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DYNAMICS UNDER UNCERTAINTY'

By WiLLIAM A. BROCK AND MICHAEL J. P. MAGILL

1. INTRODUCTION

THIS PAPER IS a preliminary investigation of dynamics under uncertainty. We
attempt to develop a general approach to the continuous time stochastic processes
that arise in dynamic economics from the maximizing behavior of agents. The
analysis builds on recent results of Bismut [2, 3] concerning the characterization of
the extrema of stochastic variational problems over a finite horizon and on our
own investigations [6, 7, 20, 21] of the stability properties of the equations of
dynamic economics.”

We consider a class of discounted infinite horizon maximum problems. While it
is convenient to pose the basic economic problem as a stochastic control problem,
to obtain the full benefit of Bismut’s elegant characterization of a maximizing
process it is convenient to transform this problem into an equivalent stochastic
variational problem along the lines indicated by Rockafellar [27] in the deter-
ministic case and generalized by Bismut [2] to the stochastic case. Within this
framework we show that the idea of a competitive path introduced in the
continuous time deterministic case in [21] generalizes in a natural way in the case
of uncertainty to a competitive process. We show, under a concavity assumption on
the basic integrand of the problem, that a competitive process which satisfies a
transversality condition is optimal under a discounted catching up criterion
(Section 2).

In Section 3 we examine the sample path properties of a competitive process. If
for almost every realization of a competitive process the associated dual price
process generates a path of subgradients for the value functian, we call the process
McKenzie competitive, since it was McKenzie [22] who first recognized the
importance of this property in the deterministic case. We show that two McKenzie
competitive processes starting from distinct nonrandom initial conditions con-
verge almost surely if the processes are bounded almost surely and if a certain
curvature condition is satisfied by the Hamiltonian of the system. The earlier
convergence result extensively studied in the deterministic case thus continues to
hold in the stochastic case. The problem of finding sufficient conditions for the
existence of a McKenzie competitive process remains an open problem.

Section 4 examines the long-run behavior of the probability measure associated
with a competitive process. We give conditions under which a McKenzie
competitive process is a Markov process with an invariant probability measure and
show that under the curvature conditions of Section 3 the competitive process
converges to a unique stationary stochastic process.

! This research was supported by Grants from the National Science Foundation, SOC 74-19692
and SOC 76-16838. We are grateful to Jean-Michel Bismut, F. R. Chang, Terry Rockafellar, José
Scheinkman, and the referee for helpful comments.

2 We should also refer to the related work of Cass-Shell [8], McKenzie [22], and Rockafellar [28].
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Section 5 is a preliminary analysis of intertemporal market equilibrium. We
consider the simplest case of rational expectations equilibrium for a competitive
industry with a fixed number of firms producing a single output where the firms
face an exogenously given demand function for their final product. We show that a
solution of an associated consumers’ surplus problem, which we call the extended
integrand problem, generates a rational expectations equilibrium. We use the
results of Section 4 to give conditions under which the resulting Markov process
converges to a unique stationary stochastic equilibrium process. This generalizes
the earlier work of Lucas-Prescott [17] and the subsequent results of Brock [5]
and Scheinkman [29].

A number of questions raised in this section are examined in greater detail in
[19] and [4]. In [19] Magill provides a more detailed analysis of the shadow prices
and risk costs on which firms base their investment decisions. The security market,
by indirectly informing producers of these variables in the process of valuing the
securities of the firms, is shown to play an important role in determining an optimal
allocation of investment among the firms. An alternative approach to the problem
of intertemporal equilibrium is developed in the paper of Brock [4] where the
capital theoretic framework of this paper is related more directly to the well-
known financial theory of the capital market.

2. COMPETITIVE PROCESSES AND THE TRANSVERSALITY CONDITION

Let (2, %, P) denote a complete probability space, F a o-field on (2, and P a
probability measure on %. Let I =[0, o) denote the nonnegative time interval and
(I, M, u) the complete measure space of Lebesgue measurable sets ./, with
Lebesgue measure u. Let (2 X I, 3, P X u) denote the associated complete product
measure space with complete measure PXu and o-field #>F XM Let
(R", #"), with n =1, denote the measurable space formed from the n-dimen-
sional real Euclidean space R" with o-field of Lebesgue measurable sets .#". Let

k(w, t): (2XI, %)~ (R", #")
be an J-measurable function (random process) induced by the following problem.

StocHAsTIC CONTROL PROBLEM: Find an #-measurable control v (w, t) e U <
R°, s =1, such that

(1) sup J- J' e u(w, t, k(w, 1), v(w, 1)) dt dP(w), 6>0,
veUJQJI

2) k(w, t)= k0+L flw, 7, k(w, 7), v(w, 7)) dr

+J’ o(w, 1, k(w, 1), v(w, 7)) dz (w, )
0
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where ue R, f=(f',...,f")eR",

11 1

o= - - | eR™,

nl nm

and where koecK<R" is a nonrandom initial condition. u(-,k,v),
f(-,k,v),0(,k, v) are #-measurable random processes for all (k, v)in K XU <
R"XR*®and u(w, *), fw, ), o(w, +) are continuous on I Xx K X U for almost all
w, while z(w, ) e R™, m =1, is a Brownian motion process. Let

F=90z(w, 1), 7€[0,1])

denote the smallest complete o-field on (2 relative to which the random variables
{z(w, 7), 7€[0, t]} are measurable. We require that k (w, t) be %,-measurable for
all te I, so that f(-) and o (- ) are nonanticipating with respect to the family of
o-fields {%, t € I'}. To ensure the existence of a unique random process k (w, t) asa
solution of (2) we make the following assumptions.

