ from Sk(M) x P(M)+ 
Sk+q(M) leads to a multiplicative structure on H*(M) which makes it into a 
graded ring called the &homology ring of M over i,. 
explicitly on the additional structure induced in H*(M) 
of cochains. 

The proof depends 
by the cup product 

Proof of Theorem B*. By Lemma 3 this is equivalent to proving that the 
vector bundle 5 =(OnVnPk x T,mkRk(n-k), O”s”-k/T,_k, z) admits no non-zero 
section. Suppose not, namely suppose 5 admits a non-zero section co with 

@QJ = CQ, vW1. Then gti induces a section G?l = CQ,(t4Q)I((rC/(Q)II)I of the 
sphere bundle <=(O”*n-k x T,_rSp-l, O”*n-k/T,_k,z) with p=k(n-k). 

Consider the universal bundle for q_k, (ET,_,, BT,_,, Pk) where ET,_,= 
Om,n-k,BT,_k=Fm,“-k are the infinite Stiefel and flag manifolds respectively? 
Since T,_,=O1 x...xOr (n-k times), BT,_,~BOlx~~~xBO1 so that 
H*(BT,_,;Z,)rH*(BO,;Z,)@~~*@ H*(BO1;Z,)=Z1[t,,...,tn-k] where the 
latter denotes the ring of polynomials in n-k letters with coefficients in Z,. 
This is the universal example from which we construct the other cohomology 
rings. 

Consider the embeddings i’: Onsn-k+Om*n-k, i: F”V”-k+Fm3n-k and the 

*Good introductions are Dieudonne (1982), Dold (1972), Munkres (1984); the standard 
reference is Spanier (1966); an excellent intuitive survey, especially for a geometric treatment of 
the Euler class, is Bott and Tu (1982). 

90”*m is topologised as the direct limit of the sequence On~m~On+‘~mt.. . Thus a subset of 
O”*” is open if and only if its intersection with O”,” is open as a subset of O”,” for n= 1,2, : 
similarly for F”.” [see Milnor and Stasheff (1974, p. 63)]. 
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sphere bundle r, =(Om9n-k x r,_~SP-l,Fco*k,rc,), then we have the commu- 
tative diagram 

on.n-k x Tn_kSp--l s 0-n-k x T,_rSP-l 

P) 7-t 1 17102 

F&“-k i 
+ 

Fm,n-k 

Applying the cohomology functor gives the cummutative diagram 

H*(O”*“-k x T,_rSq c H*(o”*“-’ x T,_ksq 

(D*) n* t t c 
H*(Fn.n-k) c H*(Fm.n-k) 

We use this diagram to show that the existence of a section for the sphere 
bundle i leads to a contradiction. We know the nature of the cohomology 
ring H*(Fco,n-k): we want to find the algebraic way of writing the cohom- 
ology rings H*(Om*“-k x T,_kSP-l) and H*(Fnqnmk). The next two lemmas 
provide the answer: the proofs are given below. 

Lemma (a*), The projection x,: OmsnPk x r,_rSI’-l+Fm*n-k induces an 
isomorphism 

-aIt ,...,tn_k]/A’~H*(OOO~n-kxT,_,Sr-’) 

of algebras, where A? is the ideal generated by (tl, . . . , t, _k)k. 

Lemma (b*). The embedding i: Fn*n-k+Fm9n-k induces an isomorphism 

Z2Ct1,..., t.-k]/Ng H*(Fn,n-k) 

where fl is the ideal generated by the polynomials pl, . . . , pn _ k where 

pi=tl-i+l+ai,n-it”Pi+...+ai,o, (18) 

each aij being a polynomial in t,, , . . , ti _ 1 with ai, jtj being of degree n - i + 1. 

Lemmas (a*) and (b*) imply the following two properties 

(i) (tlr..., t, _ k)k E ker n*, 
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(ii) (tl,...,tn_,Jk#keri* 

The existence of a section rr: Fn*n-k+On*n-k x Tn_kSI1-l implies 

(iii) the homomorphism 7c* is injective. 

