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In this paper we propose a general mathematical approach to existence problems in economics 
based on the geometry of vector bundles and the methods of intersection theory. The existence 
problem is formulated as: Does an approximate vector bundle admit a non-zero continuous 
section? The motivation and major application comes from incomplete market theory, where the 
appropriate vector bundle has, as one of the components of its base space, a Grassmanian 
manifold. Several general existence results are offered. One infinite dimensional generalization is 
included. 

1. Introduction 

Recent research on the economics of incomplete markets [Magill and 
Shafer (1985) Duflie and Shafer (1985); Husseini, Lasry and Magi11 (1990)] 
has yielded the following surprise: Brouwer’s fixed-point theorem (and its 
variants, e.g. Kakutani’s theorem) which traditionally had proved quite 
sufficient for the existence theory of economic equilibrium is too weak to 
establish a general existence theorem in the non-classical context of incom- 
plete markets. More powerful theorems are required. These have been 
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provided by Duffie and Shafer (1985) using degree theory, and by Husseini, 
Lasry and Magi11 (1990), using the methods of algebraic topology. 

In this paper we propose a general mathematical approach to existence 
problems in economics, based on the geometry of vector bundles and the 
methods of intersection theory [see Guillemin and Pollack (1974) and M.W. 
Hirsch (1976)J More specifically, we suggest formalizing the economic 
problem via a section of an appropriate vector bundle in such a way that the 
equilibria correspond to the intersections of this section with the zero section. 
This is no more than a generalization of the already familiar procedure of 
formalizing the equilibria as the zeroes of a vector field or a system of 
equations. Proving the existence of equilibrium then reduces to the geometric 
question: Does the vector bundle admit a non-zero continuous section? For the 
vector bundles that we consider this question can be answered by the use of 
simple homotopy and transversality techniques (section 2). 

In section 3 we describe briefly the particular economic motivation for this 
approach which arose from the theory of incomplete markets. In section 4 
we apply the vector-bundle-intersection-theory approach to this problem and 
prove the appropriate fixed-point-like theorem. This result is less general 
than the theorem of Husseini, Lasry and Magi11 (1990) but it is sufficient for 
the economic application and it allows us to replace cohomology theory by 
intersection theory. It should be noted that the result (and proof) is very 
close in spirit to the original result of Duffie and Shafer (1985). Our 
approach in essence distills the purely mathematical facts from the economic 
problem and reduces it to an abstract mathematical theorem for which we 
provide a simple geometric proof. 

The vector bundle appropriate for the theory of incomplete markets has as 
one of the components of its base space the Grassmanian manifold Gkv” of 
k-dimensional subspaces of R”. It is the presence of this manifold which 
distinguishes the incomplete markets problem from the classical complete 
market theory and which requires mathematical tools stronger than 
Brouwer’s theorem. Section 5 focuses on this aspect by discussing the purest 
form of the fixed-point-like theorems involving Grassmanians. Section 6 
presents an infinite-dimensional generalization of the theorem in section 5. 

It is traditional in economic theory to transform the search for solutions of 
the equations of economic equilibrium into a fixed-point problem on the 
simplex and then to invoke the fixed-point property. While this approach has 
proved convenient and indeed fruitful, it has been noted that this trans- 
formation is not especially natural [see Smale (1981)]. This observation has 
special significance for the incomplete markets problem: in contrast to the 
simplex, the Grassmanian manifold lacks the fixed-point property (see section 
5). The problem can thus not even be posed as a standard fixed-point 
problem. 

Finally, we mention the paper by Geanakoplos and Shafer (1990) which 



M.D. Hirsch et al., Equilibrium existence theorems 91 

constitutes a parallel, but distinct, effort at clarification of the mathematical 

basis of economic equilibrium existence theorems. 