AssuMPTION 1 (Lipshitz and Growth Conditions): There exist positive
constants a, 3, such that

(i) [ f(@, t, k, v)—f(w, t, k, v)||+|lo(w, t, k, v) — o (@, t, k, V)| < alk — K]
for all (k, v), (k, v) e K X U, for almost all (w,t)e 2 XL
(ii) If(@, &, k, 0)I +llo (@, 1, k, v)| < B(1+]k[)

for all (k, v)e K X U, for almost all (w, t)e 2 X 1.

We will exhibit a sufficient condition for a random process to be a solution of the
problem (1), (2) in terms of a certain price support property, the nature of which is
most clearly revealed by restricting the stochastic control problem (1), (2) in the
manner of Rockafellar-Bismut [27, p. 188; 2, p. 393] as follows. Consider the new
integrand

Supu(a)’ t’ k’ v)lf(w’ t’ k’ v)=1€.’ O-(w’ t’ k’ v)=0-
L(w, t, k, k, o) = —o00, if there is no v € U such that f(w, t, k, v) =k,

o(w, t, k,v)=0.

REMARK: L'(w, t,-) is upper semicontinuous for all (w,?) e..(l xI and
L(w, t, k(w, t), k(w, t), o(w, t)) is FH-measurable whenever k(w,t), k(w, t), and
o(w, t) are ¥ -measurable.

We impose indirect concavity and boundedness conditions on the functions
u(w, ), flw, t,- ), and o(w, ¢, - ) and a convexity condition on the domain K X U
by the following assumption.
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ASSUMPTION 2 (Concavity-Boundedness): L(w, t, - ) is concave in (k, k, o) for
all (k, k,0)e R" X R" X R"™, for all (w, t) € 2 X1, and there exists y € R, |y| <0,
such that L(- )<y for all (w, ¢, k, k,0)e 2XIXR"XR"XR"™

ExaMPLE: Consider the following matrices, whose coefficients are #-measur-
able nonanticipating random processes. Let {A(w, t), F(w, t), Hi(, t)} be nXn,
{N(w, 1), G(w, 1), Di(w, t)} be nxs,{B(w, 1)} be s x5, 00(w, t) be nx1, for i =
1,..., m. We require that

% 5]
N' B

be positive definite for all (w, 1) 2 xI, K XU =R" X R’ and let
(.1 k. v) = _l[k]'l:A(w, t) N(w, t)][k]
Ui, 51 o) IN(@, 1) Bo, t)ilo)
flw, t, k, v)=F(w, t)k + G(w, t)v,

o(w, tk,v)dz=Y o'dzi= Y, (Hi(w, )k +D;(w, v +00o(w, 1) dz..
i=1 i=1
It is immediate that Assumption 2 is satisfied.

DEFINITION: Let (k, k, o) = (k(w, 1), k(w, 1), o(w, t)) denote the ¥-measurable
random process defined by the equation

3) k(w,t)= ko+I k(w, 7) dr+ J o(w, 7) dz(w, 7),
0 0
where ko K < R" is a nonrandom initial condition, and where there exists an
J-measurable control v(w, t) € U such that
k(w, 7)=flw, 7, k(w, 1), 0(0, 7)), oo, 7)=0(0, 7 ko, 1), v(w,T))

for almost all (w, 7) € 2 X I. In view of Assumption 1

(3" L (L 1K (@, 7P dr + L lor (e, )P df) dP(w)<o, foralltel

We let @ denote the class of random processes satisfying (3) and (3)’, where
k(w, 7), o(w, 7) are -measurable and nonanticipating with respect to the family
of o-fields {%, t € I'}. The control problem (1), (2) then reduces to the following
problem.

STOCHASTIC VARIATIONAL PROBLEM: Let L satisfy Assumption 2, let
L(w, t,) be upper semicontinuous for all (w,t)e 2x1, and let L(-,x,v,s) be
IH-measurable for all (x,v,s)e R"XR"XR". Find an #-measurable random
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process (k, k, o) € P such that

(4) sup J Je_s'L(w, t, k(w,t), k(w, t), o(w,t) dt dP(w).
01

(k,k,0)eP
In order to give (4) a broad interpretation we introduce the following definition.

DEFINITION: Let X =P dengte a class of #-measurable random processes
(k, k, o). A random process (k, k, ) € ¥ is optimal (in ) if

T

(5) lim j j e (L(w, 1, k, k, &) — L(w, 7, k, k, 0)) dr dP(0) =0
0

T>c0 72

for all random processes (k, k,o)eHX.

DEFINITION: Let
plw,1): (2x1,3)~>(R", M")

denote an -measurable random price process dual to k(w,t). We let (p—
ép, p, m) = (p(w, t)— 8p(w, t), p(w, t), m(w, t)) denote the F#-measurable random
process defined by the equation

t t

6) p(w, t)=po+ L p(w, 7)dr+ L m(w, 7) dz(w, t)

where poe R" is nonrandom and where p(w, 7) and 7 (w, 7) are J#-measurable
random processes, nonanticipating with respect to the family of o-fields {%,, t e I},
with values in (R", #") and (R"™, #"™), respectively, and which satisfy

t t
© [ ([ 1@ P dr+ [ Imo, P dr) dP@) <0, forall el
(o) (0] (0]
Let 2* denote the class of random processes defined in this way.
The following concept is fundamental to all the analysis that follows.
DEFINITION: A random process (X, k_, &) € P is competitive if there exists a dual
random price process (p — 8p, p, ) € P* such that
% (5 —8p)k +p'k +tr (75") + L(w, t, k, k, &)
=(p—8p)k +p'k +tr (') + L(w, t, k, k, o)
for all (k, k, 0)e R" X R" x R"™™, for almost all (w, 1) € 2 X I.

