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Introduction
Michael Magill and Martine Quinzii

A central theme of classical economic theory since the time of Adam Smith is the role of
markets as a mechanism for co-ordinating the activities of many distinct individuals, each
acting independently in their own self-interest. An elegant synthesis of two hundred years of
economic thought was obtained in the 1950’s by Arrow, Debreu and McKenzie1 which has
come to be known as general equilibrium theory (GE). While the traditional GE model was
static, involving a finite number of consumers, firms and commodities, Arrow (1953, Chapter
1) and Debreu (1959) showed how the analysis could be extended to a general setting with
time and uncertainty by introducing an event-tree to describe the uncertainty and a structure
of markets in which date-event contingent commodities can be traded at an initial date. This
model has come to be known as the Arrow-Debreu model (AD). In the AD model a huge
collection of contingent contracts—one for each good for each possible date-event in the
future—is traded at the initial date and thereafter no further trade takes place; agents simply
deliver or receive delivery on the contractual commitments made at the initial date.

Part I. The Classics

A fundamental and far-reaching simplification of this market structure was introduced in
Arrow’s paper (1953, Chapter 1): he showed that any AD equilibrium could be achieved
using an alternative and much more realistic sequential system of markets consisting of Arrow
securities and spot markets at each date-event.2 An Arrow security purchased or sold at date
t is a contract promising to deliver one unit of income in one of the contingencies (date-
events) which can occur at date t + 1. If at each date-event there is a complete set of such
contracts that can be traded for all contingencies that can occur at the following date, then
any Arrow-Debreu equilibrium allocation can achieved by the equivalent market structure
in which agents trade, at each date-event, spot contracts calling for the current delivery of
each good, and Arrow securities for the delivery of income at each of the contingencies at
the following date. In this way a model of pristine elegance and simplicity is introduced
which shows the fundamental role of financial securities when combined with spot markets
for achieving an optimal allocation of resources. The highly unrealistic structure of Arrow-
Debreu contracts with its concomitant concept of once-and-for-all trade at the initial date is
replaced by the much more realistic structure of sequential trade on a system of spot and
financial markets.

Arrow’s model was the by-product of a felicitous fusion of two strands of economic lit-
erature: the Ramsey, von Neumann-Morgenstern and Savage3 theory of choice under un-
certainty and the traditional model of general equilibrium. The then recent development of
choice theory had shown how uncertain consumption streams could be formalized as con-
sumption indexed by states of nature and that, with a few hypotheses, an agent’s preference
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ordering over such consumption streams could be represented as an expected utility of the
possible outcomes. Introducing a state space for modeling possibles outcomes, expected util-
ity for representing preferences,4 and combining this with the standard framework of GE
gives the Arrow-Debreu model with contingent commodities. This was a major step forward
for modeling equilibrium under uncertainty. But perhaps the most innovative contribution of
Arrow’s paper was its explicit recognition of the problem of optimal risk sharing, and the role
that financial markets play in inducing an optimal allocation of risks. This was a true con-
ceptual innovation: for what is so striking from the perspective of today, with all the focus on
financial markets and financial innovation, is the conspicuous absence in the preceeding two
hundred years of classical economic literature of the need for a theory of risk sharing and its
relation to financial markets.5

The greater realism of a market structure consisting of spot contracts for goods combined
with financial contracts (albeit the idealized Arrow securities) for income transfer is undeni-
able. But if the equilibrium allocation of such a structure is to coincide with the allocation
that would be obtained using the complete, contingent, Arrow-Debreu markets with all trades
executed once and for all at an initial date, agents must correctly anticipate at the initial date
the spot price of every good at every date-event in the future. This is needed in order that
the income that agents choose to bring forward at each date-event by their holdings of Ar-
row securities, permit them to buy the bundle of goods that they had planned to consume
when choosing their income transfers. To obtain such a well co-ordinated outcome, agents
must have familiarity with the functioning of the economy, and some stationarity in the struc-
ture of the economy must prevail in order that agents can be expected to form such correct
anticipations.

In a constantly changing, non-stationary world where future events are hard or impossible
to foresee, it is surely unreasonable to expect agents to have such perfect foresight: this was
the image of the world projected by Keynes in the General Theory (1936) and related writings
(Keynes (1937)), a vision probably influenced by the turmoil surrounding the First World
War and the ensuing Great Depression. The lasting influence of the General Theory, and
the desire to formalize its ideas in an equilibrium setting, led some researchers in the early
seventies to remove the assumption of perfect foresight from the sequential model and to
study the outcomes of models in which the agents have exogenous expectations about future
spot prices (Grandmont (1970), (1977)) and, if the securities are more general than Arrow
securities, the future payoffs of the securities (Green (1972), Hart (1974)). Since agents’
expectations of future spot prices are given exogenously, anticipated spot prices cannot be
required to be equilibrium prices, or to coincide with the spot prices when the future date-
event occurs, and only equilibrium on the current spot and financial markets is required. The
economy is viewed as passing through a sequence of ‘temporary equilibria’.

Temporary equilibrium was perhaps too radical a departure from the Pareto optimal world
of the Arrow-Debreu theory: its main finding was that existence of a temporary equilibrium
only requires that agents have minimal agreement on the future spot prices, more precisely
that the supports of their expectations have a non-empty intersection. This is a weak re-
striction on expectations and, if agents can have almost any expectations about future prices
or payoffs, almost any current prices for securities promising delivery in the future can be
justified.

Although the temporary equilibrium approach seemed promising as a framework for for-



Incomplete Markets iii

malizing Keynes’ ideas, it has proved difficult to work with. While there are assumptions on
the formation of expectations which make them less arbitrary, such as adaptive expectations
in the multiperiod model, much of the general equilibrium literature, and in particular the
part that we are surveying, came back to the approach of perfect foresight, and explored an
alternative approach to introducing greater realism into the sequential model. After all Ar-
row’s result on the Pareto optimality of a system of spot and financial markets, and hence the
optimal risk sharing achieved by financial markets, hinged on two assumptions: the implicit
assumption of perfect foresight and the explicit assumption that for each date-event there is
a security which is perfectly tailored to transfer income to this contingency (the Arrow secu-
rity). It is by recognizing that the available instruments for risk sharing may be incomplete
that the theory of Incomplete Markets has sought to explore how market imperfections can
affect the allocation of resources in an environment of uncertainty.

In the late-sixties-early-seventies two papers appeared which were the first to explore
equilibrium with “incomplete” financial markets. Diamond’s model (1967, Chapter 2) in-
spired by the finance literature of the 1960’s , focused directly on the “realistic” market struc-
ture consisting of the stock and bond markets, while Radner’s model (1972, Chapter 3) was
inspired by the abstract tradition of AD theory and explored the consequence of replacing Ar-
row securities by an incomplete set of contracts for the contingent delivery of commodities.
Both papers took the financial structure as given, without discussing why the markets might
be incomplete. Indeed Radner made it explicit at the end of his introduction that he took the
available securities as given “without any explanation of why some contracts are allowed and
others are not”.

The assumption that there is an exogenously given financial structure is characteristic
of the incomplete markets literature, and of most of the papers collected in this volume.6

While the structure of the securities embedded in the model is progressively enriched, the
reasons for the incompleteness are typically left out of the discussion and are not present in
the model. This is both the strength—the structure of the model is sufficiently close to that
of the AD model to make it amenable to the powerful techniques of analysis developed for
that framework—and the weakness of the approach: since the reasons for incompleteness are
not modeled, one may wonder if a more general model which takes into account the reasons
for incompleteness may not lead to somewhat different conclusions. Before entering into a
discussion of the properties of incomplete market economies described in the essays of this
volume, it may therefore be useful to pause for a moment to discuss what is “hidden” behind
the assumption that markets are incomplete.

In the introduction to the book Theory of Incomplete Markets (Magill-Quinzii (1996))
we have attempted to provide a conceptual framework for understanding why the structure
of markets that we observe is not like that postulated in the Arrow-Debreu model, but rather
consists of sequential trades on a system of spot and financial markets with only limited
contracts for meeting future uncertain contingencies. The arguments are an adaptation of
those proposed by Williamson (1985) for showing more generally how different customs,
institutions and market structures evolve in a historical context. The key hypothesis is that
agents are boundedly rational—they have limited time, ability and resources to process all the
information that would be required for fully rational behavior—and they are opportunistic—
agents acting in their own self interest will, whenever possible, renege on their contracts if it
is in their interest to do so, and exploit to their advantage the non-observability of their actions
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or characteristics. In such a world, since making all the necessary calculations for trade in all
future contingencies, for all commodities, for all future time, is costly, and since monitoring
and enforcing all such contracts involves additional costs, the overall cost of running a system
based on Arrow-Debreu contracts would be prohibitive.

A division of labor that uses spot markets for allocating commodities and financial mar-
kets for allocating income leads to a system which is much less costly to operate. For the
simplest of all contracts are those for which the date of issue and the date of maturity coin-
cide: using such spot contracts to allocate the commodities minimizes on the need to plan into
the future, and avoids the problem of reneging on delivery. However, if these were the sole
markets on which agents could trade, then their consumption would always be tied to their
current income: financial markets enable agents to redistribute their income over time and
across future contingencies, but the extent to which such markets can be used is inevitably
limited by the bounded rationality of participants, and by opportunistic behavior.

The bounds on rationality are continually evolving. The expanding use of computers
providing enhanced computing power and the almost effortless dissemination of information
through the World Wide Web, have greatly reduced the transaction costs of using financial
markets. This decrease in costs accounts for the rapid pace of financial innovation in the last
thirty years, during which agents grew accustomed to trading instruments of progressively
greater complexity, such as the array of derivative securities used by financial institutions,
and the sophisticated mortgage contracts offered to consumers.

If the bounds on rationality evolve with time, making more complex contracts tradable,
opportunism is a basic attribute of human behavior which will not change and will always set
limits to the possibilities for risk sharing. Except for spot contracts, every contract involves
an exchange in which the two sides of the exchange take place at different points in time. One
agent makes payment (delivery) today in exchange for a promise by the other agent to make
a contingent delivery in the future. And herein lies the rub: for opportunism implies that
the agent with the obligation to make delivery will, whenever possible, renege on the com-
mitment or claim that the contingency calling for delivery has not occurred. Thus contracts
involve costs of monitoring, verification, and enforcement, and explicit or implicit penalties
for reneging on commitments: only those contracts can survive for which the benefits from
the exchange outweigh the costs incurred in their enforcement.

Radner’s (1972, Chapter 3) paper has provided the basic model of general equilibrium
with incomplete markets. At the time it was written, contract theory and economics of in-
formation were in their infancy, and a theoretical framework for analyzing optimal contracts
in the presence of moral hazard and adverse selection had not yet appeared. The assumption
that agents in the economy have access to a limited collection of financial contracts for meet-
ing future contingencies was viewed as a convenient and natural short-cut for constructing a
model to study the consequences of imperfect markets for risk sharing.

Part II. Existence of Equilibrium for Exchange Economies

Radner’s paper was concerned with proving existence of what we may call a spot-financial
market equilibrium. Under standard assumptions of convexity and continuity of agents’ pref-
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erences and technology sets of firms—and the additional assumption that agents’ trades are
bounded—Radner proved the existence of equilibrium for an exchange economy; the analy-
sis was less satisfactory for a production economy because of the somewhat arbitrary choice
of objective functions for firms (a topic we shall return to later). As will be abundantly clear
from this volume, the exchange version of the model has received much more attention than
the model with production—a state of affairs which seems regrettable, since the way firms
cope with uncertainty in their investment decisions is fundamental for the long-run growth of
the economy. There is perhaps a good reason for this since, as we shall see, the model with
production is very hard to treat in a satisfactory way. A more positive view of the emphasis
on the exchange model is that it has served to bring general equilibrium close to finance, GE
providing a theoretical foundation for financial economics.