2. Vector bundles 

Our approach is to reduce the economic existence problem to a certain 
geometric question. The basic geometric object which permits the trans- 
formation is a vector bundle. Intuitively a vector bundle is a family of vector 
spaces (the fibers) attached to each point of a manifold which twists in a 
certain way as the base space is traversed. See M.W. Hirsch (1976) or 
Brocker and Janich (1982) for details. 

A vector bundle is specified as a triple 5 =(E, M, 7~) where E is called the 
total space over the m-dimensional manifold M, the base space, and n: E-+M 
is a continuous function such that for every XE M, n-‘(x)= E, is an 
n-dimensional vector space (called the fiber above x E M). The total space E 
is itself a manifold of dimension m + n. 

An important example of a vector bundle is the tangent bundle 5 =zy = 
(7M, M, T-C), where M is a smooth m-dimensional submanifold of a Euclidean 
space R’, E = 7M = {(x, v) E M x R’: UE T,M} is the tangent manifold, 7c is the 
natural projection and E,= T,M is the tangent space to M at x, for each 
XEM. 

A section of the vector bundle 5 is a map 0: M-+E such that a(x) E E, for 
all XE M. The zero section oO assigns the origin of E, to every x E M. A 
section G such that G(X) #o,(x) for all x E M is called a non-zero section. This 
is also expressed as c n a,=@ Note that a section of the tangent bundle is 
simply a vector field. 

A basic question for a vector bundle is the following: Does 5 admit a non- 
zero continuous section? 

If M is a compact smooth manifold and if 5 is a vector bundle whose fiber 
dimension (n) coincides with the dimension (m) of the base space M (those 
are maintained hypotheses from now on), then intersection theory can be 
used to answer the above question. For in this case if (T: M-+E is a 
continuous section then the mod 2 intersection number of 0 and go, which we 
write as #z(a, go), is well defined [see Hirsch (1976, pp. 132, 133)]. This 
number takes only the values 0 and 1. In the case where 0 is smooth and 
transverse to a,(a 4 a,) then a(M) and a,(M) are both n-dimensional 
manifolds intersecting transversally in the 2n-dimensional manifold E. Hence 
the intersection is a finite set and #2(~,oo) is simply the number of points 
mod 2 in this intersection, i.e., #2((r, ao) = #,(a n oo) =0 or 1 according as 
a(M) n a,(M) is even or odd. Clearly #,(a, go) #O implies 0 n o. ~$4. 

There is a remarkably simple method for computing #z(a,ao). It is based 
on the fact that any two sections 0,~’ of a vector bundle are homotopic (via 
the linear homotopy F(x,t)=(l -t)o(x) +~(T’(.Y)). We spell out the details for 



98 M.D. Hirsch et al., Equilibrium existence theorems 

three important cases: (i) M is boundaryless, (ii) M has a non-empty 
boundary and 5 = zM, the tangent bundle over M, and (iii) the vector bundle 
5 is a (finite) product of vector bundles as in (i) and (ii). 

(i) If LJM =8 then any two homotopic sections have the same mod 2 
intersection number with D,,. Therefore we can associate with the vector 
bundle 5 a number e,(r), called the mod,? Euler number of r such that 
#2(g,o,,)=e2(5) for all continuous cr. Thus if e2({)#0 then there is no 
non-zero continuous section. Also, in order to show that e2(<) #O it suffices 
to find a smooth (T such that 0 4 or, and #,(a n aO) = 1; if CJ and co intersect 
transversally at a single point then, of course, e,(r) = 1. 

(ii) Suppose that aM #8 and { =ry. Now homotopic sections need not 
have the same mod2 intersection number with c,,. An additional condition is 
required. We say that a section 0: M+TM is inward pointing at the 
boundary of M if for every xeBM we have s(x).g(x)<O where a(x) =(x,s(x)) 
and g(x)E T,M is the outward unit normal to aM at x. It is then true that if 
0 and 0’ are both inward pointing then #,(a,~,)= #,(a’,o,). Thus we can 
associate with the tangent bundle rM a number ez(r,), called the mod2 Euler 
number of tM, such that #*(a, a,) = e2(rM) for every continuous and inward 
pointing G [see Hirsch (1976, p. 135)]. Thus if e,(r,)#O then there is no 
non-zero, continuous, inward pointing section. To show that e2(?J # 0 it suffices 
to find a smooth, inward pointing (T such that 0 4 oc, and #,(a 4 oO)= 1. 