REMARK (Economic Interpretation): A competitive random process is a random
process (k, k,5)e P that has associated with it a dual random price process
(p—8p, p, ) € P* under which it maximizes profit almost surely, at almost every
instant. For —(p —8p) denotes the vector of unit rental costs, — denotes the
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matrix of unit risk costs induced by the disturbance matrix &, while (1, p) is the
vector of unit output prices, so that
L+ﬁ’l§+ (p—8p)'k +tr (7&")

is the (imputed) profit which is maximized almost surely, at almost every instant,
by a competitive random process.

REMARK (Geometric Interpretation): The random process ( p—8p, p, 7)€ P*
generates supporting hyperplanes to the epigraph of —L(w, t, k, k, o) at the point
(k, k, &) for almost all (», t) € 2 X I. The hyperplanes parallel to a given support-
ing hyperplane indicate hyperplanes of constant profit, so that the supporting
hyperplanes are precisely the hyperplanes of maximum profit at each instant.

REMARK: Under Assumption 2 a random process (k, k, o) € P is competitive if
and only if
(8) (p(w, )—dp(w, 1), p(w, 1), m(w, 1)) € —3L(w, t, k(w, 1), k(w, 1), o' (@, 1))

for almost all (w, t)€ 2 X1, where oL denotes the subaiiﬁ”erential3 of L(w, t, - ).
Equation (8) is a generalization of the standard Euler-Lagrange equation.

DEFINITION: The Fenchel conjugate of —L(w, t, k, k, o) with respect to (k, o)
will be called the generalized Hamiltonian

9) Y, t,k,p,m)= sup {p'k+tr(mo')+L(w,t, k, k, o)}.

(k,o)e R"XR"™

REMARK: Y(w, t, k, p, m) is concave in k and convex in (p, 7) for all (w, t) €
2 %I and is defined for all (k, p, m)e R" X R" X R"™.

The following characterization of a competitive path will be used in the
Corollary of Theorem 2.

LEMMA 1: Under Assumption 2, if 9(w, t, - ) is differentiable, a random process
(k, k, o) € P is competitive if and only if

kw,t)= k°+J Y, (0, 7) dT+J' Y. (w, 7)dz(w, 7),
(¥) y ° ,
plw, t) =p0+J’ [—% (0, 7)+ 6p(w, T)] dT +J‘ m(w, 7) dz(w, 7).
o o

The equations (%), which will be called the stochastic Hamiltonian equations, are a
generalization of the standard Hamiltonian canonical equations for a discounted
stochastic variational problem.

3 See Rockafellar [27, p. 207] and Bismut [2, p. 398].
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DEFINITION: Assume that for all (x, v, s)e R"XR"XR"™
L(w, t,x,v,5)=L(x,0,s) forall (w,t)eZXxI
so that L is nonrandom and time-independent. When (4) is finite we define the

current value function, W(k): R" > R

(10) W(k(t))= sup E,J e " Lk(w, 1), k(w, 1), o (o, 7)) dr,

(k,k,o)eP

where E, denotes the conditional expectation given k at time ¢, and where k(¢)
replaces ko as the initial condition in (3).

ReEMARK: Under Assumption 2, W (k) is a concave function for all k € K.

In establishing convergence properties, the following class of competitive
processes is of especial importance.

DEFINITION: A random process (k, k, &) € P is McKenzie competitive if it is
competitive and if the dual random price process p(w, t) supports the value
function

(11) W(k(w,t))—pw, t)k(w, t)=W(k)—-p(w, 1)k

for all k € R", for almost all (w, t) €2 X 1.

REMARK: If (k, k, o) € ? is McKenzie competitive then p, in (6) is determined
by the condition po € d W (ko).

It is convenient for our purposes to recall Ito’s Lemma [15, Theorem 6, p. 59]in
the following form. This result will be used repeatedly in the analysis that follows.

LeEmMMA 2 (ITO): Let y(w, t),p(w, t) denote H-measurable random processes
Y(w, 0): (2% #)> R, M), plo,t):(2X]H)>R™, M™)
which are nonanticipating with respect to the m-dimensional Brownian motion

process z, and satisfy, for almost all w € (2,

t t
[ e nldr<eo, [ ot AP dr<eo, rer
0 0

and let y(w, t): (2 X1, %)~ (R', M") be defined by

t t

y (o, t)=yo+j y(w, 7) dr+j p(w, 7)dz(w, 1), tel
0

0
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IfV(t,y): R™*'>RisC' intand C? iny, then

V(e y(0,0)= VO, 30+ | [Vilr (0, 1)+ DV (r, o, )] dr

+J V(7 y(w, 7))p(w, 7) dz(w, 7), tel,
0

where DV (1, y(w, t)) is the differential generator of the process V(t, y(w, t)):
(12) DV (1, y(@, 1) = Vy(t, y)' (@, ) +3tr (Vi (1, ) (@, o (@, 1)).
THeEOREM 1 (Transversality Condition): A competitive random process

(k, k, &) € % with dual process (p — 8p, p, ) € P*, which satisfies the transversality
condition

Tim Eo e °"p(w, T) k(w, T)<0

T >

is optimal in the class % of random processes for which

(13)  lim Eoe *"p(w, T)'k(w, T)=0.