In an influential paper Hart (1975, Chapter 5) focused on a more detailed analysis of the
exchange version of Radner’s model. He showed that this new class of sequential models of
equilibrium with incomplete markets had properties that were new to equilibrium theory. For
a start, even in an economy in which agents have standard convex continuous preferences,
the sequential structure of the model and the fact that some securities can have payoffs which
vary with the spot prices of the commodities that they promise to deliver, implies that without
artificial bounds on trades an equilibrium may not exist. Furthermore the markets can be led
to misallocate resources in the sense that an equilibrium may fail to be constrained optimal
(a concept that we will explain shortly). Finally Hart laid to rest the conventional wisdom
that more markets lead to better outcomes, by showing a case in which adding one security
leads to an equilibrium in which all agents are worse off. The discovery of these somewhat
surprising properties of the sequential model came as a shock to economic theorists, and
presented them with a challenge that has taken more than ten years to resolve. Many of the
papers in this volume are either a direct attempt to provide a response to a problem raised in
Hart’s paper, or belong to a strand of research that it directly inspired.

The papers in Part II provide the tools and analytical results required to establish the
(generic) existence of an equilibrium. To discuss the content of these papers it will be con-
venient to introduce some of the basic notation commonly used in this branch of general
equilibrium.

Consider the simplest two-period (t = 0, 1) exchange economy with L commodities
and I agents, where each agent is uncertain about his endowment of the goods at date 1.
We assume that uncertainty is expressed by the fact that “nature” will draw one of S possible
“states of nature”, say s ∈ {1, . . . , S}, and though an agent does not know which state will be
chosen, he does know what his endowment ωi

s = (ωi
s1, . . . , ω

i
sL) will be if state s occurs. For

convenience label date 0 as state 0: then agent i’s endowment is ωi = (ωi
0, ω

i
1, . . . , ω

i
S), i =

1, . . . , I. Agents can exchange goods and share their risks by trading on spot markets (one for
each good in each state) and a collection of security markets. Let psl denote the spot price of
good l in state s, and let ps = (ps1, . . . , psL) denote the vector of spot prices in state s; then
p = (p0, . . . , pS) denotes the vector of spot prices across all date-events in this two-period
setting. A similar notation is used for allocations.

At date 0 there are also J securities (j = 1, . . . , J) which agents can trade. Security j
is a promise to pay V j

s if state s occurs, where the payment V j
s is measured in the unit of

account of state s, s = 1, . . . , S. We say that security j is real if it is a promise to deliver the
value of a bundle of goods Aj

s = (Aj
s1, . . . , A

j
sL) in each state s so that V j

s = psA
j
s. Security
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j is said to be nominal if its payoff V j
s is independent of the spot prices ps. Whatever the

type of the security, its price at date 0 is denoted by q j , and the vector of all security prices is
q = (q1, . . . , qJ).

Each agent trades on the financial markets choosing a portfolio z i = (zi
1, . . . , z

i
J) of the

securities. These transactions on the financial markets redistribute the agent’s income across
time and the states. The income acquired or sacrificed at date 0 is −qzi = −∑J

j=1 qjz
i
j

(if zi
j < 0, agent i sells security j, or equivalently uses security j to borrow; if z i

j > 0,
agent i buys security j, or uses security j to save). The income earned or due in state s is
Vsz

i =
∑J

j=1 V j
s zi

j , where Vs denotes row s of the S × J matrix V of security payoffs.
These income transfers serve to finance the excess expenditures ps(xi

s − ωi
s) of the planned

consumption stream xi = (xi
0, x

i
1 . . . , xi

S). Thus the agent’s budget set, when current and
anticipated prices are (p, q), is given by

B(p, q, ωi) =

{
xi ∈ |RL(S+1)

+

∣∣∣∣∣ p0(xi
0 − ωi

0) = −qzi, zi ∈ |RJ

ps(xi
s − ωi

s) = Vsz
i, s = 1, . . . , S

}
(1)

Each agent i has a preference ordering over the consumption streams xi ∈ |RL(S+1)
+ which

is represented by a utility function u i : |RL(S+1)
+ → |R which is typically assumed to have

“nice” properties of strict quasi-concavity, monotonicity, and smoothness.
An equilibrium of “plans, prices, and price expectations” in Radner’s terminology, also

called a spot-financial market equilibrium or a GEI equilibrium (general equilibrium with
incomplete markets), is defined as a pair of actions and prices ((x̄, z̄), (p̄, q̄)) such that

(i) (x̄i, z̄i) maximizes ui(xi) over the budget set B(p̄, q̄, ωi), i = 1, . . . , I.

(ii) the spot markets clear:
∑I

i=1(x̄
i
s − ωi

s) = 0, s = 0, . . . , S.

(iii) the financial markets clear:
∑I

i=1 z̄i = 0.

The market-clearing conditions (ii) for the agents’ planned consumption vectors at date 1 (for
s = (1, . . . , S)) is what Radner called an equilibrium of ‘plans’ since the planned consump-
tions of all agents are compatible, and the anticipated vector of prices ps for each states s will
be equilibrium vector of spot prices if state s occurs (equilibrium of ‘expectations’).

Radner’s approach to proving that a GEI equilibrium exists was to restrict agents’ finan-
cial trades, i.e. he imposed a constraint of the type zi

j ≤ α for some α > 0. Hart gave a
simple example of an economy in which, if there is no bound on portfolios, no equilibrium
exists and, if there is a bound, agents trade up to this arbitrary given bound. The example
turns out to have a natural economic interpretation (see Magill-Shafer (1991, p.1538)). It
is constructed in an economy with two goods and no aggregate risk, in which the (real) se-
curities are futures contracts on the goods. In such an economy if the agents are subject to
individual risks and have distinct preferences for the goods, a risk sharing equilibrium cannot
be obtained by using futures contracts. Since there is no aggregate risk, when agents trade
on the futures markets they reduce the variability of future spot prices, but this destroys the
ability of futures contracts to share their risks—and in the limit when the spot prices cease to
fluctuate, the payoffs of the futures contracts become collinear and the system breaks down.
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Hart’s example is clever and carries a broader message: financial securities need to be adapted
to the kind of risks they are supposed to help agents share: in an economy without aggregate
risk, futures contracts, which ‘live’ on price variability, are not the appropriate risk-sharing
instruments. Imposing bounds, while apparently solving the problem of existence, in fact
hides a deeper problem, the potential incompatibility between the operation of the spot and
financial markets for some risk profiles (ω1, . . . , ωI) and security structures V . Furthermore,
even though bounds may reflect realistic restrictions (for example margin requirements and
the like) imposed on typical consumers, they are not so obviously realistic if the model is
used to study trading on financial markets by professionals who can and do take large offset-
ting positions on different contracts. For these reasons the subsequent literature has chosen to
study the GEI model without imposing bounds on agents’ trades. The focus has been on un-
derstanding whether the incompatibility between risk and security structure (ω 1, . . . , ωI , V )
exhibited by Hart is a pervasive or an exceptional phenomenon.

The first papers to develop a general method for dealing with models without bounds
on trades were Cass (2006, Chapter 6) and Magill-Shafer (1990, Chapter 7) (MS for short).
These papers which were written independently and contemporaneously around 1984-1985,
were published much later and, together with the paper of Geanakoplos-Polemarchakis (1986,
Chapter 14), marked the beginning of an attempt to formulate a general approach to the study
of economies with incomplete markets. The key idea behind the approach adopted by Cass
and MS can be motivated as follows. A GEI equilibrium as defined above, while natural
as an economic concept, is not well behaved as a mathematical object. This is because the
portfolio trades (z i) are just an indirect means to an end—to redistribute income across the
states so that the desired consumption stream xi can be purchased. What is needed is a way
of expressing a GEI equilibrium which retains the symmetry (duality) between consumption
streams and prices present in the Arrow-Debreu formulation, while incorporating the requisite
constraints on the transfers of income.

The S+1 equations in the budget set B(p, q, ωi) in (1) simply state that the excess expen-
ditures on the spot markets p0(xi

0−ωi
0) at date 0 and ps(xi

s−ωi
s) in each state s at date 1 must

be financed with the income obtained from the financial markets (−qzi, Vs zi, s = 1, . . . , S).
Clearly if the price vector q is such that a portfolio z i can be found which makes this latter
expression ‘semi-positive’ (each component is non-negative and one is strictly positive) then
there will be no solution to the maximum problem of agent i, for he will attempt to use this
portfolio on an arbitrarily large scale. Thus the price vector q must prevent the existence of
such ‘arbitrage opportunities’. This simple observation has important consequences. Basi-
cally it asserts that it must not be possible to acquire income for free in any state or, more pre-
cisely, it can be shown that it implies that there is a vector of positive prices π = (π 1, . . . , πS)
such that

qj =
S∑

s=1

πsV
j

s , j = 1, . . . , J ⇐⇒ q =
S∑

s=1

πsVs (2)

πs is the present value at date 0 of one unit of income in state s, so that (2) asserts that the
price qj of security j is the present value of its date 1 dividends V j

s . (2) implies that for any
trade zi

−qzi +
S∑

s=1

πsV
j
s zi = 0 (3)
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so that trading on the financial markets does not add to the present value of agent i’s income.
The present-value prices for income implicit in the security prices can be used to define

present-value prices for all the goods: let P0l = p0l, Psl = πspsl, s = 1, . . . , S, l =
1, . . . , L. Ps is the vector of present-value prices of the goods in state s, i.e. Psl would be
the price at date 0 of the promise to deliver one unit of good l in state s if such (Arrow-
Debreu) contracts were traded. Replacing in (3) the income coming from financial trades by
the planned expenditures that they finance gives the present-value budget constraint

P (xi − ωi) ≡
S∑

s=0

Ps(xi
s − ωi

s) = 0 (4)

Since trading on financial markets does not alter the present value of an agent’s income, each
agent must restrict the choice of consumption streams to those whose present-value cost does
not exceed the present value of the agent’s income.

In addition to this constraint, the date 1 expenditures must be financed by trading on the
possibly limited set of securities (the date 1 budget constraints in (1)). If we write P =
(P0, P1) where P1 = (P1, . . . , PS) is the date 1 vector of present-value prices, then this
condition can be expressed in geometric form as

P1 ◦ (xi
1 − ωi

1) ∈ 〈V (P1)〉 (5)

where P1 ◦ (xi
1 − ωi

1) = (P1(xi
1 − ωi

1), . . . , PS(xi
S − ωi

S)) is the vector of date 1 excess
expenditures and 〈V (P1)〉 is the subspace spanned by the columns of the date 1 payoffs of the
J securities. Thus when the asset price q prevents arbitrage and satisfies the price relation (2),
the budget set B(p, q, ωi) can be expressed equivalently in terms of the present-value prices
P by the two conditions (4) and (5). Going from (1) to (5) requires multiplying each date 1
budget constraint by the corresponding state price π s: this does not change the equation when
the securities are real (V j

s = psA
j
s), as studied by MS. When the securities are nominal, Cass

(2006, Chapter 6) exploits the indeterminacy of the price level in each state in the standard
definition of a GEI equilibrium to justify equation (5) (with 〈V (P 1)〉 = 〈V 〉).

Expressing the budget equations of an agent by (4) and (5) transforms the GEI equilibrium
into a more symmetric form —which has proved to be a powerful and convenient tool—since
the financial variables no longer appear explicitly, and the market-clearing conditions can be
expressed as standard market-clearing equations for goods. The last step in transforming a
GEI equilibrium, which brings it as close as possible to the Arrow-Debreu (GE) formulation,
exploits the fact that when I − 1 agents satisfy the date 1 equations (5), and the commodity
markets clear, then necessarily the remaining agent satisfies these constraints. Thus the bud-
get set of one agent, say agent 1, can be reduced to the constraint (4), omitting constraint (5).
This property is crucial for establishing the boundary behavior of aggregate excess demand
when some of the present-value prices tend to zero.7

At this point the proof of existence is essentially done for the case of nominal assets stud-
ied by Cass since the subspace 〈V 〉 is fixed, the demand of each constrained agent (i.e an agent
with constraints (4) and (5)) is continuous, and the demand of the unconstrained agent (the
agent without constraint (5)) is continuous and gives the required boundary behavior for the
aggregate demand. An alternative proof for this case is given in Geanakoplos-Polemarchakis
(1986, Chapter 14).
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When the securities are real, as the prices P1 of the date 1 goods change, the subspace
〈V (P1)〉 itself changes and can drop in dimension, causing discontinuities in agents’ demand
functions, which can lead to non-existence of an equilibrium as in Hart’s example. MS pro-
vided a framework for systematically studying these drops in rank in models with real secu-
rities. They studied the case where there are J = S real securities and the bundles (Aj)J

j=1

which serve as the basis for the payoffs of the securities are such that, for ‘most’ date 1 prices
P1, the rank of V (P1) is S. When the rank is maximal, (5) does not introduce any additional
constraint since 〈V (P1)〉 = |RS , and agents only have the present-value budget constraint (4)
as in an Arrow-Debreu equilibrium.