(iii) If 5 is a Cartesian product of bundles as in (i) and (ii) then 5 has a 
mod2 Euler number e2(5) that is simply the product of the corresponding 
Euler numbers of the component spaces [see Hirsch (1976, p. 135)]. Thus, for 
example, if (I =(Ei, M1,xl), aM, =O, and t2 =tM2 then the product bundle 

has mod2 Euler number ez(rl xt,)=e2(5i)e,(5J. If e2(t1 x<J#O then there 
is no non-zero, continuous, inward pointing section. Here inward pointing 
means that if x,~dM, then s2(x1,x2)+g(xZ)<0 where 

and, as above, g(x,) is the unit outward normal to BM2 at x2. 

3. Motivation: Incomplete markets theory 

The analysis of this paper is motivated by the following problem posed by 
the theory of equilibrium with incomplete markets. 

Let S+={p~l?:p>>O and l(pll=l) be the positive part of the 1-l sphere 
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and denote by GkV” the (Grassmanian) manifold of k-dimensional subspaces 
of R”. Here I2 n is interpreted as the total number of spot markets, n as the 
number of states and k as the number of assets. The topology in Gkqn is the 
obvious one. The dimension of Gk,” is k(n - k). 

The economic situation is described by an excess demand function 
z: S + x Gk*“+ R’ and k asset return functions fj: S + + R”, 1 s j 5 k. 

A continuous map z: S, x Gk7”+R’ is an excess demand function if: 

(i) p.z(p, L)=O for all peS+, LgGk*” (Walras’ Law); 
(ii) there is be R’ such that z(S+ x Gk,“)zb; 
(iii) if (p,,L,) ES+ x Gk*“, (p,,~L,b(p,L) and p4S+ then \\z(~~,&,,)(\+~. 

An asset return function is any continuous function from S, to R”. 

Pseudo-equilibrium problem: Given the excess demand function z: S, x GkVn+ 
R’ and the asset return functions fj: S, +R”, 15 j5 k, does there exist 
(p, L)ES+ x Gk,” such that z(p, L) = 0 and fj(p) EL for every j? 

For a true equilibrium we should require that { fi(p), . . . , fk(p)} spans L. 
The point is, however, that standard techniques of the theory of regular 
economies allow one to show that in a certain sense (i.e., if endowments and 
return matrices can be perturbed) the linear dependence of {f,(p),. .., fk(p)} 
at a pseudo-equilibrium is a non-generic property. Hence a positive answer 
to the pseudo-equilibrium problem implies the generic existence of 
equilibrium. 

4. Existence of pseudo-equilibrium 

In this section we illustrate the power of the vector bundle approach of 
section 2 by providing a positive solution to the pseudo-equilibrium problem 
of section 3. 

We are given an excess demand function z: S, x Gk*“+R’ and k asset 
return functions fj: S + -+ R”, lsjsk. Let S={p~R’:pz0 and IIpII=l} denote 
the non-negative part of the 1- 1 sphere. By a familiar argument z can be 
modified to a function z”: S x Gka”+R’ which by properties (i)<iii) in the 
definition of the excess demand function z defines a continuous vector field 
on S which for each LE Gk’” is inward pointing on the boundary of S and 
has the same zeros as z. For elaborations on similar details see Husseini, 
Lasry and Magi11 (1990, appendix) or Mas-Cole11 (1985, sections 5.5 and 5.6). 
Without loss of generality we can allow L to be an argument of each 
function fj and assume that sj: S x G k*n+Rn is continuous. We now transform 
the problem of the existence of a pseudo-equilibrium into the problem of non- 
existence of a non-zero section of a vector bundle. 