T->o0

ProOF: The proof is a generalization of the proof of Lemma 2 in Magill [21].
Let

(14) (o, 4k ko)=L, 4,k k &)~ L(w, t, k, k, o)+ (5 — 85) (k — k)
+p'(k— k) +tr (F(G—0o))
denote the flow value loss function for the random process (k, k, o) induced by the

random price process (5 — 8p, p, ) of the competitive process (k, k, ). Multiply-
ing by e~ %, integrating and rearranging terms, gives

T

(15)  Eo J' e (L(w, 7, k, k, &)= L(w, 7, k, k, o)) dr
0

T

=E, J e P, 1, k, k, o) dr
0
T

+E, j e~ [(5 - 8p) (k — k) + p'(k — k) +tr (7(o — )] dr.

0

Lemma 2 applied to the function

V(t, k—k,p)=e"p'(k—k),
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with (k — k, p) satisfying equations (3) and (6), leads to
e ""p(w, T)(k(w, T)—k(w, T))— p(w, 0)'(k(w, 0)— k(w, 0))

T
_ L e [(F—8p) (k — k) + p'(K — ) +tr (7o —5))] dr

T
+J e (' (0 — ) + (k — k) #) dz(w, 7).
0
In view of (3)', (6)’, and Proposition I-1 in [2], we have
T
Eo J' e (50— &) + (k- k)7 dz(w, 7) =0
0

so that
T

16)  Eo| UG-8 (k=B +p (k=E)+tr (o= dr

=Eoe Tp(w, T) (k(w, T)— k(w, T))— Eop(w, 0) (k(w, 0) — k(w, 0)).
Equations (15), (16), and ko= ko imply

T

a1 B[ e Ww nkk&)-Liw nk ko) dr
0

T
=E, j e " Pw, 1k, k,o)dr
0

+Eoe *"p(w, T) (k(w, T)—k(w, T))).

Since the competitivity of the process (k, IE, &) e ¥ implies L(w, t, k, k, 0) =0,
(17) gives at once
T

lim Eq j e (L(w, 7, k, k, &)~ L(w, 7, k, k, o)) dr

T 0

=lim Eoe *"p(w, T)'k(w, T)—Tim Ege *"p(w, T)'k(w, T)=0
T >0 T->o0
so that (k, k_, &) is optimal in the class of random processes for which (13) is
satisfied. Q.E.D.

3. CONVERGENCE OF McKENZIE COMPETITIVE PROCESSES

The sample paths of a McKenzie competitive process starting from nonrandom
initial conditions have a remarkable convergence property. Consider a point ko € K
and a McKenzie competitive process emanating from this point. Under assump-
tions, which include a strict concavity assumption on the basic integrand L, a
McKenzie competitive process emanating from any other point ko€ K converges
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almost surely to the first process. This result, which has its origin in the dual
relationship between the prices and quantities of a McKenzie competitive process,
may be stated as follows.

THEOREM 2 (Almost Sure Convergence): Let Assumption 2 be satisfied and let
the function L be time-independent and nonrandom as in (10). If two McKenzie
competitive random processes

18)  (kko)e? (oko)e?,
with associated dual price processes
(18)  (p-dppmeP*,  (p—8p b 7)eP¥,
starting from the nonrandom initial conditions
(ko, po), (Ko, Po),

satisfy the following conditions: (i) there exists a compact convex subset M < R" X
R" such that forall tel

(k(w, 1), p(w, 1)) = (k(w, t; ko), p(w, t; po)) € M,
(k(w, 1), p(, 1)) = (k(, t;k0), p(w, t; o)) € M,
for almost all we; (ii) there exists w>0 such that the function
(19) V(k—k,p—p)=—(p—p)(k—k)
satisfies
20)  @Vk—kp-p)<-ulk—k p-p)I
for all
(k—k,p—p)e Y ={(k—k,p—p)|(k, p), (k, p)e M};

(iii) the value function is (a) gtrictly concave, (b) differentiable, (c) strictly concave
and differentiable, for all k € K where K = {k |(k, p) € M}; then (i), (ii), and (iii) (a)
imply

k(w,)—k(w,t)>0  a.s. ast->o;
(9), (it), and (iii) (b) imply
plw, )= p(w, 1)>0 a.s. as t - ;
(i), (i), and (iii) (c) imply
(k(w,t)—k(w, t), p(w, ) —p(w, 1)) >0 a.s. ast- 0o,

ProoOF:* The first step is to show that V is a nonnegative supermartingale.” To

* We are grateful to F. R. Chang for helping to modify the proof into its present form.

3 For a thorough analysis of this remarkable class of stochastic processes the reader is referred to
Doob [9, Ch. VII] and Meyer [23, Chs. V, VI].
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this end consider two points k%, IE_ € K. Using the subgradient inequality (11) we
define the value losses at k and k by

1) A_(k_; p)= W(E)—W(/i)+ﬁ'(/i—15), peaw(k),
A(k; p)=W(k)—W(k)+p'(k—k), peaW(k).
The concavity of W(k) at k and k implies 4 =0, 4 =0 so that
(219 A+A=—(p-p)(k—k)=V=0.

To simplify notation let y = (y1, y») = (k —k, p —p) and let yo = (ko— ko, Po— Po)-
Since the processes (18), (18') are nonanticipating with respect to the Brownian
motion process z, and since they satisfy (3') and (6'), we may apply Lemma 2 to the
function V(y)=—y}y, to obtain

22)  V(y(w, 0)=V(yo)+ L' DV (y(w, 7)) dr+ L' h(w, 1) dz(w, )  where
h=—[(k—k) (m—&)+(p—p)(c—a)]

In view of (3'), (6') and Proposition I-1 in [2],
L} J’Ot |h(w, 7)|? dr dP(w) <o  forall tel,

so that
Lt hw,7) dz(w,7),  tel,

is a martingale with respect to the family of o-fields {&, ¢t € I'}. But then
E(h(w, t)|%,)=h(w, 7)=0, T<{, T, tel,

for almost all w € {2, so that (22) implies

WG, 0)|%)= Vi, + ([ 9V, 0 a0l 7)
and by (20)

E(V(y(w, 1) = V(y(@, )|%) = E(j DV (y(w, 0)) do|F,) <0.