MS showed the following properties: if the economies are parametrized by the agents’
endowments ω = (ω1, . . . , ωI), then for ‘almost all’ endowments (i) there is an equilibrium
in which the payoff matrix 〈V (P1)〉 has full rank and (ii) there are no low rank equilibria.
Establishing these properties required the use of techniques of differential topology, which
permit statements like a ‘property is true for almost all parameter values ’ to be formalized
and proved. These techniques had been introduced by Debreu (1970) for the GE model
and had already established themselves as a powerful framework for analyzing qualitative
properties (local uniqueness and comparative statics) of the standard GE model. As can
be seen from the papers in this volume, they subsequently proved to be essential tools for
analyzing the GEI model. Establishing the property that for almost all endowments there are
no low-rank equilibria required a new way of analyzing equilibria, giving agents a subspace
H of dimension ρ < S for their income transfers in (5), and requiring that at equilibrium
〈V (P1)〉 = H (expressed as a system of equations).

The important step of proving (generic) existence of equilibrium with real securities
and incomplete markets was taken by Duffie-Shafer (1985, Chapter 8) (DS for short) who
showed that if the date 1 constraints (5)—which create the potential changes of rank and
discontinuities— are replaced by the conditions

P1 ◦ (xi
1 − ωi

1 ) ∈ H, 〈V (P1)〉 ⊂ H, for i = 2, . . . , I

where H is a subspace of |RS of dimension J , then a modified ‘constrained Arrow-Debreu
equilibrium’ —which they called a pseudo-equilibrium—is obtained, which no longer has
discontinuities since the subspaces of income transfers always have the same dimension.
Such an equilibrium is defined by a system of equations{

F (P, H, ω) = 0

〈V (P1)〉 ⊂ H
⇐⇒ G(P, H, ω, A) = 0 (6)

where F is the aggregate excess demand for each commodity, the prices P lie in the simplex
in |RL(S+1)

+ , the subspace H lies in the set of all subspaces of dimension J in |RS , called

the Grassmanian GJ,S , the agents’ endowments ω lie in |RL(S+1)I
++ , and the asset commodity

payoffs A (the goods in terms of which the value V of their payoffs are based) lie in |RSLJ .
Since a subspace of dimension J in |RS can be represented by a system of S − J linear
equations, the inclusion 〈V (P1)〉 ⊂ H can be expressed by a system of equations, leading to
a pseudo-equilibrium of an economy with endowment-asset structure (ω, A) as the solution
of the system of equations G(P, H, ω, A) = 0 in (6). To prove existence of a solution,
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Duffie-Shafer drew on the method of degree theory introduced by Balasko (1976, 1988) to
prove existence of an equilibrium for the GE model.

It might be helpful to explain the idea underlying degree theory. Suppose f : M → N
is a smooth map from a compact manifold M to a (connected) manifold N of the same
dimension: heuristically a manifold of dimension k is a hypersurface in an ambient space |Rm

which has at each point a linear tangent space of dimension k. An element in the range N is
called a regular value of the map f if the linear approximation dfx (associated with the matrix
of partial derivatives) is of maximal rank, for any x in the preimage of y, x ∈ f −1(y). The
basic theorem of degree theory asserts that for all regular values y ∈ N , the mod 2 number
of points in the preimage f−1(y) —0 if the number is even, 1 if it is odd—is constant, and is
called the mod 2 degree of the map f . If this number is 1, the preimage f−1(y) contains an
odd number of points and therefore is not empty.

To show how this property can be exploited to prove existence of a pseudo-equilibrium,
consider the system of equations G(P, H, ω, A) = 0. When properly written, the number
of equations is the same as the number of unknowns (P, H) so that the set of solutions
(P, H, ω, A) of these equations

|E = {(P, H, ω, A) ∈ S × GJ,S × |Rn | G(P, H, ω, A) = 0} (7)

is a manifold of the same dimension as the set of endowment-asset payoffs (ω, A) ∈ |Rn. If
the map f : |E → |Rn which projects |E onto the space of endowment-asset payoff pairs—i.e.
f(P, H, ω, A) = (ω, A)—has a mod 2 degree 1, then for each (ω, A) there is a corresponding
pair (P, H) in the ‘equilibrium manifold’ |E, so that a pseudo-equilibrium exists. Using the
property of the projection when the endowment ω is a Pareto optimum, DS showed that the
mod 2 degree of f is 1, thus establishing the existence of a pseudo-equilibrium. Arguments
similar to those in MS then show that low-rank pseudo-equilibria, where rank V (P1) < J
and the inclusion in (6) is strict, are exceptional, so that for generic economies (ω, A) a
pseudo-equilibrium is a GEI equilibrium.

A proof of existence which exploits degree theory in a more general setting was estab-
lished virtually contemporaneously with Duffie-Shafer by Husseini-Lasry-Magill (1990) al-
though the paper was published later. A simpler geometric proof of their result based on
more intuitive arguments of intersection theory was subsequently given by Hirsch-Magill-
Mas-Colell (HMM for short) (1990, Chapter 9). HMM look at the system of equations
G(P, H) = 0 for fixed (ω, A) and show that G can be written as

G(P, H) =
(
F (P, H), projH⊥V 1(P1), . . . , projH⊥V J (P1)

)
where F , the vector of aggregate excess demands for each good, is an inward pointing vector
field on the price space—here taken to be the positive unit sphere—and the second component
is a section of a vector bundle over the Grassmanian, the so called ‘ orthogonal vector bundle’
(see Chapter 9 for definitions). A generalization of mod 2 degree theory outlined above to
vector fields and intersections of sections of vector bundles establishes the existence of a
solution to the system of equations G(P, H) = 0. The geometric reason why every section
of the orthogonal vector bundle intersects the ‘zero section’ is rather intriguing—it is linked
to the twisting of the bundle which, in the simplest case, reduces to the Möbius band.

The papers on existence of equilibrium with real asset structures are fairly technical. An
introduction to the techniques used in these papers and the relation between the results can
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be found in the Magill-Shafer survey paper (1991). The problem of proving existence of a
pseudo-equilibrium received considerable attention in the 1980’s: in addition to the DS and
HMM approach outlined above, another approach was provided by the paper of Geanakoplos-
Shafer (1990), who insert the condition 〈V (P1)〉 ⊂ H in the domain of the variables (P, H)
on which the excess demand functions are defined, and show, using degree theory, that this
system of equations has a solution. Such an approach may well have promising applica-
tions for proving existence of equilibrium in other settings—Geanakoplos-Shafer apply their
method to prove existence of a marginal cost pricing equilibrium in non-convex economies.

The question of computing equilibria of economies with real securities raises interesting
questions which are addressed in the paper of Brown-DeMarzo-Eaves (BDE) (1996). The
theoretical approach to proving existence in Chapters 8 and 9 suggest computing pseudo-
equilibria, for which there are no discontinuities, since generically these are true GEI equilib-
ria. However BDE found that in practice taking as unknowns the prices and the parameters
needed to identify a subspace leads to a high-dimensional problem which quickly becomes
difficult to solve numerically. They introduce an ingenious method for computing an equi-
librium with only the prices P as unknowns, using the demand of the unconstrained agent to
‘fill in’ when there is a drop of rank of the payoff matrix V (P1).

Part III. Production and the Stock Market

It has long been a tradition in economics to decompose the study of resource allocation into
two parts: first the problem of production of goods and second the problem of their dis-
tribution and exchange. While the classical economists Adam Smith (1776), Mill (1848),
and the first formalizer of equilibrium theory, Walras (1874), placed great emphasis on the
importance of understanding production and capital accumulation, ever since the modern for-
malization of the theory of markets by Arrow-Debreu in the 1950’s, there has been a tendency
for general equilibrium theory to focus on the analysis of exchange economies. Fortunately,
macroeconomics, which has moved progressively closer to general equilibrium has reestab-
lished a balance, by focusing attention on the short-run consequences of the business cycle
and on the long-run consequences of capital accumulation, albeit from an aggregate perspec-
tive. Some of these contributions which are linked to the theory of incomplete markets appear
in Volume II where we examine infinite-horizon economies.

The activity of production introduces a new interface with financial markets which arises
from a simple fact: production takes time. The cost of investment must be incurred before
the revenue is obtained from the sale of the output. This mismatching of disbursements and
receipts implies that every production plan must be accompanied by an appropriate method
of financing. Furthermore there is a close connection between the method used to finance
investment and the ownership structure of a firm.

Three principal types of ownership structures can be distinguished: the sole proprietor-
ship (individually-owned firms), the partnership and the corporation. For the first two types
of firms, the entrepreneur or partners finance the investment: they own and control the firm,
acting in their own best interest. A corporation sells ownership shares on the stock market: it
is owned by shareholders and managed by a separate group of agents specialized in the job
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of management. The papers in this section focus on the corporation, and in particular on the
rules that managers should follow to choose investment in the best interest of the sharehold-
ers.

In the standard general equilibrium model with production each firm maximizes profit,
taking prices as given, and this leads to a Pareto optimal allocation. Ownership structure does
not matter since all owners agree with the objective of profit maximization for each firm.
When markets are complete, the sequential model with spot-financial markets and perfect
foresight is equivalent to the AD model, and the profit in the AD economy is equivalent
to the present value of the profit in the sequential model. For, as we have seen above, the
equilibrium prices q = (q1, . . . , qJ) of the securities must be arbitrage free, and from this we
can deduce the existence of present-value prices π = (π1, . . . , πS) for income in each state
at date 1 such that the price qj of a security coincides with the present value

∑S
s=1 πsV

j
s

of its payoff stream. When markets are complete—V has S linearly independent payoff
streams, which requires J ≥ S—then the vector of present-value prices π which satisfies
(2) for a given vector q is unique. In this case the economy is equivalent to an AD economy
with present-value prices Psl = πspsl so that, if the production plan chosen by each firm
maximizes the present value of its profit with price vector P , then the equilibrium outcome
is Pareto optimal.

When markets are incomplete, there are many solutions π to the no-arbitrage equations
(2), so that the present value of profit is no longer unambiguously defined. However, even
with incomplete markets, there are cases for which maximizing the present value of profit is
still meaningful and is the appropriate objective for a corporation. To see this, consider the
problem of defining an objective for a corporation in the simplest one-good (L = 1) finance
economy, the case studied by all the papers in the production section and the two classics,
Diamond (1967, Chapter 2) and Drèze (1974, Chapter 4). In this case we can normalize
the spot price of the good by setting ps1 = 1 for all states and ignore the spot markets.
A firm’s production plan—say firm k’s production plan—consists of an input-output pair
yk = (yk

0 , yk
1 ) = (yk

0 , yk
1 , . . . , yk

S), where yk
0 is the investment made at date 0 and yk

1 is the
risky stream of income it generates at date 1. In this setting, Diamond (1967, Chapter 2)
studied a production economy with K firms, in which the securities consisted of the equity of
the K firms and a riskless bond. He introduced the concept of a stock market equilibrium in
which firms use the information contained in the stock market prices to maximize the market
value of their production plans.

To understand how market-value maximization can be given a well-defined meaning even
though the financial markets are incomplete, suppose that any plan yk feasible for firm k has
a date 1 income stream which is a combination of income streams priced by the market:
yk
1 ∈ 〈V 〉. Then a competitive (price taking) firm can use the market prices of the securities

to evaluate the market value of its plan yk = (yk
0 , yk

1 ): since yk
1 =

∑J
j=1 αk

j V j for some coef-

ficients (αk
j ), the market value of the plan must be

∑J
j=1 αk

j qj − yj
0. Thus with this spanning

condition, not only is market-value maximization well defined but it is equivalent to maxi-
mizing the present value of profit. For any vector of present-value prices π = (π1, . . . , πS)
satisfying the no-arbitrage relation (2), the present value of a plan y k

1 ∈ 〈V 〉 is equal to
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S∑
s=1

πsy
k
s − yk

0 =
S∑

s=1

πs

⎛⎝ J∑
j=1

αk
j V j

s

⎞⎠ − yk
0 =

J∑
j=1

αk
j qj − yk

0

so that maximizing the market value of the firm is equivalent to maximizing the present value
of its profit, for any admissible vector of present-value prices.