Consider first the tangent bundle of the non-negative part of the 2- 1 
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sphere S, namely zs=(TS,S,n,). Secondly consider the vector bundle over 
the Grassmanian 

Y k,n =(rkJ, Gkgn, q) 

with total space 

Fk*“={(L,ul ,..., uk)~Gk3” x Rkn: VIE L’ for every 15 jjk}, 

n2 being the natural projection. Each fiber n;i(L) is the product of k copies 
of L’ and thus has dimension k(n - k), which coincides with the dimension of 
the base space Gk*n. Finally, form the Cartesian product bundle <=r, x yk*“. 
Define a section 0 of 5 as follows: 

where PLL is the perpendicular projection map onto L’, This is a section 
because PLI&(p, L) EL’ for every j and z(p, L) E TPS by Walras’ law. Clearly, 
a(p, L) =ao(p, L) if and only if (p, L) is a pseudo-equilibrium. Therefore, the 
pseudo-equilibrium problem reduces to the geometric question: Can 5 admit 
a non-zero continuous section? 

To show that there is no non-zero, inward-pointing section it suffices to 
establish that (i) e,(z,)#O and (ii) e,(y’,“) #O. We do this in turn. 

(i) The fact that e,(z,)#O is well known. Recall that S is homeomorphic to 
the (I- 1) unit ball. Hence ez(ts) #O simply follows from the fact that any 
inward-pointing vector field on the ball has a zero. This is in essence 
Brouwer’s fixed-point theorem [see Dierker (1974), or Mas-Cole11 (1985, 
sections 5.5 and 5.6)]. To prove the result pick any p E S + and consider the 
inward-pointing section 5 of tS 

_ - 
defined by c?(p)=(p,(l/p.p)p-p). Then 

0 4 o0 and 6(p) =a,,(~) if and only if p=p. Hence ez(r,)= #,(a, o,,) = 1. 
(ii) Pick any LeGk,” and let ur,..., uk denote k orthonormal vectors in R” 
such that L=span{u,,..., uk}. Consider the section 6 of yk,” defined by 
c?(L) =(L, PLIU1,. . .) PLluk). Clearly c?(L) = co(L) if and only if L = L. 

It remains to show that 5 4 go. Consider the neighborhood in Gk3n about 
L defined by UL = {L E Gk,“: - -1 L @ El= R”}. Let Z(L, L ) denote the vector 
space of linear transformations from L to L’. For each LE Ui there exists 

- -1 A E_Y(L, L ) such that L is the graph of A. Thus we can write 5(A)= 
(A, 6,(A), . . ., ek(A)). By definition ei(/t) = Ui - wi where wi = ~i(Ui + AUi). Thus 

cosa.=IIU’JJ-bJ (see fig. 1) implies A.= 1 
’ IIUi+ AUi(( - J(UilJ ’ llUi+AUill’ 
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Fig. 1 

so that ai(A)=ui- ,/z:i$i2, i= I,..., k. 

- -1 For each A E 2(L, L ) the directional derivative of 6, in the direction A is 

; o,(tA) = - A.$, 
1=0 

where (&, ui) =0 since ui E L, Au; E EL. Thus 5 4 go and e,(y*,“) = 1. 
Part (i) is just the mathematical tool needed to prove existence with 

complete markets. This is the classical theory. Part (ii), a fixed-point-like 
result on Grassmanians, is the new result required by the incompleteness of 
markets. Because this is not familiar it will be discussed in more detail in the 
next section. But first we summarize: 

Theorem I. Let z:S x Gk-“+R’ be a continuous function which, for every 
L E Gk*“, defines a vector field on S which is inward pointing on the boundary of 
S and let fj: S x Gk2” +R” be continuous functions, 15 js k. Then there exists 
(p, L)ES+ x Gk’” such that z(p, L) = 0, fj(p, L) E L, for every j. 