Thus
E(V(y(w, )| F)<V(y(o, 1), TSH, T, tel,

for almost all w € £2, so that V(y(w, t)) is a supermartingale relative to the family of
o-fields {#, teI}. Since V(y(w,-)) is continuous for almost all w €2 by the
almost sure continuity of y(w,-), the conditions of Doob’s supermartingale
convergence theorem [23, p. 96] are satisfied. Thus there exists a random variable
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vo(w)=0 a.s. such that
(23) V(y(w, t; y0)) > vol®w)  as.ast->0.
The next step is to show that vo(w) = 0 for almost all w € (2. Suppose therefore that
vo(w) >0 for all w € A = 2 with P(A)>0. Then
0<po= j vo(w) dP(w) = J vo(w) dP(w).
n A
The inequality 0= (lyl|—ly2l)> = llysl +lly2I* = 2llyal ly=ll ~ implies

24)  HylP=lyllly2l=1yiyal.
Equations (20), (22), and (24) imply

T

B(T)=EV(y(@, T; yo) - V(yo) = E j DV (y(@, 73 yo)) dr
T

sEJ‘
0

In view of (21'), (24), and the fact that Y is a bounded set, there exists 0 <a <
such that

T
~ulyw, 73 yolf dr<E [ —2uV(y(w, 7 yo) dr
0

(25) 0<V(y(w,t; yo) <3y, t; yol’ <a a.s. forall tel

Equation (25) and the fact that V(y(w, t; yo)) is a measurable function of (w, t) for
all (w, t) € 2 %[0, T], allow us to apply Fubini’s theorem [14, p. 147]for all T <co:

T
B(T)<—2u J‘n L V(y(w, 7; yo)) d7 dP(w)

T
- 2u j L V(y(@, ; yo)) dP(w) dr.
If we let

Volt) = jﬂ V(@ 15 y0)) dP(@),

then
T

B(T)=-2u[ Vo(r)dr.
0
Equations (23), (25), and the bounded convergence theorem [14, p. 110] imply
Vo(t)»> 5y  ast—>o0.
Hence for any 0 < ¢ < ¥, there exists T, such that > T, implies

Vol(t)>po—e >0
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so that
T

B(T)S—Zy,j (Po—¢€) dr.

T,

Thus B(T) can be made arbitrarily negative by suitable choice of T <o, thus
contradicting V =0. Thus »o(w) = 0 for almost all € {2, as was to be shown.
To complete the proof we note that 4 =0, 4 =0 implies that V = 0 if and only if
A =A4=0, which implies that W is an affine function on the line segment
connecting k and k. Thus if W is strictly concave k — k = 0. If W is differentiable in
k, the affine function between k and k defines a hyperplane which coincides with
the tangent hyperplanes at k and k so that p—p = Wi (k)— Wi (k)=0. If W is
differentiable and strictly concave, V = 0 implies k —k = p — p = 0 and the proof is
complete. Q.E.D.

REMARK: It is natural to conjecture that the results of Theorem 2 may be
extended to the case where L is time-dependent provided W(k, t) satisfies the
conditions in (iii) uniformly for all te I.

ReEMARK: Consider the flow value loss £ in (14) and recall the definition of the
value loss 4 in (21). If we define &£ = L(w, ¢, k, k, &) by transposing the barred and
unbarred terms in (14), as in the definition of 4 in (21), then

FP+F=V-5V.

If flow value loss arguments are made on the surface L(k, k, o) in the same way
that value loss arguments are made on the surface W (k) in the proof of Theorem
2, it may be possible to show that

(26) (k(w, 1), o(w, 1)) — (I?(w, t), 0(w, t))->0 a.s.as t—>o
by imposing boundedness conditions on each of the terms in (26) and giving

sufficient conditions for V -0 a.s. as ¢t > 0.

NoTATION: It is useful to view the matrix of risk induced prices 7 as being
composed of m n-dimensional column vectors

The generalized Hamiltonian may then be viewed as a function of m +2
n-dimensional column vectors

4k, p,m)=%k,p,7",...,7™).
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CoROLLARY (Hamiltonian Curvature Condition): The following conditions are
sufficient for (20). For all (k,p, m)e M X R"™

é
—fgkk 5 1
@) K®= s is uniformly positive definite;
3 I 4,
(ii) G rin i=1,...,m, are non-negative definite.

ProoF: In view of Lemma 1, the competitive process (k, k,o)e
P, (p —ép, p T)E P* is a solution of the stochastic Hamiltonian equation ().
Similarly (k, k, 57)e P, (p—6p, p, 7)€ P* is a solution of a Hamiltonian system
(%9). If we apply Lemma 2 to the function (19), then (20) becomes
27 DV (y)= —((k—E)'(@k—@k)'*'(l’—?_)'(@p_@p)

+ 3 (' =7 (G = Gy) + 5(p — Y (k=)
where 4, =%k, p,7), and similarly for 9, %.,i=1,...,m. Let
A,B,Cy,...,C, be n Xn matrices, A and B positive definite and Cy, ..., C,
nonnegative definite. Consider the following curvature condition on the general-
ized Hamiltonian ¥(k, p, 7):
4(k, p, 1)< $4(k, p, m)+ Gi(k —k)—3(k — k) A(k — k),

28) Gk, p, 7)= Gk, p, M)+ Gy(5—p)+ 3 Gy — )

i=1
Hp-pYB(-p)+E L (7 -7 G~ 7).