The commutativity of (D*) together with (iii) show that (i) and (ii) contradict 
each other. 0 

Proof of Lemma (a). 7, is the sphere bundle derived from the vector bundle 
1&,,=(0~,“-~ x T,_rRp, Foon,n-k, n). This vector bundle can be written as the 
k-fold Whitney sum of the bundle q=(Om3nPk x T,,_rRR-k, Fm*n-k,d), 
{,=q @ ... @ q. The Euler class e(q) of q is the element of Hn-k(Fm*n-k) 
given by e(q) = r,, . . . , tn-k. Since the Euler class of a Whitney sum is the cup 
product of the Euler classes e(l,)=e(rf)~...ue(q)=(t~,...,t,-~)~. Consider 
the Thorn-Gysin exact sequence [Spanier (1966, p. 260)] for the sphere 
bundle r, 

,_.,fp(Fm.n-k) 
” e(Lo) _ Hi+n-k(Fm,n-k),Hi+n-k(Om,n-k x T,_rSI’-l) 

,p+l(Fmgn-k)+. . . 
(19) 

Since the polynomial ring Z2[tlr.. . , tn-k] has no zero divisors (i.e., there do 
not exist f,gEZ2[tl,..., t.-k], f#O,g#O such that fg=O) the homomor- 
phism gwgue(<,) is injective: thus the long exact sequence (19) breaks into 
short exact sequences 

o+ffi(Fm.n-k) “e(T,)Hi+n-k(Fm.nmk) 

It follows that H*(Om*nmk~ Tn_~SB-l)~:*(Fm,n-k)/~ where A! is the ideal 
generated by (ti,...,~~-~)~. 0 

Proof of Lemma (b). We prove the lemma by induction on n-k. If n-k= 1, 
since F”* ’ = P”- ‘, real n- l-dimensional projective space, by a standard 
result [Spanier (1966, p. 264)] H*(P”- ‘; 2,) gZ,[tl]/(pl) where (pl) is the 
ideal generated by tl. Suppose the result holds for n-k - 1 so that 

Consider the libration rck: F”*“-k+F”*“-k-l induced by projection on the last 



S.Y Husseini et al., Existence of equilibrium with incomplete markets 61 

n-k-l factors, (II,...,In_k)‘(/2r...,In_k). The fiber is Fk+r*r=Pk. Since Pk 
is universally totally non-homologous to 0, the Leray-Hirsch theorem 
[Spanier (1966, p. 258)] applies and we have the isomorphism of 
H*(F”~“-k ‘)-modules: 

H*(F”.“-~)~:*(F”,“-~-‘) Q H*(pk). 

Note that t,_kEH1(Fm’“-k ) gives rise to an element in H1(Fn*“-k) also 
denoted by t,_k and t,_,l Pk generates H*( Pk). This implies that t,_ k satisfies 
the relation 

where each an-k, j iS a polynomial10 in t,, . . . , t, _k _ 1 of degree k + 1 - j, 
which completes the proof. q 

6. Proof of fixed-point theorem 

The fixed-point Theorems A and B can be generalised as in section 5 by 
replacing the Grassmanian G”*k by the flag manifold FnVk in Theorem A and 
the orthogonal group o,_k by the unit diagonal group Tn-k in Theorem B. 
We leave it as an exercise to prove that the resulting two theorems are 
equivalent. 

A** Flag manifold fixed-point theorem. Let H” be an m-dimensional afjne 
subspace, Cc H” a compact convex subset with non-empty relative interior. 
Let (@,Y) be continuous functions @:Cx F”*k+Hm, Yy:Cx FnTk+Rnk such 
that @(15X2,1) c Ct’l~ Fnqk, then there exist (p,f) E C x F”, Ir such that @(p,T) = 
p, (@(P,0) = (1). 

B** General Borsuk-Ulam theorem. Let H”, C be as in A** and let (4,tj) 
be continuous functions 4: C x OnFnmk+Hm, $: C x On*n-k-+(Rn-k)k such that 

~(CQ)~C~QEO”‘“-~, WuQ)=4(p,Q), Il/(p,gQ)=g~(p,Q)vgET,-k, 

V(p,Q) E C x On3n-k, then there exists (p, Q) E C x On*n-k such that &p, Q) =p, 
$=(p,Q)=O. 