In Diamond’s model when the number of firms is smaller than the number of states of
nature the financial markets are incomplete. However the technology of each firm is contained
in a one-dimensional subspace, so that once a production plan is valued (by the firm’s equity),
the condition yk

1 ∈ 〈V 〉 is automatically satisfied. As a result the value of the equilibrium
production plan is sufficient to value any alternative production plan for the firm.

Ekern and Wilson (1974, Chapter 10) and Radner (1974, Chapter 11) subsequently showed
that Diamond’s condition could be generalized, so that the concept of a stock market equi-
librium could be analyzed in a broader setting. The condition, formalized by Radner (1974,
Chapter 11), has come to be called partial spanning and requires that there is a linear sub-
space Z ⊂ |RS+1 of dimension N ≤ S such that each firm’s technology set is a subset of Z.
An important special case of partial spanning occurs when the firm’s technology sets have a
factor structure: there are N linearly independent factors η1, . . . ηN where ηn lies in |RS

+, and
concave increasing functions fk

n(yk
0 ) (one for each firm k and each factor n) such that the

input-output feasible pairs (yk
0 , yk

1 ) ∈ Y k are such that yk
1 =

∑N
n=1 ηnfk

n(yk
0 ). Diamond’s

ray technology sets correspond to the special case where each firm is influenced by only one
of the factors.

Another conceptual innovation was introduced in Diamond’s paper, which has proved
fruitful for the development of the theory of incomplete markets. This is the idea that applying
the standard Pareto criterion is not an appropriate procedure for judging the efficiency of
markets when they are incomplete, since the incompleteness of financial markets necessarily
implies that only a subset of the feasible allocations can be attained. He argued that the
appropriate procedure for judging the efficiency of markets consists in first restricting the
allocations (the income transfers) to those which can be attained with the existing securities—
the so-called constrained feasible allocations—and then applying the Pareto criterion to this
restricted set. Diamond showed that when firms have ray technology sets, the stock market
equilibrium which he defined is constrained Pareto optimal.

Partial spanning is an interesting assumption which guarantees that the condition y k
1 ∈

〈V 〉 holds for all firms k and all feasible date 1 production plans y k
1 , but it is nevertheless

restrictive. Drèze (1974, Chapter 4) was the first to face the problem of defining an objective
function for a corporate firm in a setting where partial spanning no longer holds, and thus
to extend the concept of a stock market equilibrium with incomplete markets to a general
setting. For, if a firm can envision a production plan which lies outside the span of the
markets at equilibrium, then the market value of such a plan is no longer well defined, and it
is not clear what action the firm should take to serve the best interest of its owners.

To understand Drèze’s approach, consider the portfolio problem of a typical agent i in a
one-good two-period economy with J securities whose payoffs in the S states at date 1 are
summarized by the matrix V . The consumer must choose the portfolio of securities z i =
(zi

1, . . . , z
i
J) to purchase on the financial markets. This choice determines the consumption
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streams xi
0 = ωi

0 − qzi at date 0 and xi
s = ωi

s +
∑J

j=1 V j
s zi in each state at date 1 (where

ωi denotes the initial resources of the agent). This is just the simplification of the multigood
budget set of the previous section to the one-good case. If u i(xi) is the agent’s utility function,
the agent will choose the portfolio z i which solves the problem

max
zi∈|RJ

ui(ωi
0 − qzi, ωi

1 +
J∑

j=1

V j
1 zi, . . . , ωi

S +
J∑

j=1

V j
S zi)

for which the first-order conditions are

− ∂ui

∂xi
0

(xi)qj +
S∑

s=1

∂ui

∂xi
s

(xi)V j
s = 0, j = 1, . . . , J

namely that the marginal cost of acquiring an additional unit of security j at date 0 should
equal the marginal benefit derived from its payoff at date 1. For each state s the number

πi
s(x

i) =
∂ui

∂xi
s

(xi)
/ ∂ui

∂xi
0

(xi)

is the (maximum) number of units of date 0 income that agent i is prepared to give up to
obtain 1 more unit of income in state s: we call this the present value of agent i for income
in state s when the agent’s consumption is xi. The first-order conditions above can also be
written as

qj =
S∑

s=1

πi
s(x

i)V j
s , j = 1, . . . , J (8)

or in more condensed form as q = πiV . Only when markets are complete (rank V=S) will
agents agree on the present value of income in each state, and hence on the present value
of all date 1 income streams. When markets are incomplete (rank V < S) there are many
vectors π = (π1, . . . , πS) which satisfy q = πV so that agents will typically not agree on the
present value of income streams lying outside the span of the markets, y /∈ 〈V 〉.

In Drèze’s paper the securities consist of the equity contracts of the J firms, so that
V j = yj

1 where yj
1 is the date 1 profit stream of the j th firm, for j = 1, . . . , J . Studying

the allocations (x, z, y) = (x1, . . . , xI, z1, . . . , zI , y1, . . . , yJ ) consisting of consumption,
portfolio and production plans which are constrained feasible, he finds that the criterion which
comes out of the FOCs for a constrained optimum is that firm j should choose the feasible
production plan yj which maximizes the average present value of its production plan for its
shareholders

I∑
i=1

zi
j πi(x̄i) yj

1 − yj
0 (9)

each shareholder being weighted by his share of ownership z i
j . The choice of a production

plan for each firm is akin to the choice of a public good for its shareholders, for each share-
holder can have a different valuation: the criterion (9) is the Lindahl criterion for the choice
of the public good, noting that agent i only ‘consumes’ the share z i

j of the public good instead
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of consuming it all as in the standard public good problem. Using the average present-value
vector of its shareholders permits the firm to value any production plan y j in its production
set, including those for which yj

1 /∈ 〈
V̄

〉
, where V̄ is the payoff of the firms’ equities at

equilibrium. Thus Drèze extended the notion of a stock market equilibrium to economies in
which firms have general convex production sets, requiring that the production plan of each
firm maximize the weighted present value (9). Since this criterion is derived from the FOCs
for a constrained Pareto optimum, the equilibrium satisfies the first-order conditions for con-
strained optimality. However these FOCs are not sufficient to ensure constrained optimality:
for the date 1 constrained feasible consumption streams are defined by xi

s = ωi
s +

∑
j yj

sz
i
j ,

where both yj
s and zi

j are choice variables, and thus the constrained feasible set is not convex.
Drèze gave interesting examples of stock market equilibria which are not constrained optimal
(see also Dierker-Dierker-Grodal (2002)).

The corporate form was originally introduced to create an institution which is permanent
for society and liquid for individuals. As a result a corporation—which in principle lives
forever—is owned by a sequence of temporary owners. In a setting where markets cannot
value all the alternative production plans, Drèze’s normative analysis suggests that the firm
should choose its production plan in the interest of the shareholders who will receive its
profit—in the two-period model the agents who are the new shareholders, after trading shares
on the stock market. The firm’s manager would thus need to correctly anticipate

(a) who these shareholders will be (the z i
j ’s)

(b) the present-value vectors πi of these agents.

Finding (a) and (b) is in a sense more difficult than solving a standard public good problem,
for the manager not only needs to know the preferences of his constituents (the π i’s) but
he also needs to know who these constituents are (the z i

j ’s). In a multi-period economy in
which shareholders change at each date, the problem only gets worse: anticipating the future
shareholders and their preferences at each date-event would require a level of foresight be-
yond even the most omniscient manager. Thus, while Drèze’s approach has strong normative
appeal, the information required to implement such an equilibrium seems excessive. This led
Grossman and Hart (1979, Chapter 12) to modify the approach proposed by Drèze, arguing
that the best that a manager can be expected to do is to take into account the interests of the
current shareholders who own the firm at the time the investment decision is made.

In the two-periodmodel agents have initial ownership shares—δ i
j denoting agent i’s initial

ownership share in firm j—and trade at the initial date to obtain their ‘new’ portfolios z i
j ,

i = 1, . . . , I, j = 1, . . . , J . The justification of the Drèze criterion hinges on the fact that
agent i will receive a share zi

j of firm j’s profit at date 1. Grossman-Hart (GH for short)
propose instead that the manager of firm j choose a production plan which maximizes the
average present value of the plan for the initial shareholders

I∑
i=1

δi
j πi(x̄i) yj

1 − yj
0 (10)

each shareholder being weighted by his initial ownership share δ i
j . Since this criterion does

not lead to constrained Pareto optimality, GH need to show that maximizing (10) is in fact in
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the best interest of the original shareholders, informational constraints preventing the man-
ager from taking into account the preferences of future shareholders of the corporation.

Since an initial shareholder may sell all or part of his equity before the production plan
yields its profit, GH must explain how such a shareholder anticipates that the market would
value his share, if the firm were to choose an alternative production plan outside the span
of the markets at equilibrium. They introduce ‘out-of-equilibrium’ expectation functions,
which they call ‘competitive price perceptions’, according to which agent i’s expectation of
the market value qi

j of the firm, if it chooses a production plan y j , is qi
j = πi(x̄i)yj

1 −yj
0. Thus

the shareholder draws on his own valuation π i to fill in the missing valuation of the market.
A social welfare argument similar to that of Drèze, but restricted to the initial shareholders,
leads to the present-value criterion (10).

The informational requirements of the GH approach are still high: though (a)— namely
who the shareholders are—which needs to be anticipated in the Drèze approach is known
in the GH approach, their preferences (b) still have to be elicited: basically a public good
problem needs to be solved by each firm. While GH argue that the criterion can be used in
a multiperiod setting, this assertion rests on the tenuous assumption that the production plan
chosen by the current shareholders cannot be amended later by future shareholders: without
this assumption there is a problem of time consistency of the original plan.

The papers of Drèze and Grossman-Hart illustrate strikingly the difficulties posed by the
problem of decision making in a production economy when prices can not play their ‘infor-
mational role’ due to the incompleteness of the markets. Information about the value of ‘com-
modities’, which is normally transmitted by prices, needs to be elicited from the ‘consumers”
(of the profit streams) and this is likely to create incentive problems and to be costly—very
costly when the consumers consist of an ocean of endlessly changing shareholders.

Part IV. Sub-optimality of Competitive Equilibrium

After Diamond’s paper it was accepted in the GEI literature that the appropriate criterion
for evaluating the efficiency of a system of competitive markets must incorporate into the
constraints the limited ability of the financial markets to redistribute income. Thus markets
must be evaluated by the criterion of constrained Pareto optimality (CPO) rather than by the
traditional (first best) Pareto optimality. The papers of Diamond and Drèze studying CPO
allocations in a production economy were placed in the setting of a one-good, two-period
model. In an exchange economy, or in a production economy in which partial spanning
holds, a GEI equilibrium of a one-good, two-period economy is CPO. The message of the
papers in this part is that, as soon as there are two or more goods, if the financial markets are
incomplete then typically GEI equilibria cease to be constrained Pareto optimal.

In an exchange economy the idea of constrained optimality is to see whether a planner,
by choosing the agents’ portfolios instead of letting the agents choose them in competitive
financial markets, could improve on the equilibrium allocation. In a one-good economy, once
the planner has chosen the portfolios (z1, . . . , zI) of the agents, the consumption in each state
is determined (xi

s = ωi
s + Vsz

i): it is easy to check that in this case the planner cannot find
feasible portfolios (

∑
i zi = 0) which improve on an equilibrium allocation for all agents.



Incomplete Markets xvii

However when there are two or more goods, the choice of portfolios no longer determines the
date 1 consumption streams. If the planner were to choose directly the date 1 consumption of
goods, then the constraint on income distribution through portfolios of the existing securities
would be lost. For this reason, Stiglitz (1982, Chapter 13) who introduced the concept of
constrained optimality which has subsequently been adopted in the literature for the multi-
good case, assumed that the date 1 consumption streams are the result of trade on the spot
markets, agent i ’s income in state s being psω

i
s +Vs(p)zi (endowment income plus portfolio

income), where the portfolio z i has been chosen by the planner. In a production economy the
‘constrained’ planner may in addition choose the firms’ production plans, and depending on
the paper, there are more or less severe restrictions on the date 0 transfers that the planner can
use. If using the feasible instruments, it is not possible for a constrained planner to improve
on the equilibrium, then the equilibrium allocation is said to be constrained Pareto optimal
(CPO).