If we make the same evaluation at (k, p, 77) in place of (k, p, ), we obtain
G(k, p, 7)< G(k, p, )+ Gi(k —k)—3(k — k) A(k — k),

(29) 4k, p, m)= 4Gk, p, W)+ G, (p—P)+ ¥ Goi(m' — 7'
i=1
+3(p=p)B(p=p)+3 ¥ (n' =7 Ci(m' = 7").
Multiplying (28) and (29) by —1 and adding all four inequalities gives

0= (k=B (@~ G)+(p =Y (G =G+ L (' =7 (S0 =G0

(k=R A ~R) = (p=pVB(p—p)- L (' 7Y Cilm' = 7,
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but then by (27),
DV(y)<~((k—FY Ak -B)+(p~5)B(pp)
+ 1 (' =@ Gl =7+ 6(p—p) (k— ).
We now choose the matrices A = —%,, B = b0 Ci =%, i=1,..., m, so that
DV ()= = ( (k= BY (= )k — )+ (0 BY %o (0~ P)
+ L ' =& Gl = )+ 50— p) (k- )

I _

- 1—%
k| k—k R
"] =uiy
pP—p

2

N IS

1 g,

since =/, (7' — 7Y G (' — #')=0, # >0 being the minimum eigenvalue of
K’ Q.E.D.

m iy i

ﬁEFINITION: The function 9(k, p,m;v)=u(k, v)+p'flk,v)+2_, 7w''o'(k, v)
will be called the generalized pre-Hamiltonian.

REMARK: 4(k, p, ) =sup @(k, D, T; V).
velU

If we assume that the maximum lies in the interior of U, then the condition @v =0
leads to the optimal control

v¥*=v*k,p, m)
so that the generalized Hamiltonian is given by

G(k, p, )= G(k, p, m; v*(k, p, ).

Using the fact that ¢, = 0 we obtain

Y%=%+%, 0¥ =4, =fk v*k p,m)),
4, = @ﬂ_i-}- @v . Ui.’ = @ﬂ; =0-i(k, v*(k, D, 11')) (l =1,..., m),

so that the m + 2 matrices required for the Hamiltonian curvature condition are
readily evaluated without explicitly calculating the generalized Hamiltonian,

(30) gkk:'g?kk_i-('?;kv : U;‘:, gpp=fv * U;l;’ g‘ﬂ"‘ll’j=o-:.) * v:l:'i (i=1’-"am)-
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EXAMPLE:

stcn =4 NJeriron

+ Y #'(Hk +Dw +ab);
i=1

4,=p'G—k'N—v'B+ Y #'D;=0.
i=1

Since B is positive definite, B! exists and

v* = v*(k, p, 17)=B_1(G’p—N’k + 3 Déwi);
i=1

G =—A, %G =—N, vE=—-B'N'
so that %y =—(A—NB™'N");
fo=G, v¥=B7'G'" sothat %,=GB 'G’;
o,=D, v¥=B7'D; sothat %,,=DB'D| (i=1,...,).

Thus the Corollary requires that

(A—NB!N") ~I
K®=
éI GB™'G’
2

be positive definite, since B! positive definite implies G i, =D.B"'D! is non-
negative definite, i=1, ..., m.

The reader is referred to Magill [21, Section 4] for a detailed geometric and
economic interpretation of the K° curvature condition.

4. CONVERGENCE TO INVARIANT PROBABILITY MEASURE

In this section we consider the long-run behavior of the probability measure of
the process arising from the maximizing behavior of agents. To this end we
consider problem (1), (2) with u, f, and o nonrandom and constant over time.

Let W(k(z)) denote the current value function

(31) W(k(t))=supE,J e u(k(w, 7), v(w, 7)) dr  where

velU

(32) k(w, t)= ko+J.tf(k(w, 7), v(w, 7)) dr +J. ok(w, 7), v(w, 7)) dz(w, 7).
o 0



DYNAMICS UNDER UNCERTAINTY 859
Let W(k)bea C 2 solution of the generalized Hamilton-Jacobi equation [12, p.
159]
ulk, v*)+ 2" W(k)—8W(k)=0  where

u(k, v*)+ D" W(k)— W (k)= sup {u(k, v)+D°W(k)—SW(k)},
velU

D°W (k) = Wie(k) f(k, v)+5 tr (Wi (K)o (k, v)a(k, v)),
and where we assume that v™* is a unique interior maximum such that
v*(k)=v*(k, Wi(k), Wi (k)).

DEFINITION: Let v* denote an optimal control which solves (1), (2). If v*
depends only on the current state, v™* = v*(k), then it will be called an optimal
policy function.

LeMMA 3: If an optimal policy function v*(k) exists such that

fr)=flk,v*Kk)),  o*(k)=a(k, v*k))
satisfy a Lipshitz condition for some a € R, for all k, keKk,
(33) IR Al +llo* (k) — o* ()l < allk — &,

then the optimal process
(34) k*(w, t)=ko+ J’Otf*(k (w, 7)) dr + J: o*(k(w, 7)) dz(w, T)
is a continuous® Markov process.

ProOOF: (Dynkin [11, Theorem 11.4, p. 349].)

AssuMPTION 3 (Compactness): K is compact and k*(w, t) e K for all (w, ) €
2 xI

We recall some basic facts associated with the analysis of the homogeneous
Markov process (34). The reader is referred to Dynkin [11] for a complete
analysis.