Proof of Theorem B**. Step 1. We establish the result first in the simpler 
case where H”= R”, C=Dm=B(O, 1) and 4 satisfies 

c$(c~B(O,~),Q)~B(O,~-E) VQEO”-“-~ (20) 

“‘The polynomials an-Lr.j are the Stiefe-Whitney classes of the vector bundle E;“-‘-~. 
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for some s>O. Suppose therefore that the conclusion is false, namely 

(21) 

Whenever 4(p, Q) #p the line segment A&p, Q) + (1 - A)p joining 4 and p is 
well-defined. Thus on the set W = ((p, Q) E B(0, 1) x OnVn-k/ &p, Q) #p} we can 
define &,(p, Q)=p where p is the unique point on the segment @(p,Q)+ 
(1 - i)p, 1 s 0, satisfying p E aB(O, 1). To arrive at a function defined on all of 
B(0, 1) x O”q”- k we proceed as follows. Let 

~=inf{Ilp-~(p,Q)II+IIIC/(p,Q)II((p,Q)~B(O,1)xO","-k}, 

then (21) implies 6>0. Let 8:R+ +[O, l] be any continuous function 
satisfying f3(s)=O, s~[O,6& 0(s)= 1, s~.[26~, co) where 6,=ainf(s,6) so that 
0(s) =0(S) = 1. Then the function 

fh Q) = ~((IP- 4(~, Q)bh(~, Q) 

is defined and continuous on all of B(0, 1) x On,n-k and has values in R”. We 
note that f has the two properties 

(a) f(p,Q)=pVp~dB(O, I), VQEO”*“-~, 

(b) f(p,gQ)=f(p,Q)V~‘gO”-k>V(p,Q)~B(O,l)xO”~”-k, 

where (a) follows from the fact that p~aB(0, l)~llp-~(p,Q)II>=~je(~)= 1 
and ~$~(p, Q) =p, Vp E B(0, 1). The pair of functions (L $) satisfy the conditions 
of Theorem E below. Thus there exists (p,Q) E B(0, 1) x On,“-k such that 
f(p,Q)=O, $(p,Q)=O. But then I[~-f(p,Q)\Iz6 and since 0(S)=l, f(p,Q)= 
&(p, Q) E dB(0, 1) which is a contradiction. 

Step 2. For each integer v 2 2 define 4,(p, Q) =( 1 - l/v)&p, Q). Then the 
hypothesis of Theorem B** implies that 4, satisfies (20) with E= l/v. Thus for 
each ~22 we can apply step 1 to (4,, $) to obtain a sequence {p,, Q,} c 
B(O,l) x On,n-k satisfying ~$,(p,, Q,) = pv, $(p,, Q,) = 0. By the compactness of 
B(O,l) x O”V~-~ we can select a convergent subsequence {p,,Q,} where 
(P,, Q,)-+(p, 0). By the continuity of (4, II/), 4(P, 0) = P, $(P, Q) = 0. 

Step 3. Since C is a compact convex subset and int C#QI there exists a 
homeomorphism ~1: H”+ R” such that g(C)= B(0, 1). Step 2 can now be 
applied to the pair of functions 

(&(P, Q), $(P, Q)) =(44(~ ‘(P), Q)), $(a - ‘(P), Q)) 

yielding the solution (fi, &) E B(0, 1) x O”*“-k. Then (p, Q) =(cc-l(i), Q) is the 
desired solution for (&II/). 0 
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These first three steps have reduced the proof of Theorem B** to the proof 
of the following theorem. 

Theorem E. Let (f, $) be continuous functions f: D” x On*n-k+Rm, $: D” x 
on,n-k+(Rn-k)k such that f(p, Q) = p, V p E do”‘, VQ E On*” -k, fh gQ) = f(n Q), 
$(p,gQ) =gll/(p, Q), VgE q_k, V(p, Q) E D” x Onsnmk, then there exists 
(&&D”xO”,“-~ such that f(p, Q) = 0, I,+(@, Q) = 0. 

Remark 9. The basic idea of the proof that follows is identical to that used 
in proving Theorem B*. The proof ‘appears’ more complicated because of the 
need to cope with the Brouwer component f, which leads us to introduce the 
relative cohomology H* (X,A) of pairs of spaces (X,A) where A is a subset 
of x. 