Stiglitz (1982, Chapter 13) studies a simple Diamond-type economy with an input at date
0, two goods at date 1, each produced by a separate firm with constant returns. One firm is
risky, the other is riskless: thus agents can vary their risk and return by appropriately investing
in the two firms. Stiglitz compares the FOCs satisfied by a GEI equilibrium with the FOCs for
maximizing a weighted sum of the agents’ indirect utility functions—which depend on the
spot prices at date 1 and the income derived from portfolios—under the feasibility condition
on agents’ portfolios. He carefully enumerates all special cases where the FOCs coincide,
so that a GEI is CPO, and concludes that these cases are ‘exceptional’. In an important
contribution (1986, Chapter 14) Geanakoplos and Polemarchakis (GP for short) showed how
much greater conceptual clarity could be brought to bear on the problem of establishing
inefficiency of GEI equilibria by introducing the techniques of differential topology. Focusing
on the case of exchange economies with a fixed incomplete numeraire8 asset structure, they
showed that in a family of economies parametrized by agents’ preferences and endowments,
a GEI equilibrium of a ‘generic’ economy, obtained by drawing the parameters at random, is
not CPO.9 The analysis is extended to general production economies in Geanakoplos-Magill-
Quinzii-Drèze (1990, Chapter 15), GMQD for short.

The reason why a GEI equilibrium with many goods is not CPO can be explained as
follows. By changing either the agents’ portfolios, or the firms’ investments, or both, the
planner can change the income distribution and/or the supply of goods at date 1. Under
appropriate conditions—for example, in an exchange economy agents must have different
preferences—the change in the income distribution and/or the supplies of the goods changes
the spot prices in the different states at date 1. When the equilibrium is not Pareto optimal,
i.e when the present-value vectors of the agents are not equalized, there are changes in spot
prices which can increase the welfare of all agents. The formal analysis of the way changes
in agents’ portfolios or in firms’ investments lead to a change in social welfare is given in GP
or GMQD’s papers, or the survey paper by Magill-Shafer (1991). The reader can follow the
full details in these papers.

Here we present a simple example which illustrates the main ideas in a transparent way.
The example is a two-period version of a growth model studied in the macroeconomic litera-
ture (Aiyagari (1994)): we will show how changing the agents’ portfolios (here their savings)
can induce a change in spot prices (the wage rate and the price of capital) which can lead to
an increase in social welfare from the equilibrium allocation when the present-value vectors
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of the agents are not equalized—namely when markets are incomplete.
Consider a two-period economy (t = 0, 1) with I agents. At date 0 there is only one

good which can either be consumed or transformed into capital, usable at date 1. At date
1, a firm using this capital and labor produces a consumption good, with the production
function y = F (K, L), exhibiting constant returns to scale and satisfying the Inada conditions
FK(K, L) → ∞ if K → 0+ and FL(K, L) → ∞ if L → 0+. Agents have preferences only
for the consumption good, and have a standard utility function

U(x0, x1) = u(x0) + βE(u(x1))

where 0 < β ≤ 1, u is strictly concave increasing and x1 is the (possibly) random consump-
tion at date 1. Each agent is endowed with ω0 units of the good at date 0 and with labor at
date 1.

Suppose first that there is no uncertainty in the agents’ labor endowments at date 1: each
agent has the labor endowment 
̄. The equilibrium is characterized by the typical agent’s
choice of capital k to carry over to date 1, the wage w and the price R of capital at date 1,
satisfying the following conditions

x0 = ω0 − k, x1 = w
̄ + Rk, u′(x0) = βu′(x1)R (11)

w = FL(K, L), R = FK(K, L), K = kI, L = 
̄I (12)

(11) is the FOC for the optimal choice of k, while (12) gives the FOC for profit maximization
and the market clearing conditions. Since agents can use capital (savings) to redistribute
income over time, the financial markets are complete.

Suppose that a planner changes the capital chosen by the representative agent by dk, and
lets the markets at date 1 adapt to this change. Then

dx0 = −dk, dx1 = dw
̄ + dRk + Rdk

dw = FLK(K, L)Idk, dR = FKK(K, L)Idk (13)

Since FK is homogenous of degree 0, dw 
̄ + dRk = 0, so that du = u′(x0)(−dk) +
βu′(x1)R dk, which is zero in view of the FOC (11). Thus when markets are complete the
planner cannot improve on the equilibrium outcome by changing the choice of investment at
date 0.

Now suppose that each agent faces uncertainty about his possible labor endowment at
date 1. At the beginning of date 1 nature draws n agents who are given 
b units of (effective)
labor, the remaining I − n agents being given 
g units of labor, with 
b < 
g . There are thus
I!/(n!(I − n)!) aggregate states of nature, all equiprobable, which differ from one another
by the names of the agents who have the good and the bad draw of their labor endowment. In
every state the total supply of labor is the same, L = n
b +(I −n)
g. From the point of view
of an agent all the states in which he/she has a good draw are equivalent, so that each agent
perceives a probability ρ = n/I of having a bad draw and 1−ρ of having a good draw. There
are no insurance markets against these labor risks. The equilibrium (k, w, R) is characterized
by

x0 = ω0−k, xb = w
b +Rk, xg = w
g +Rk u′(x0) = β(ρu′(xb)+(1−ρ)u′(xg))R
(14)
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w = FL(K, L), R = FK(K, L), K = kI, L = (ρ
b + (1 − ρ)
g)I (15)

If the planner changes the investment at date 0 by dk then

dx0 = −dk, dxb = dw
b + dRk + Rdk, dxg = dw
g + dRk + Rdk

while the change in prices (dw, dR) is given by (13). The induced change in utility is

du = u′(x0)(−dk) + β(ρu′(xb)dxb + (1 − ρ)u′(xg)dxg)

Substituting (dx0, dxb, dxg) the direct effect of the change dk is zero in view of the first-order
condition in (14) (since k is chosen optimally at equilibrium) but the price effects remain

du = β [(ρu′(xb) 
b + (1 − ρ)u′(xg) 
g) dw + (ρu′(xb) + (1 − ρ)u′(xg) )k dR ]

Let 
̄ = ρ
b +(1−ρ)
g denote the mean labor endowment. Since dw 
̄+dR k = 0, the terms
in dw and dR would cancel if u′(xb) = u′(xg) i.e. in the case of certainty or the case with
full insurance. In the absence of insurance markets, u′(xb) �= u′(xg) and du �= 0. Letting 
1

and x1 denote the random labor endowment and random consumption, du can be written as

du = β(E(u′(x1)
1)dw + E(u′(x1)kdR)
= β(E(u′(x1)E(
1)dw + +cov(u′(x1, 
1)dw + E(u′(x1))kdR)
= β cov(u′(x1), 
1)dw

Since u′ is decreasing, it follows that cov(u′(x1), 
1) < 0. A change dk < 0, which implies
dw < 0, leads to an increase in welfare: du > 0.

Reducing saving at date 0 increases date 0 consumption and reduces consumption at date
1, and to terms of first order, the direct effect of the change in consumption is zero, since
agents have optimized on their choice of saving at equilibrium. But the price of capital
increases and the price of labor decreases, shifting the representative agent’s income away
from the risky labor income (w
g , w
g) and towards the sure return (kR, kR) on capital.
The price effect reduces the variability of date 1 consumption, improving the welfare of the
representative agent. The change in prices (partially) replaces the insurance market which is
missing.

The presence of systematic inefficiencies in the choice of portfolios by consumers and
investment by firms when markets are incomplete suggests the possibility that intervention
by a well-informed ‘planner’ could improve on the functioning of the markets. In GP and
GMQD the ‘constrained planner’ was used to show that changing the choices of the maxi-
mizing agents facing competitive markets can improve social welfare, but it was not meant
to suggest that this type of intervention is feasible. Altering agents’ portfolios is almost tan-
tamount to closing the financial markets and letting the planner choose the income transfers
among agents, but this would require so much detailed information that the overall cost would
be prohibitive. Thus the literature on constrained efficiency has progressively shifted away
from the proof of constrained sub-optimality of equilibrium towards a search for realistic
policy instruments which can improve on the equilibrium.

The approach used to study constrained sub-optimality of equilibrium in GP and GMQD
is based on a reduced-form approach to the equilibrium equations which takes as given the
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agents’ demand functions. A more flexible and powerful approach is proposed by Citanna-
Kajii-Villanacci (1998, Chapter 16) who include the first-order conditions and budget equa-
tions implicitly defining the agents’ demands in the equations of equilibrium. They use their
approach to show that well chosen lump-sum taxes and transfers among the agents (rather
than changes of portfolios) can be used to improve on an equilibrium outcome. The recent
paper of Citanna-Polemarchakis-Tirelli (2006) uses the same approach to show that improve-
ments can be obtained by imposing taxes and subsidies on the purchase of securities—this
is indeed a natural way of inducing agents to change their portfolio holdings and hence of
influencing the distribution of income and the spot prices at date 1. In the simple example de-
scribed above, taxing the return to capital and redistributing the proceeds in a lump sum way
would improve on the equilibrium. However the result that taxes on securities can be used in
general exchange economies to improve the welfare of all agents requires an assumption on
the relative number of securities and agents (less agents than securities), since there must be a
sufficient number of ‘instruments’ (taxes on securities) relative to the number of ‘objectives’
(agents’ utilities).

Part V. Nominal Securities, Indeterminacy, Sunspots, and Real Effects of Money

In the GEI model agents purchase financial securities to redistribute their income across dates
and states, and in each date-event they spend the income to purchase goods on the spot mar-
kets. We mentioned earlier that it is useful to distinguish two basic types of securities: real
securities which promise to deliver the spot-market value of a bundle of goods, and nominal
securities which promise to deliver specified amounts of a ‘unit of account’. It should not
come as a surprise that the equilibria of the model with real assets behave differently from
the equilibria of the model with nominal securities: in the model with real assets the equilib-
rium allocations are typically determinate (finite in number), while in the model with nominal
assets they may be indeterminate (there is a continuum of possible equilibrium allocations).
Simple economic intuition suggests the reason. A real security is a contract which promises
a payoff which is proportional to the spot prices in each state: doubling the spot prices will
double its payoff. Real securities are inflation proof, so that only the relative prices of goods
in the spot markets matter for the equilibrium. As a result, like in the standard general equi-
librium model, the equilibria of a GEI model with real securities are determinate: for given
characteristics of the economy, the model predicts a finite number of possible equilibrium al-
locations (there is however nominal indeterminacy since the price levels are not determined).

On the other hand if securities are nominal, doubling the price level in one state halves
the purchasing power of the income promised by the assets in this state. If the markets are
incomplete and the structure of securities is not sufficient to permit income to be transferred
exclusively to this state, then agents may not be able to ‘undo’ the change in expected inflation
in this state. The same economy, with the same nominal payoffs for the securities, can have
different equilibrium outcomes depending on the price levels on the spot markets at date 1.

This indeterminacy of the equilibrium outcomes of an economy with nominal securities
was first discovered by Cass (1989) who introduced the GEI model with nominal securities
(Cass 2006, Chapter 6). The results that have been obtained for economies with nominal
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assets are among the most interesting and controversial in the theory of incomplete markets.
Basically there are two camps: those who, like Cass, advocate the idea that nominal assets
capture the inherent indeterminacy of GEI equilibrium because of the dependence of the equi-
librium on beliefs, modeled by the presence of ‘sunspots’ (the sunspot camp); on the other
side those who, like us, think that nominal assets make sense only in a monetary economy in
which money is explicitly introduced to tie down the price level (the money camp). As with
all good controversies, depending on where one wants to start the analysis, each camp has a
strong argument supporting its point of view.