Consider the measurable space (K, %) with Borel o-field %, the o-field
generated by the open sets of K. Let €(K, %) denote the space of continuous
functions on K and let 7' (K, #) denote the space of finite countably additive set
functions defined on . The Markov process (34) induces a transition function on
(K, B)

Pk, A), kek, AeRB, tel,

¢ We say that the process k*(w, t) is continuous if k*(w, - ) is continuous for all z€ I, for all w € 2.
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where P,(-,A) is a B-measurable function for each Ae B and P,(k,-) is a
countably additive set function for each k € K, satisfying

(35) Pk, A)=0 for all A € %, P,(k,K)=1, tel

The transition function leads in turn to a family of linear mappings on the spaces

€ (K, B) and V'(K, B) defined by

Tek)=| sWPldy), ge% keK, el
K

T:"¢(A)=J P(y,A)¢(dy), ¢V, AecB, tel

K

The property of conditional expectations combined with the Markov principle
and the time homogeneity of the process leads to the semigroup property

(36) TYT*¥=T%, s, tel

The spaces € (K, %) and V' (K, $B) are related by the scalar product

@ #)=] skis@o, ge6 e

in terms of which the mappings T; and T, t € I, satisfy the basic relation
@7  (Tg ¢)=(8 Tid), gc¥  ¢c¥, tel

DEFINITION: ¢ € V'(K, B) is called a probability measure if ¢(A)=0 for all
A €% and ¢(K)=1. The set of probability measures in ¥ (K, B) is denoted by
II(K, ). We say that ¢ € II(K, B) is an invariant probability measure if

Tip=¢ forall te I

¢ is thus a fixed point for the family of mappings {T, ¢ € I'}. Since K is compact by
the Riesz representation theorem’ [10, p. 265], €(K, B)*= V' (K, B). If we
endow ¥'(K,#) with the weak* topology, then we say that the net ¢,V
converges weakly to ¢ € V" (in short ¢, > @) if

(g ¢.—#)>0 ast->00  forall ge 6(K, B).

LEMMA 4: If an optimal policy function exists that satisfies (33) and if Assump-
tion 3 is satisfied then (i) T is continuous in the weak* topology of V' (K, B) and
TF: II(K, B)- II(K, B) foralltel,

(i) II(K, B) is a convex weak™ compact subset of V' (K, RB).

7Since K = R" is a metric space, every finite countably additive set function is regular. See
Parthasarathy [26, Theorem 1.2, p. 27].
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PROOF: (i) We start by showing that (33) implies
(38) T.: (K, B)-> €(K, B), tel

To this end let k(w, ¢; ko) and k (w, ¢; k,) denote solutions of the Ito equation (34)
where ko and k,, are nonrandom initial conditions such that ||k, — ko|| > 0 as n - co.
In view of the Lipshitz condition (33), by a result of Dynkin [11, p. 344, equation
11.36] for any & >0 there exists a nondecreasing function (), ¢ € I, such that

P(o|llk(w, t; kn) — k(w, t; ko)|> &) < lsglllk,, —kolf”.
Thus for any g€ €(K, 8B), tel,
[ ek, 1 k) - gk, 1 ko) aP(@)
0

=Eg(k(w, t; k,))— Eg(k(w, t; ko))
=Tg(k,)—Tg(ko)>0 as n - o, since
P(w||gk(w, t; k,))—gk(w, t; ko))|>e)>0  asn->o0.

Since ko€ K is arbitrary, T,g(k) is continuous in k for all kK € K and (38) follows.
Now suppose

(g ¢-—#)>0 as7->c0  forall ge G(K, B);
then by (37)
(& Tt (- —)=(Tg, 6. —#)>0 as7->©

for all g€ (K, B), since T.g € (K, RB) by (38). To complete the proof of (i) we
note that (35) implies that for any ¢ € II(K, RB), t€ I,

H(A)=T?(A)= | Pk, Ap()=0, Aca,
K

SK)=TE6(K) = [ Pk K)o (k)= $(5) =1,

so that TF¢ € II(K, B).
(ii) This follows from Assumption 3 and [26, Theorem 6.4, p. 45]. Q.E.D.

THEOREM 3 (Invariant Probability Measure): If an optimal policy function exists
that satisfies (33) and if Assumption 3 is satisfied, then the Markov process (34) has
at least one invariant probability measure.

PrOOF: Since ¥'(K, R) is a linear topological space in its weak* topology and
since the semigroup property (36) implies that {T¥, ¢ € I'} is a commuting family of
mappings, the result follows from Lemma 4 and the Markov-Kakutani fixed point
theorem [10, Theorem 6, p. 456]. Q.E.D.
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REMARK: Let II+ denote the set of all invariant probability measures of the
process (34) under the condition (33). Theorem 3 asserts Il # .

THEOREM 4 (Convergence to Invariant Probability Measure): If an optimal
policy function exists that satisfies (33), if conditions (i), (ii) and (iii) (c) of Theorem
2 are satisfied, and if ¢, € II(K, B) denotes the probability measure at time t € I for
the process (34), starting from a nonrandom initial condition ko€ K, then ¢,
converges weakly to a unique invariant probability measure ¢ as t—> oo, for all
nonrandom initial conditions ko € K.

PROOF: By Theorem 3 ¢ € I~ exists. Let F(x) = ¢ (k | k <x) denote its distri-
bution function. By a well-known result of real variable theory since K = R", ¢
may be characterized by F [16, pp. 95-98]. Choose ko€ K. Let k (w, ¢; ko) denote
the solution of (34) and let ¢, and F;(x) denote the associated probability measure
and distribution function at time ¢ € I. We recall the following definition.