Proof. Step 1. The problem can be reduced to the action of a Tn_k map 
between a pair of spaces as follows. Define the action of T-k on D” x On*n-k 
by (p,Q)~D”‘x0”*“-k implies g(p, Q) = (p,gQ) and define the action of T,_ k 
on R”x (R”-k)k by (u,<)E R” x (R”-k)k implies g(r], 5) =(q,gt) where g is the 
diagonal action on (Rn-k)k, Then the hypothesis of the behaviour of (f,$) 
under the action of T. _k becomes 

(fk(n Qh $k(p, Q))) = U-h gQ)> +(p, gQ)) = (f(p+ QL &h QN 

=g(fh Q), I~/(P> Q)) 

so that h = (i $) is a T. _k map. Recall: (i) (X, A) and (Y, B) are pairs of spaces 
if A CX and Bc Y, (ii) h is a map between pairs of spaces h:(X, A)+(Y, B) if 
h: X-+ Y such that h(A) c B. If we let 

(22) 

then the boundary behaviour of f, namely fl aDm x on, n k = rcPDm, implies that h: 
(X,A)-+(Y;B) is a Tn_k map. 

Step 2. Suppose therefore that h-‘(O,O)=@, then there is a q_k map h’: 
(X, A)+( Y’, B) where Y’= Y\O. As in the proof of Theorem B* let 
(E~_k,B~_k,p,_k) denote the universal bundle for T,,_k with ET,_,= 
Om’n-k,ftTn_k=FCO~“-k and define 

(23) 
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Using the cup product this Z,-module can be extended” to an %*-module 
where %* =III*(F”O~“-~; Z,). Applying the cohomology in (23), h’ induces a 
homomorphism of X*-modules 

h” 

Step 3. Consider the embedding (Y”,B”) L (Y’,B) where (Y”,B”)= 
(Sm+“- 1 , F-r). Since Y” is a deformation retract of Y’ and B” is a 
deformation retract of B [Spanier (1966, p. 30)] and since homotopic spaces 
have isomorphic cohomology modules, IIIF,_~( Y’) = HFn_*( Y”), HFn_,(B) = 
H;._,(B”). Consider the long exact cohomology sequences [Spanier (1966, 
p. 240)] of the pairs (Y’, B) and (Y”, II”) 

. . . --* H’ T,-k(y’) --) HiT,_,W) 4 H’;-‘,!,V’J) + . . . 
12 lz 1 

. . . --, H’ ,,_,( Y") -+ H;“_k(B”) z HiTfnlk( Y", B”) _+ . . . 

Applying Steenrod’s live lemma [Spanier (1966, p. 185)] implies 
H~,!,(Y’,B)~:H’,+,!,(Y”,B”) so that 

H*T,_r(Y’,B)~H~n_*(Y”,B)I). (25) 

Step 4. The following two lemmas generalise Lemmas a* and b* in the 
proof of Theorem B*; the proofs are given below. 

Lemma a**. HF,_k (Y”,B”)~HH”(D”,aDm)~Z,[tl,...,t,-k]/~ is an .%‘*- 

isomorphism where ~2’ is the ideal generated by (tI, . . . , t, _Jk. 

Lemma b**. HF,_r (X, A) z H”(D”, 8fF) 0 Z2[tl,. . . , t,-J/J” is an #*- 

isomorphism where A’” is the ideal generated by the polynomials pl,. . . ,pn_k in 
Lemma b*. 

Eq. (25) Lemmas a* and b* imply that (24) becomes 

Hm(Dm,dDm) @ Z2[tl,. . ,t,_k]/.M “1: H”‘(Drn,~Dm) @ zz[tl,. . .> tn-k]/JY^. 

llpick <GX and let c(x)=(Vx~X so that c:X+& Then c*:H*,~-,(5,521)-+ H*T.-r(X,4 with 
H;~_~({, gj) = .K*. For x E H;._~(,Y, A), a E .fl* define x.x= c*(c()ux, then W__,W, A) becomes 

an &*-module. 
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Writing (X, A) =(D”, 8orn) x On*n-k and recalling the assumptions made on 
h’* maps Hm(gm,dDm) to itself identically. Since h’* is an x*- 
homomorphism, AC M which is impossible. 0 

Proof of Lemma a**. Note that 

H~n~~(Y”,BI))~:~“_,(Sm+r-l,Sm+e-’\S”-l) 

since S”+fl-’ zS’- ’ *S”-’ and Sm-’ c SP+m-l\S,-l is a deformation retract 
But H~,_r(Sm+PP1,Sm+P-l \S’-‘)rH*T,_r((Dm,aDm) x Smml) by Excision. By 
the Ki.inneth formula [Spanier (1966, p. 249)] the latter term is isomorphic to 
H”(D”, aorn) 0 Hg,_k(SP-l). Applying Lemma a* gives the result. 0 

Proof of Lemma b**. Since Tn_k acts trivially on D” we have the homeo- 
morphism ET,_, x T,_k((Dm,~D”‘) x O”~“-k)~(Dm,~D”‘) x(ET,_, x T._kO”,n-k). 