The common point of departure can be found in the papers of Balasko-Cass (1989) and
Geana-koplos-Mas-Colell (1989, Chapter 17) which provide a systematic study of the degree
of indeterminacy of the real equilibrium allocations of an economy with nominal assets and
incomplete markets, when the equilibrium is defined in the usual way by equality of supply
and demand on the goods and security markets. They show that there is a striking differ-
ence between the structure of the equilibria depending whether the markets are complete or
incomplete. In both cases there is nominal indeterminacy—this simply reflects the fact that
in the standard definition of a GEI there is no condition introduced to tie down price levels.
When markets are complete however equilibrium allocations are determinate, typically finite
in number and locally unique. But when markets are incomplete equilibrium allocations are
indeterminate and, depending on how the indeterminacy is parametrized, it translates into
different dimensions for the real equilibrium outcomes.

The simplest result to understand is that of Geanakoplos-Mas-Colell (GMC for short)
who find that under appropriate conditions the dimension of indeterminacy is S − 1. They
parametrize the equilibria by the spot prices of one of the goods, say good 1, in each state.
While there are S + 1 parameters, two can be fixed without affecting the equilibrium allo-
cation, so that at most S − 1 parameters remain. For, if (x̄, z̄, p̄, q̄) is an equilibrium, if all
date 0 prices are multiplied by 2, then the budget set (1) of each agent is unchanged so that
(x̄, z̄, (2p̄0, p̄1), 2q̄) is also an equilibrium with the same allocation x̄. Thus prices at date 0
can be normalized by setting p01 = 1. On the other hand if all prices in all states at date
1 are doubled, the purchasing power of all securities is halved. If, as a result, the price of
each security is halved, each agent can buy twice the original amount of the securities and
obtain the same real income transfer. Thus (x̄, 2z̄, (p̄0, 2p̄1), q̄/2) is an equilibrium with the
same allocation x̄. The spot prices at date 1 can be normalized by choosing (for example)∑S

s=1 ps1 = 1. In economic terms expected inflation can be incorporated into the prices of
the nominal securities and has no effect on the equilibrium allocation, but the variability of
inflation may have real effects.

GMC show that the equilibria of the economy with nominal securities are the union of
the equilibria of economies with real securities where the j th security delivers V j

s /ps1 units
of good 1, for j = 1, . . . , J, s = 1, . . . , S, for all possible parameters (ps1) ∈ |RS , with∑S

s=1 ps1 = 1. For a given value of the parameters (ps1), let Vp denote the associated payoff
matrix of the real securities. GMC show that, if J < S and if the original matrix V of the
nominal securities is in general position, i.e. each J × J submatrix has rank J , then two
different vectors of parameters (ps1)S

s=1 �= (p′s1)
S
s=1 imply 〈Vp〉 �= 〈Vp′ 〉. If agents use the

full subspace of income transfers, which is a generic property at equilibrium, then altering
the relative prices of good 1 changes the possible income transfers and hence the equilibrium
allocation.
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Balasko-Cass (1989) use a different parametrization, fixing exogenously the prices of the
securities and then parametrizing by the present-value vector of agent 1, which can vary in a
subspace of dimension S − J since it must satisfy the no-arbitrage equations (2). Under an
assumption guaranteeing that the matrix of security payoffs does not have too many zeros,
they show that generically in agents’ endowments, the equilibrium allocations have dimen-
sion S − J . If the prices of the securities are also included as parameters, then, since their
sum can be normalized, the degree of indeterminacy comes back to being S − 1 as in GMC.

Originally Cass was interested in economies with incomplete financial markets and nom-
inal securities as a way of generating sunspot equilibria. These are essentially stochastic
equilibria of a non-stochastic economy which exploit the incomplete co-ordination between
the financial markets for transferring income and spot markets for allocating goods. Sunspot
equilibria are equilibria in which the consumption of the agents are different in two apparently
fictitious states, in which there is no difference in either agents’ preferences or the endow-
ments of goods. Cass (1992, Chapter 18) shows that economies with nominal assets in which
financial markets are incomplete (there is not perfect insurance against ‘sunspots’) generate
such equilibria. For example if there is a nominal bond which pays 1 unit of account at date 1,
if agents anticipate different price levels for S ‘sunspot’ states, then the economy can gener-
ate equilibrium allocations of dimension S− 1. If there are additional securities with payoffs
dependent on sunspots, then generically in the agents’ endowments, the dimension of these
equilibria is S − J .

Gottardi-Kajii (1999, Chapter 19) exploit the framework of Cass (1992, Chapter 18) to
take the analysis of sunspot equilibria one step further. They show that an economy with de-
terministic preferences and endowments, and with real securities having deterministic com-
modity payoffs, can generate sunspot equilibria. The idea is simple: they associate with
any two-period deterministic economy, an ‘artificial economy’ with two sunspot states and
a single security which pays a different amount (V1, V2) in the two states. The analysis of
Cass shows that if agents have different preferences for the goods then differences in the in-
come distribution in the two states implies different spots prices (p 1 �= p2) and allocations
(x1 �= x2) in the two states. If there are two or more goods there exists a bundle A ∈ |RL

of the goods such that p1A = V1 and p2A = V2. The economy with one asset with real
payoff A and two sunspot states has a sunspot equilibrium, even though the fundamentals,
preferences, endowments and asset payoffs, are deterministic.

Sunspot equilibria attempt to formalize an intuition that economists have long held, but
have found difficult to formalize, namely that ‘beliefs’ can in and of themselves influence
the equilibrium outcome. The idea that ‘beliefs’ can influence the equilibrium outcome and
be ‘self-fulfilling’ is a very appealing idea. However when sunspot equilibria are derived
from a model with nominal assets, they exploit an indeterminacy in the standard concept of
equilibrium, namely the indeterminacy of price levels, and sunspots serve to co-ordinate the
anticipations of the agents on price levels which nothing else determines. Given that we have
yet to find a convincing example of ‘sunspots’, it seems hard to believe that agents trading
nominal securities will use sunspots to co-ordinate their anticipations of future price levels.

Our paper (Magill-Quinzii, 1992, Chapter 20) takes a different perspective on the appro-
priate way of exploring the model with nominal securities. Our first observation is that in the
real world a nominal contract is a promise to make a deferred payment of a sum of money at
a future date: such promises only come to be made in an economy in which money is already
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used as medium of exchange and as a unit of account. The first step is therefore to find a
natural way of introducing money as a medium of exchange into the GEI model so that price
levels are determined by the monetary side of the economy.

The basic idea of a monetary model in the style of Clower (1967) can be described as
follows. In a barter economy an agent wanting to exchange good 
 for good 
 ′ must find
another agent who is simultaneously willing to perform the opposite transaction. Introducing
money as a medium of exchange avoids the problem of double coincidence of wants by
splitting the exchange into two separate transactions: good 
 is sold for money, and then
money buys good 
′. Thus we model the use of money in facilitating transactions by dividing
each period into sub-periods: agents first sell their goods (initial endowments) in exchange
for money, then they transact on the security markets, increasing their money balances if they
are net borrowers, or decreasing them if they are net lenders. Finally they use the money
acquired from these transactions to buy their desired consumption bundles. At date 1 in each
state the same process takes place, agents getting the payoffs from their portfolios, instead
of paying for them. To ensure that money has positive value in a finite horizon economy we
introduce a Central Exchange which pays agents money for their goods at the beginning of
each period and recovers the money when agents buy their goods at the end of the period,
Ms being the money injected in date-state s, s = 0, . . . , S. Equating the agents’ transaction
demand for money in each date-state with the money supplied by the monetary authority
leads to the S + 1 quantity theory equations

I∑
i=1

psx
i
s = Ms, s = 0, . . . , S

This timing of transactions using the Central Exchange to inject money before agents buy
their goods is different from the standard timing of the cash-in-advance model in which agents
first buy goods for money and later receive payment for their endowments. However it has the
advantage of leading to the same budget equations as in a GEI equilibrium, while introducing
precisely the requisite number of equations to determine the S + 1 price levels.

In Magill-Quinzii (1992, Chapter 20) we take the characteristics of an economy to be the
agents’ utility functions u = (u1, . . . , uI) and endowments ω = (ω1, . . . , ωI), the matrix of
payoffs V of the nominal securities, and the monetary policy M = (M0, M1, . . . , MS). In
the spirit of the rational expectations literature agents are assumed to correctly anticipate the
monetary policy and hence to correctly anticipate the price levels in the different states at date
1. As a result a given monetary economy (u, ω, V, M) typically has a finite number of equi-
libria. We say that monetary policy is non-neutral (or has real effects) if a different monetary
policy M ′ can lead to an equilibrium with different consumption streams for the agents. We
show that if markets are complete monetary policy is neutral while, if markets are incomplete,
then (generically in endowments) monetary policy has real effects. Thus the indeterminacy of
equilibrium in the GEI model without price level determination, becomes the property that,
in an economy with nominal assets and incomplete markets, correctly anticipated monetary
policy has real effects.

Another approach to modeling money in a GEI model is presented in the paper of Dubey-
Geanakoplos (2003, Chapter 21) which adopts the more classical timing of the Lucas (1980)
cash-in-advance model in which agents must have money to buy their goods before they
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receive the monetary payment from the sale of their endowments. A ‘bank’ lends money to
agents at date 0 against bonds which mature either at the end of the first or the second period,
and again in each state s at date 1 against bonds which mature at the end of this period. All
the money in the system must return to the bank at the end of the second period. If agents
have initial money balances, more money must come back to the bank than it lends, so that
the interest rates charged by the bank must be positive. This ensures that money has positive
value and that equilibria with either nominal or real securities are determinate. However
with a positive interest rate the model is not exactly the GEI model: the buying prices of
goods exceed their selling prices since money must be borrowed at a positive interest rate
to buy goods. GEI equilibria obtain in the limit when the quantity of money injected by the
bank goes to infinity. The emphasis of the paper is less on determinacy and real effects of
money that on the fact that an equilibrium exists even when the securities are real and the
payoff matrix has potential changes of rank—the problem which, as we have seen above,
can lead to non-existence of equilibrium in the standard GEI model. Explicitly introducing
money into the model and requiring that agents have the money to buy securities before they
receive the payment for the securities they sell, limits agents’ transactions on the security
markets: essentially they create the bounds that Radner postulated, leading to the existence
of an equilibrium.

Drèze and Polemarchakis (1999, 2001) have developed a version of the above model in
which the bank is private and makes a profit from lending money for transactions. In later
papers they reinterpret this profit as seignorage revenue earned by the government and are
led to enter the debate on the fiscal theory of the price level (Bloise-Drèze-Polemarchakis
(2005)). These are certainly interesting issues which bring the model close to the macroeco-
nomic literature, but they are not directly related to the incomplete markets agenda on which
we focus here.

Part VI. Security Structure

The GEI model provides a systematic framework for studying the consequences of having
only limited securities for coping with future contingencies. An inherent weakness of the
model however is its limited ability to justify an existing security structure. Considerable
interest has therefore centered on finding ways of analyzing the benefits (if any) that can be
expected from adding new assets to an existing security structure. Changing the number of
assets from J to J+1 typically changes the subspace of income transfers to which agents have
access and—if this is done in a ‘brutal’ way—will lead to a discontinuous change in the equi-
librium, rendering ‘before’ and ‘after’ comparisons difficult. Elul (1995) and Cass-Citanna
(1998, Chapter 22) discovered (essentially simultaneously) a clever way of embedding a new
security into an existing equilibrium in such a way that there is a smooth transition between
the original equilibrium and a neighboring equilibrium with J + 1 assets and an augmented
span.

The basic idea is to begin by introducing a new asset which does not change the equi-
librium; the payoff of the asset is then perturbed in such a way that the equilibrium changes
smoothly, permitting techniques of differential topology to be used to compare neighboring
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equilibria. The type of asset which does not change the equilibrium is either a redundant asset
as in Cass-Citanna (1998, Chapter 22) or an asset that no agent wants to trade at the original
equilibrium as in Elul (1995, (1999, Chapter 23)).

The technique of Cass-Citanna in Chapter 22 is to write the system of equations defining
an equilibrium with J + 1 securities. When the J + 1’st security is redundant the original
equilibrium is a solution of this system of equations. They then study the Jacobian of the
system at this solution and show that if the present-value vectors of the agents are different—
a generic property of an incomplete market equilibrium—then the Jacobian is of maximum
rank. It follows that there are changes in the payoff of the new security for which the equi-
librium changes smoothly. Finally they show that if the number of (types of) agents is small
relative to the degree of incompleteness of the market, then generically in preferences and
endowments, any local change Δu = (Δu1, . . . , ΔuI) in agents’ utilities can be achieved
by a suitable perturbation of the new asset. Thus depending on the particular payoff of the
new asset, its introduction can benefit all agents, harm all agents, or improve some and harm
others.