Corollary 1. Under the conditions of section 3 a pseudo-equilibrium exists. 

5. A fixed-point-like theorem on subspaces 

As we have seen the property e,(yk.“)#O yields the following result: 
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Fig. 2(a) Fig. 2(b) 

Theorem 2. Let fj: Gkgn+R”, 15 js k, be continuous functions. Then there is 
L E Gk”’ such that fj(L) E L for every j. 

Note that this is not a fixed-point theorem for maps of Gk,” into itself. For 
example, for k= 1, n=2, Gk,” IS just the one-dimensional real projective space 
(the manifold of all lines passing through the origin). This space does not 
have the fixed-point property (just consider a rotation). An implication of 
Theorem 2 is that a map F: Gk,“-+GkVn will have a tixed point if it is possible 
to find k continuous function fj: Gk3”+R”, 15 jj k, such that for every 
LE Gk*” the set {f,(L), . . . , fk(L)) constitutes a base for F(L). 

As already indicated, Theorem 2 or the equivalent property e,(yk9”)#0, is 
the key new tool underlying the existence theorem for pseudo-equilibria. It 
will be useful to discuss the geometry of the result in the simplest case of the 
one-dimensional real projective space, i.e., when k = 1, IZ = 2. 

One way of representing G’,2 is by the semicircle Z:’ in figs. 2(a),(b). Each 
point LE G’v2 corresponds to a point in C’: LA, L,, Lc correspond to A, B, C 
in C’. Since the same line L, passes through A and A’ in C’, we identify A 
and A’. If we actually glue A to A’ then we obtain an equivalent 
representation of G’T~ as the circle S’ [fig. 2(b)]. 

Let us determine the total space of the vector bundle ~‘9~. Recall that 
Y~*~=((L,u)EG~,~ x R’:vEL’} so that over each point L,, L,, L, in Grs2, i.e., 
over each point A, B, C in C’, we have the fiber Lji, Li, Li. Referring to fig. 3 
it is clear that since L, = L,, the fiber must rotate (twist) by 180” in order 
that the vector VeLfi coincides with t?~Lfi,. If we now glue A and A’ 
together so that G 1-Z becomes the circle S’ then the total space Y1,2 over S’ 
becomes the open Mobius band ,&’ in fig. 4. It is the 180” twist in the fiber as 
we move once completely around the base which makes the mod2 Euler 
number of Y’*~ non-zero. Indeed, because of this twist no continuous section 
of y’*2 can ever be pulled apart from the zero section. Note that in this case 
the theorem is a consequence of the intermediate value theorem: We have 
only to cut the total space at some e E G” 2 and then untwist Y1*2 to obtain 
fig. 5. 
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To illustrate the power of theorem 2, we show that it admits as immediate 
corollaries the Brouwer’s fixed-point theorem and the Borsuk-Ulam theorem. 
Since the latter is a more advanced result than the former, this also shows 
that Theorem 2 is strictly stronger than Brouwer’s. 

Corollary 2 (Brouwer fixed-point theorem). Any continuous map f from the 
(n - I)-unit simplex A to itself has a fixed point. 
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Proof. Denote E= {XE R”: xix’= l}. Take an arbitrary vector ZEA c E and 
let g: E+d be a continuous function with the properties that g( A is the 
identity and {x E E:g(x) #z) is bounded. Such a function can easily be 
constructed. 

Define now YY:G’~” +A by Y(L)=f(g(LnE)) if LnE#@ and Y(L)=z 
otherwise. This function is continuous. Hence, by Theorem 1 there is L E G’,” 
with Y(L)E L. Because Y(L)E A this means that L n A={ Y(L)}. Therefore 

‘f’(L) =fML n EN =fk(L n 4) =fM’W))) =fPW). 

Hence Y(L) provides the desired fixed point. 0 

Corollary 3 (Borsuk-Ulam). If Y: S”- ’ +R”-l is a continuous function 
satisfying Y(-x)=-Y(x) for all xES”-l then there is x ES”-’ such that 
Y(x) = 0. 