Since Tnmk acts freely on On*nmk, the projection ET,_,x On*n-k+On*n~k 

induces a homotopy equivalence ET,_, x T,_kOn.n-kg 0”9”-klT._k. Identifying 
the latter space with F”vnmk and applying Lemma b* completes the 
proof. 0 

Appendix 

The following lemma was used in constructing the price adjustment 
functions @ and 4 in section 3. It suffices to establish the result in the Stiefel 
manifold case. 

Lemma 4. There exists a continuous function 6: A$- ’ x On.n-k-+[O, l] such 
that the function ~$1 A;-’ x O”vn-k-+E*~l defined by 

+(p,Q)=&p, Q)(P+P~z(P,Q))+(~-~(P,Q))~ (26) 

where u = (l/r,. . . , l/r) satisfies 

(9 &AQ)=P-=~(P,Q)=~, 
(ii) ~(C7A~-1,Q)~A~1VQ~O”~“-k, 

(iii) ~(p,gQ)=~(p,Q)~g~O,.-kr~(p,Q)~A’,-lxO”~”-k. 

Proof: The basic construction follows Dierker (1974, p. 79). We need to 
check that the Q-dependence of z does not create a problem. Let 

~j= (p,Q)~d’,-+! XOn~rr-kIZj(p,Q)>O, pj<’ j=l >‘.., r. 

Since Zj(p, gQ) = Zj(p, Q) Vg E 0, _k, V(p, q) E A:- ' x On*“-k, each set vj is 
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0, -,-invariant ((p,gQ) E Ujo(P, Q) E Uj, Vg E 0,-J. We claim that candidate 
equilibrium (p, Q) pairs will lie in the set 

K=(A’,-; x 0 nJ-k)\ i, vj. 
j=l 

By a standard result in demand theory, under Assumption U, for any 
sequence p”‘+p~dA~‘, ~~F’(p”;p”‘w’)~~+co. Since f’L0, i=l,..,m, IIz(pm, 
Q)l(+co. Since z(e) is continuous and 0 n3n-k is compact, there is no sequence 
(~“,Q”)E K, (pm, Qm)+(p,Q) with ~EcYA;-~. Thus K is compact as a subset of 
A?’ x On*n-k and K n(aA?+I’ x On,n-k) = 0. 

Let GI: A?’ x O”,n-k +[O, l] be a continuous function such that GI- ‘( 1) =) K 
and u-‘(O) contains an O,_,-invariant neighborhood of aAl,-’ x On.n-k. To 
obtain an On-,-invariant map define 6: A:_’ x On*n-k+[O, 11, 

&‘, Q) = & o f_ &gQ) drQ)> 
n k 

where p is the left-invariant Haar measure on the compact group On-k. Then 
6 - ‘( 1) 2 K, since K is 0, -,-invariant and 6 -i(O) is a neighborhood of 
ad:-+! x On*n-k, since a - ‘(0) contains an 0, -,-invariant neighborhood of 
A’;: x On*n-k and 

W,gQ)=Q,Q), VgeO,-,, V(p,Q)-K: xO","-~. 

Let &p, Q) be defined by (26), then ES= 1 4j(p, Q) = 1 since ES= 1 pjZj(p, Q)= 
0. It is clear that C$ satisfies (ii) and (iii). It remains to establish (i). (G) 
Suppose ~(p, Q) = 0, then (p, Q) E K SO that 6 = 1 and ~j(p, Q) =pi + pjZj(p, Q) = 
pj, j=l,..., r. (a) Suppose 4(p, Q)=p. There are three cases (a): (p, Q) E K, 
(b): (p, Q)evj, for some j, (c): (p,Q)eaA’,-: x Onqnmk. In case (a) 6= 1 so that 
~$~(p,Q)=p,+p~z~(p,Q) and pj>O*zj(p,Q)=O, j=l,..., r. In case (b) 
(p, Q) E uj+pj= ~$~(p, Q) > pj which is impossible and in case (c) qb(p, Q) = 

(l/r,..., l/r) $ aA;-:, so only case (a) can arise. 0 
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