The ambiguity in the consequences of introducing a new asset has its origin in the numer-
ous ways in which prices can change following the introduction of the asset. More precisely,
adding a new asset to an existing security structure has two effects on the equilibrium:

(i) the direct effect, namely the increase in the span of the market; this always increases
the welfare of the agents

(ii) the indirect, or price effect: changing the agents’ income transfers leads to a change
in the distribution of income among the agents trading on the spot and security markets and,
when agents have different preferences, this induces a change in the spot and security prices.
These price changes can either increase or decrease agents’ utilities.

The papers of Elul (1995) and Cass-Citanna (1998, Chapter 22) mentioned above consider
the general case where both effects are present, and the price changes consist of changes in
both the spot and the security prices. By restricting the possible price changes, more specific
results can be obtained: for example Elul (1999, Chapter 23) studies the two-period, one-
good (or finance) model, which eliminates the spot-price changes. The only remaining price
effect which can counteract the direct effect is the change in the prices of other securities
which arise when a new security is introduced. Elul shows that provided that there are not
too many agents relative to the degree of incompleteness of the markets, it is possible to
introduce a new security which does not change the prices of the existing securities, so that
only the direct effect is present and the welfare of all agents is increased.

Instead of asking whether adding a security to an existing security structure would im-
prove the welfare of all agents, one could more generally ask whether there is an optimal way
of adapting the entire security structure V to the risks ω = (ω 1, . . . , ωI) faced by the agents,
given the risk tolerances summarized by their utility functions. This is the question studied by
Demange-Laroque (DL) (1995, Chapter 24) in the specific setting of a one-good model with
normally distributed endowments. Implicit in their analysis is the fact that in a two-period
one-good exchange economy with security structure V , a financial market equilibrium is
V -constrained Pareto optimal. Furthermore with income transfers among the agents, any V -
constrained Pareto optimal allocation can be realized as a financial market equilibrium. Thus
DL focus on the constrained optimal allocations and study the following problem: consider
the family of all incomplete security structures with J assets; among the induced family of
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V -constrained Pareto optimal allocations, find the one which generates the greatest social
welfare.

Answering this question in a framework of any generality is difficult, so DL focus on a
setting where the problem can be resolved in a clear and simple way: agents have constant-
absolute-risk-aversion (CARA) utility functions and their endowments are normally dis-
tributed. More precisely they consider a model in which agents only consume at date 1
and have random endowments of the form

ωi = 1ω̄i + φ̃wi

where 1 is the constant random variable equal to 1, ω̄i is the agent’s mean endowment, and
φ̃ = (φ̃1, . . . , φ̃K) are K independent normally distributed random variables (factors), each
with zero mean and unit variance, which represent the (normalized) risks of the economy,
wi = (wi

1, . . . , w
i
K) representing agent i’s exposure to these risks. Each agent has a utility

function of the form

U i(xi) = Eui(xi) = E

(
− 1

ai
e−aixi

)
where ai = −u′′

i (c)
u′

i(c)
is the constant absolute risk aversion and τi = 1/ai is the constant risk

tolerance of agent i. The Pareto optimal allocations of this economy are of the form

xi∗ = 1x̄i +
τi

τ
φ̃w, i = 1, . . . , I (16)

where w =
∑

i wi is the aggregate exposure to the risks, and τ =
∑

i τi is the sum of the
agents’ risk tolerances. Thus each agent’s consumption stream consists af a sure part 1x̄i

and a share of the aggregate risk φ̃w equal to the agent’s relative risk tolerance τi/τ . If all
the risks of the economy are traded, i.e. if the security structure consists of the riskless bond
with payoff 1 and of risky securities which span the subspace 〈φ̃〉, then agents can perfectly
diversify their risks and, with appropriate (sure) income transfers, all first-best allocations can
be obtained.

Suppose however that complete risk-sharing is not attainable, for reasons which are not
explicitly modeled. Instead the risk-sharing possibilities are limited to any subspace 〈 Ṽ 〉
generated by J (J < K) random variables (Ṽ 1, . . . , Ṽ J) (the payoff of the securities) which
are linear combinations of the basic risks φ̃, so that 〈Ṽ 〉 ⊂ 〈φ̃〉. Then it can be shown that, for
a given security structure (1, Ṽ ), the constrained Pareto optimal allocations are of the form

xi = 1x̄i + (φ̃ − E(φ̃|Ṽ ))wi +
τi

τ
E(φ̃|Ṽ )w, i = 1, . . . , I (17)

where E(φ̃|Ṽ ) denotes the conditional expectation of the random variables ( φ̃1, . . . , φ̃K)
given (Ṽ 1, . . . , Ṽ J). This has a simple geometric interpretation. Consider the inner product
on the linear space 〈φ̃〉 defined by [x, y] = E(xy) = cov(x, y) (since the random variables
in 〈φ̃〉 have zero mean). The conditional expectation E(φ̃|Ṽ ) is the orthogonal projection
of the risks factors φ̃ on the subspace 〈Ṽ 〉 spanned by the securities, in the metric induced
by this inner product. Thus the streams in (17) are the closest possible to the Pareto optimal
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allocations (16): the limited risk sharing possibilities force agents to keep the undiversifiable
part (φ̃ − E(φ̃|Ṽ ))wi of their endowment risks, while they share the aggregate diversifiable
risks E(φ̃|Ṽ )w in proportion to their relative risk tolerances.

DL then solve the following problem: given that consumptions streams have the form
given in (17), find the subspace 〈Ṽ 〉 which maximizes social welfare. Because of the CARA
form of the preferences and the normally distributed risks, they show that this is equivalent
to maximizing

I∑
i=1

ai

∥∥∥E(φ̃|Ṽ )
(τi

τ
w − wi

)∥∥∥2

(18)

If the planner has no restrictions on the risk transfers that he can make among agents, he
will achieve a first-best allocation by correcting the original exposure φ̃wi of agent i to the
factor risks by the net trade (in risks) ti∗ = φ̃

(
τi

τ w − wi
)

so that agent i has his appropriate
share of the aggregate risks. If the planner is constrained to redistribute risks by using the

random variables Ṽ , then ti∗
Ṽ

= E(φ̃|Ṽ )
(

τi

τ
w − wi

)
is the component of the optimal net

trade ti∗ which can be achieved using the securities Ṽ . The planner will choose 〈Ṽ 〉 so
that the greatest possible share of the optimal risk correction is achieved. However, with a
limited structure, choosing a subspace 〈Ṽ 〉 ‘close’ to agent i’s optimal ti∗ may imply that
the projection of the optimal trade t i′∗of some other agent i′ is small; the planner must thus
weight each agent’s needs, and (18) indicates that the appropriate weights are the agents’ risk-
aversion coefficients: the need to correct the risks of a risk-averse agent has more weight than
that of a risk-tolerant agent. Thus the planner chooses the subspace 〈Ṽ 〉 so as the maximize
the risk-aversion weighted sum of the projections of the optimal risk corrections

I∑
i=1

ai

∥∥∥ti∗
Ṽ

∥∥∥2

or, equivalently, so as to minimize the risk-aversion weighted sum of the unachievable risk

transfers
∑I

i=1 ai

∥∥∥(ti∗ − ti∗
Ṽ

)
∥∥∥2

.

Calculating the projections leads to the conclusion that 〈 Ṽ 〉 must be spanned by J inde-
pendent payoff streams of unit variance, whose components in the basis φ̃ are the J eigenvec-
tors of the symmetric matrix

∑I
i=1 ai( τi

τ w − wi)�( τi

τ w − wi) associated with the J largest
eigenvalues, each eigenvalue measuring the gain in social welfare from introducing trade in
the direction of the corresponding eigenvector. Note that the criterion of choosing a security
or a subspace so as to maximize the volume of trade—the criterion which would be chosen
by a security exchange which derives its revenue from commissions on transactions (Duffie-
Jackson (1989), Hara (1995))—goes in the right direction but, if there are differences in risk
aversion among agents, it will not lead exactly to the optimal security structure since it max-
imizes the unweighted net trades. DL also show that the analysis of the CARA-normal case
can be partially extended to economies with more general preferences as long as the risks are
normally distributed. Results similar to those of DL in the CARA-normal case were derived
independently by Athanasoulis-Shiller (2000).
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The analysis of DL implicitly assumes that there is a bond with a riskless payoff and
focuses on the choice of the risky securities. A suggestive way of looking at the Magill-
Quinzii paper (1997, Chapter 25) is that it does the reverse: it takes the optimal structure of
risky assets (equity) as given and asks, in the setting of a monetary economy, which bond can
be introduced whose real payoff is as close as possible to riskless stream needed to obtain an
efficient allocation of risk.

Although most finance models assume the existence of a (real) riskless bond, in practice
most borrowing and lending activity occurs in nominal bonds whose real payoff fluctuates
with the purchasing power of money (ppm). Indexation has long been advocated as the
solution for isolating the real payoff of nominal bonds from the variability of the ppm, but
the stylized fact is that the variability of inflation has to be substantial before agents switch
systematically to indexed contracts. Our paper seeks to explain this phenomenon by arguing
that indexation is never perfect and that a bond with a riskless payoff does not exist. For,
if a bond is indexed on the value of a bundle of goods and there are aggregate risks which
generate fluctuations in relative prices, such an indexed bond substitutes the fluctuations in
relative prices of the goods in the reference bundle for the fluctuations in ppm affecting the
payoff of a nominal bond. Depending on the relative magnitudes of these two different risks,
a nominal or an indexed bond is optimal.

To formalize this argument we draw on the monetary multigood GEI model of Chapter
20, restricting the structure of preferences so that the spot prices can be explicitly calculated,
and the interplay between the security structure and the welfare of agents in equilibrium can
be studied in a simple and clear way. To this end agents are assumed to have separable-
homothetic preferences of the form

U i(xi) = λi
0h(xi

0) +
S∑

s=1

ρsu
i(h(xi

s))

where λi
0 > 0, h : |RL

+ → |R is concave, increasing, and homogenous of degree 1, ρs denotes
the probability of state s, and ui is quadratic, ui(c) = −1

2 (αi − c)2. Thus all agents have the
same homothetic preferences for the L goods in each spot market, and have linear-quadratic
preferences over the induced utilities

(
h(xi

0), (h(xi
s))

S
s=1

)
.

The existing risky securities consist of K equity contracts with payoff matrix V , and these
securities are well adapted to the risks of the agents in that agents’ endowments lie in the span
〈V 〉 of V . Given that a bond is needed to accommodate the differences in risk aversion of the
agents, the problem is to find which bond to add—either a nominal or an indexed bond—to
maximize social welfare at equilibrium.

In view of the assumption of identical homothetic preferences, the vector of spot prices
in state s is proportional to the marginal utilities of the representative agent at the aggregate
endowment

ps =
Ms

h(ωs)
∇h(ωs), where ∇h(ωs) =

(
∂h(ωs)

∂x1
, . . . ,

∂h(ωs)
∂xL

)
, s = 0, . . .S

and where ωs =
∑

i ωi
s is the aggregate endowment in state s, and Ms is the quantity of

money issued by the monetary authority in state s. If mi
s denotes the monetary income of
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agent i in state s, the agent’s consumption is xi
s = (mi

s/Ms)ωs and hence the agent’s indirect
utility function over monetary income streams (m i

0, . . . , m
i
S) is

ṽi(mi) = λi
0 h

(
mi

0

M0
ωs

)
+

S∑
s=1

ρsu
i

(
h

(
mi

s

Ms
ωs

))
The coefficients

νs =
h(ωs)
Ms

, s = 0, . . .S

define the ‘real’ or ‘utility’ index of the purchasing power of money, so that μ i
s = νsm

i
s is

agent i’s real income in state s. The homogeneity of h leads to the indirect utility function
for real income

vi(μi) = λi
0 μi

0 +
S∑

s=1

ρsu
i(μi

s)

Once converted into real purchasing power, the economy becomes a standard linear-quadratic
finance economy for which the equilibrium social welfare can be evaluated. We show that,
when equity contracts spanning the agents’ endowments are traded, the equilibrium social
welfare is proportional to the length of the projection of the riskless income stream onto the
market subspace, with the same metric on random variables as in DL. If a risky bond is added
to the equity contracts, the length of this projection depends on the variance of the risky bond
and on its covariances with the equity contracts.