Proof. Consider G”- ‘gn and the n- 1 functions fj: G”- ‘3”-+R” defined by 
fj(L) = Yj(xL)xL where xL is a unit vector perpendicular to L. Note that 
because Yj(X,)xL= - Yj( -xJxL the functions fi are well defined and 
continuous. By Theorem 2 there is LE GnM1”’ such that fj(L) E L for all j. But 
this means that Yj(xL) = 0 for all j, i.e., Y(xL) = 0. 0 

In Husseini, Lasry and Magi11 (1990) it is shown that Theorem 2 is 
equivalent to the following generalization of the Borsuk-Ulam theorem, 
established earlier by them. Let Ok,” denote the Stiefel mangold consisting of 
k orthogonal vectors in R” and let Ok denote the orthogonal group of k x k 
matrices. Then the quotient space Ok3”/Ok is homeomorphic to Gk,” and we 
have: 

Theorem 2’. If Yy: Oksn+(Rk)n-k is a continuous function satisfying Y(Ax) = 
AY(x) for all x E Ok*” and A E 0, then there exists x E Ok*” such that Y(x) = 0. 

The more general results of Husseini, Lasry and Magi11 (1990) can also be 
established by using the methodology proposed in this paper. This is done in 
Hirsch and Magi11 (1987). 

6. An infinite-dimensional generalization 

In this section we show how Theorem 2 can be generalized to an 
infinite-dimensional case. 

Consider a Banach space V. We assume that V is the dual of a separable 
Banach space and endow V with the weak-star topology. Let 
B= {x~ I/: ((~((5 l} denote the unit ball in V. Then B is a compact metric 
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space. Let d denote a metric and let g(B) be the (compact) space of 
non-empty closed subsets of B endowed with the Hausdorff metric induced 
by d. 

Denote by G”(V) the space of linear subspaces of I/ of dimension less than 
or equal to k. Identifying every L with L n B we can view ck( V) as a subset 
of w(B). It is easy to see that as such it is closed, hence compact. 

Theorem 3. Let f; G”(V)-+ V, 15 js k, be continuous functions. Then there is 
L E G”(V) such that f,(L) EL for every j. 

Proof: Let KC V be a compact set such that fj(ek( V)) C K for every j. 
Since K is compact for every n there exists 

ix I,..., x,(,)1 such that K c UT?] ({Xi} +( l/n)@. 

Let czj: K+[O, 11, j= l,..., m(n), be a partition of unity corresponding to this 
covering and denote by E, the linear subspace spanned by {x1,. . . ,x,(,)}. We 
can assume that dim E, 1 k for all n. Consider now the map B,,: K+E, 
defined by a.(x)=C~~~ ~i(X)Xi, Then II/?,,(x)-xl1 j(l/n) for all XE K. Define 
fj”: c”( V)+E, by f;(L) = &(f;(L)). By Theorem 2 there exists L, E G”(V) such 
that fy(L,) E L, for all j. Because G”(V) is compact we can assume that 
L,+L. But then we also have _/-j”(&)+&(L) for all j. Hence L is as 
desired. 0 

Note that a difference between Theorems 3 and 2 is that we now need to 
include the subspaces of dimension lower than k. This is to insure compact- 
ness. In the infinite-dimensional case it is possible for a sequence of k- 
dimensional subspaces to converge to a subspace of lower dimension. For 
example, if we consider a sequence {x,> lying in the unit ball of V and such 
that x,#O but x,+0 weakly then the sequence of one-dimensional subspaces 
spanned by x, converges to (0). 

Theorem 3 should be a basic tool in order to obtain a pseudo-equilibrium 
existence theorem for economies with infinitely many commodities and a 
finite number of assets. It is only fair to point out, however, that in the 
infinite-dimensional case going from pseudo-equilibrium to equilibrium 
becomes more problematical than in the finite-dimensional case. 
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