Suppose that the bond is nominal, paying one unit of money in each state. Then its payoff
in purchasing power is

anom = (νs)S
s=1 =

(
h(ωs)
Ms

)S

s=1

The real payoff is riskless only if Ms is proportional to h(ωs): to avoid introducing monetary
risks in the nominal bonds traded in the private sector, the monetary authority would need
to perfectly adjust the quantity of money to the (utility) value of the aggregate endowment
h(ωs).

If the bond is indexed to a bundle of goods b, i.e. if its nominal payoff is p sb, then its real
purchasing power is

aind = ∇h(ωs) b

which is independent of the monetary policy, but depends on the variability of the relative
prices ∇h(ωs). To avoid these relative-price fluctuations, the reference bundle would need
to be state contingent and proportional to ω s/h(ωs), since (∇h(ωs)ωs)/h(ωs) = 1 (see
Geanakoplos-Shubik (1990) for a related analysis). Varying the reference bundle with the
economic circumstances does not correspond to practice, since it would be costly to imple-
ment and would create a problem of credibility when the government calculating the index
also has indexed payments or receipts. The assumption that the indexing bundle is non con-
tingent seems realistic but it implies that indexing is not perfect.

Assuming that only one bond is introduced, Chapter 25 discusses the circumstances in
which the nominal bond gives a higher social welfare than an indexed bond, concluding that,
if the ppm does not vary too much and is negatively correlated with aggregate output—i.e.
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inflation is positively correlated with aggregate output — then the nominal bond is better
than an imperfectly indexed bond. When inflation becomes too variable, relative-price risks
become less important than inflation risks, and an indexed bond is preferred to a nominal
bond.

A weakness of the analysis is that the comparison is made under the assumption that only
one bond is traded, when nothing prevents both a nominal bond and an indexed bond from
co-existing. The analysis has been extended to the case where the two bonds can be traded
by Mukerji-Tallon (2004). They show that if agents have vague information about relative
price risks and are ambiguity averse, for sufficiently low inflation the indexed bond will not
be traded, even though both the nominal and the indexed bond are in the set of tradable
securities.

In all the models considered so far, the payoff of a security is the same for buyers and
sellers. In the last chapter Dubey-Geanakoplos-Shubik (DGS) (2005, Chapter 26) explore the
role of default by allowing the amount delivered on securities to be tailored to the particular
needs of the borrower. The paper also gives insight into the endogenous choice of security
structure in equilibrium.

A financial contract is an exchange of current income for the promise to deliver income
in the future. Such exchanges will function only if agents have incentives to deliver on their
promises, or equivalently incur penalties for failing to pay their debts. Implicit in the models
studied so far is the assumption that penalties for not paying on promises are so high that
agents always fulfill the terms of their contracts. In practice penalties are not so high and
some amount of default takes place. The DGS model adds explicit penalties for default to
the GEI model and lets agents choose whether to keep their promises or to default on some
of their commitments. Since it is a two-period model it cannot be too realistic in describing
the way society enforces contracts, and directly postulates the existence of penalties which
decrease the utility of the defaulting agent proportionally to the amount of default. For default
to be compatible with equilibrium, it must be foreseen by the lenders whose plans must take
into account the actual amounts that borrowers will deliver. The DGS model assumes that
all contracts—which, as in the usual GEI model, have exogenously fixed terms—are run by
intermediaries which pool the actual deliveries of the borrowers (sellers) on the contracts and
pay the lenders (buyers) the same proportion of the promised delivery. Canonical examples
of such contracts are securitized mortgages or credit-card debts, which are sold in pools, and
for which investors receive the average rate of payment by the borrowers. Pooling is a way of
keeping the markets anonymous and competitive: buyers only need to predict average payout
rates which depend on aggregate characteristics of the borrowers.

A simple version of the model takes as its starting point a two-period GEI exchange
economy with J numeraire assets, each promising to deliver the amount (V j

s )S
s=1 ∈ |RS

+, j =
1, . . . , J , of the numeraire good at date 1. The characteristics (ui, γi, ωi) of agent i consist

of a utility function u i : |RL(S+1)
+ → |R, (utility) default penalty rates γ i = (γji

s )S
s=1 ∈

|RS
+, j = 1, . . . , J , where γji

s is agent i’s penalty for one unit of default on security j in state

s, and endowments ωi ∈ |RL(S+1)
+ . As usual agents can trade on spot and financial markets

with prices (p, q). It is now important however to distinguish between agent i’s buying and
selling activity for each security. Let z i = (φi, θi) = (φi

1, . . . , φ
i
J , θi

1, . . . , θ
i
J) be agent i’s

portfolio, where φi
j is the amount sold and θi

j is the amount purchased of security j. As
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a seller of asset j, agent i in principle promises to deliver V j
s φi

j in state s but can instead

choose to deliver only Dji
s = Ṽ ji

s φi
j , with Ṽ ji

s ≤ V j
s , at the cost of incurring the utility

penalty γji
s (V j

s − Ṽ ji
s )φi

j . As a buyer of asset j, agent i is in principle promised V j
s θi

j , but
correctly anticipates that he will only receive K j

sV j
s θi

j where

Kj
s =

I∑
i=1

Ṽ ji
s φi

j

I∑
i=1

V j
s φi

j

(19)

is the actual delivery rate on the ‘pooled’ contract j. Agent i’s problem is to choose con-
sumption, portfolio and default rates to maximize utility net of default penalties

ui(xi) −
J∑

j=1

S∑
s=1

(V j
s − Ṽ ji

s )φi
j (20)

given the date 0 and date 1 budget equations

p0(xi
0 − ωi

0) = −q(θi − φi)

ps(xi
s − ωi

s) =
J∑

j=1

Kj
sV j

s θi
j −

J∑
j=1

Ṽ ji
s φi

j, s = 1, . . . , S
(21)

where the price of the numeraire good in which the assets deliver is normalized to 1 in each
state. Note that choosing the sales and delivery rates (φi, Ṽ i

s ) is equivalent to choosing the
sales and delivery amounts (φi, Di

s), where Dji
s = Ṽ ji

s φi
j , and the agent’s maximum problem

is convex in the choice variables (xi, φi, θi, Di).
An equilibrium for the economy consists of actions, prices and delivery rates ((x, φ, θ, D),

(p, q, K)) such that (i) each agent maximizes (20) subject to (21), (ii) spot markets clear:∑
i(x

i − ωi) = 0, (iii) security markets clear :
∑

i(φ
i − θi) = 0, and (iv) the anticipated de-

livery rates for assets traded in equilibrium coincide with the weighted average of the realized
delivery rates (19). Since each agent’s maximum problem is convex in the choice variables,
an equilibrium can be shown to exist.

Actually the description of an equilibrium just given is incomplete since the delivery
rates in (19) are not defined for non-traded assets with φ i

j = 0 for all i. An equilibrium is
well defined only if all securities have prices and anticipated delivery rates which justify the
trades chosen by the agents, including the absence of trade if all agents choose φi

j = θi
j = 0

on security j. Since rational expectations cannot contradict any expected delivery rate on a
contract which is not traded, DGS consider a preliminary concept of equilibrium in which
Kj is defined by (19) if there is trade and is arbitrary if there is no trade.

However this definition yields many equilibria with no trade since, for any security j,
a sufficiently low price qj will discourage sellers from using the security to borrow, while
sufficiently low anticipated delivery rates K j

s will discourage buyers from using the contract
to save. To eliminate such equilibria DGS introduce a refinement of equilibrium obtained as
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a limit of equilibria in which an outside agent (say the government) buys and sells ε of each
security and fully delivers on its promises. This device eliminates excessively pessimistic
expectations.

The DGS model permits a rich variety of questions on the role and consequences of
default to be formalized and explored. For example they show that if the financial markets in-
clude Arrow securities with perfectly tailored state-contingent payoffs, then a Pareto optimal
allocation is obtained by setting infinite penalties on these contracts and arbitrary penalties
on any other contract, which will not be used in equilibrium. In short default has no role or
justification when markets are complete. However if markets are incomplete—for example
if the only security is the non-contingent bond for borrowing and lending—then default is
useful since it permits agents to borrow even if there are ‘bad’ states in which they are unable
to repay. Intermediate penalties which ensure sufficient delivery rates to encourage savers to
use the securities, while leaving room for some default by borrowers exposed to unusually
bad draws, improve on the outcome of the standard GEI model with its (implicit) infinite
penalties for default.

Further Developments

This volume has presented contributions to the theory of incomplete markets over a finite
horizon—and many of the papers have focused on two-period economies. This setting pro-
vides the simplest version of the incomplete-market model: understanding the structure and
properties of the model in this case is a first step toward exploring the consequences for an
equilibrium of the fact that financial markets typically do not provide complete contingent
contracts tailored to the risks and circumstances of each economic agent.

The simplifications obtained by focusing on the short horizon come however at a cost
in realism. Two-period models do not lend themselves readily to calibration and numerical
evaluation of the orders of magnitude of the effects revealed by the theoretical analysis. A
related problem is that a two-period model tends to overestimate the cost of the incomplete-
ness of markets, because it cannot incorporate the effect of dynamic trading strategies such
as carry-over strategies—saving when an income shock is favorable, dissaving or borrowing
when it is unfavorable—which, with stationary risks, can achieve almost perfect risk sharing
with very few securities. More generally some equilibrium problems depend importantly on
the fact that there is no natural terminal date at which the economy ceases, and need to be
studied in a model with an open-ended future.

The study of incomplete market economies has thus progressively evolved from finite
to infinite horizon economies, leading to a convergence between general equilibrium and
macroeconomics. Exploring incomplete market economies over an open-ended future brings
with it interesting new technical and conceptual issues, which are the subject of the second
volume on Incomplete Markets.

Notes

1. Arrow (1951), Debreu (1952, 1959), Arrow-Debreu (1954), McKenzie (1954, 1955, 1959).
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2. Strictly speaking Arrow’s paper presents a two-period model: the extension of Arrow’s anal-
ysis to the multi-period setting is given by Guesnerie-Jaffray (1974). It is convenient for the
discussion here to express the model in the general multiperiod setting.

3. Ramsey (1926), von Neumann-Morgenstern (1944), Savage (1954).

4. Although in the economic literature the state-space approach has its origin in the development of
expected-utility theory, the assumption that agents’ preferences have an expected-utility repre-
sentation is not needed in the Arrow-Debreu model. It was however convenient for the sequential
model introduced by Arrow, to express optimality of the agents’ commodity trades on the spot
markets once the uncertainty (at each date-event) is resolved.

5. The classical economists understood the role of insurance as a mechanism for reducing risks,
and the need to compensate agents involved in risky undertakings with a risk premium: see for
instance the discussions of Adam Smith (1776) on insurance and on the higher wages of con-
struction workers to compensate for the inevitable fluctuations in their employment (Volume 1,
Part 1, Chapter 10). The need for a systematic treatment of risk sharing was however absent, and
in the settings where the modern literature sees a trade-off between risk-sharing and incentives,
for example in joint-stock ownership or in the metayer system for farming, neither Adam Smith
(1776) nor John Stuart Mill (1848) ever mentioned any advantage of such a contractual arrange-
ment for risk sharing, but both focused almost exclusively on the negative effects on incentives.

6. The exceptions are the papers in Part VI.

7. Omitting the subspace constraint (5) for one agent is sometimes called the ‘Cass trick’. This
construction was introduced independently in the Discussion Paper versions of Cass (Chapter 6)
and Magill-Shafer (Chapter 7).

8. A real security structure for which each security pays off amounts A j
s ∈ |R of the same good—the

‘numeraire’ good—is called a numeraire asset structure.

9. Several assumptions, including an upper bound on the number of agents, are needed to obtain
the result: see the paper for a precise statement of the theorem.
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Drèze, J.H. and H.M. Polemarchakis (1999), “Money and Monetary Policy in General Equilibrium,”

in Economics Beyond the Millenium, Kirman, A. and L.A. Gerard-Varet eds, Oxford and New-York:
Oxford University Press.
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