DEFINITION: Let F,(x), t € I, and F(x) denote distribution functions defined on
K = R". We say that F, converges weakly to F (in short F, 2 F)if

F,(x)-F(x)->0 as t—> 00 for all x € C(F)

where C(F) denotes the set of continuity points of F.

The following result is well-known [1, p. 18]. F, 2> F if and only if ¢, > ¢.

Now consider any £ > 0. Let  be a random variable with distribution function
F(x)andlet k(w, t; n) denote the solution of (34) with initial condition 5. Then by
the formula for total probability

Pr {(w, n)|llk (®, t; ko) — k(w, t; 0)||> £}
= | Pl 1 k)~ kG, {10 = pl=e) dF);
K
furthermore, by the bounded convergence theorem [14, p. 110],

(39 lim [ Plollk(@ t; ko)~ k(w, t|n = y)l=e) dF()
t»00 Jg
=L lim P(o Ik, £; ko)~ k(w, t|n = y)|=€) dF ().

Using the result on almost sure convergence in Theorem 2 and the fact that almost
sure convergence implies convergence in probability [16, p. 151], we obtain

P(w||lk(w, t; ko) —k(w, t|n=y)|=€)>0 as t—> 00
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for all y € K, so that the limit in (39) is zero. But then
|k (w, t; ko) —k(w, t; )]|=>0 in probability as ¢ - co.

Since convergence in probability implies convergence in distribution [1, Theorem
4.3, p. 26] we obtain

(40) F3F  sothat ¢, %é.

Consider ko€ K, ko # ko. Let k(w, t; ko) denote the solution of (34) and let ¢, and
F,(x) denote the associated probability measure and distribution function at time
tel. By an argument similar to the one above we may select ¢ € ITy+, with
distribution function F(x), and show that

41) F3F sothat &6
We now make use of the following lemma.

LEMMA 5: If k(w, 1), k(w, t) denote random processes with distribution functions
F,(x), F\(x), if there exists F(x) such that F,&F, and if |k(w, t)—k(w, t)]|> 0 in
probability as t > o, then F,3F.

PRrROOF: (See Billingsley [1, Theorem 4.1, p. 25].)
Since it follows from Theorem 2 that

Ik (w, 2; ko) —k(w, t; ko)|>0  in probability as ¢ - co,

(40), (41) and Lemma 5 imply ¢ = ¢. Since in the weak* topology ¢, (&) can
converge to at most one limit, the proof is complete. Q.E.D.

5. RATIONAL EXPECTATIONS EQUILIBRIUM

In this section we will show how the concept of a competitive process in
conjunction with the stochastic Hamiltonian equations (%), provide a useful
framework for the analysis of rational expectations equilibrium. We examine in
particular a rational expectations equilibrium for a competitive industry in which a
fixed finite number of firms behave according to a stochastic adjustment cost
theory, by creating an extended integrand problem analogous to that of Lucas-
Prescott [18]. By applying Theorem 4 to the extended integrand problem, we
show that the capital accumulation process of the firms in the industry converges
to a stationary stochastic equilibrium process.

Consider therefore an industry composed of N =1 firms, each producing the
same industry good with the aid of n =1 capital goods. All firms have identical
expectations regarding the industry product’s price process, which is an -
measurable, nonanticipating process:

(42) rw, t): (2 %I, %)>(R", M).
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The instantaneous flow of profit of the ith firm is the difference of its revenue
r(w, )f' (k'(w, t)) and its costs C'(v'(w, t)) where k'=(k'',..., k™) and v’ =
..., v™) denote the capital stocks and investment rates of the ith firm, and
where f'(k') and —C'(v’) are the standard strictly concave production and
adjustment cost functions. If § > 0 denotes the nonrandom interest rate, then each
firm seeks to maximize its expected discounted profit by selecting an #-measur-
able, nonanticipating investment process

v (w,1): (2 XTI, %)>(R", M") (i=1,...,N)

such that

sup Eo jw e Tr(w, 7)f (k' (0, 7)) — C' (v (w, 7))] d,

v (w,t)

t t

v (w, 7) dr +J o'k (w, 1)) dz'(w, 7),

0

(43) ki(w, t)=kf,+J’

0

m

(44)  o'(k"Ydz'=Y (Hk'+08)dz",
i=1
where H", o4 are n x n and n x 1 matrices with constant coefficients and 2w, 7)
is an m-dimensional Brownian motion process. This model is a simple stochastic
version of the basic Lucas-Mortensen [17, 24] adjustment cost model, with the
standard additional neoclassical assumption that the investment and output
processes of the ith firm have no direct external effects on the investment and
output processes of the kth firm, for i # k.
On the product market, the total market supply which is given by

Qs(e, )= %, 1K' (@, 1)

depends in a complex way through the maximizing behavior of firms on the price
process (42). On the demand side of the product market we make the simplifying
assumption that the total market demand depends only on the current market
price

Qp(w, )=y (r(w, 1), r=0, where
¥(Q)>0, Y'(Q)<o0, Q=0.

DEFINITION: A rational expectations equilibrium for the product market of the
industry is an #-measurable, nonanticipating random process (42) such that

45) Qp(w, t) = Qs(w, t) for almost all (w, t)e 2 X 1.
REMARK: The firms’ expectations are rational in that the anticipated price

process coincides almost surely with the actual price process generated on the
market by their maximizing behavior [25].
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Consider the integral of the demand function
Q
v@=] v(dy, ©=0, sothat
0
v'(Q)=¢(Q), P'(Q)=¢'(Q)<0, Q=0.

DEeFINITION: We call the problem of finding N #-measurable, nonanticipating
investment processes
'@, 1), ..., 0" (0, 1): (@XT, %)>R"™, #™)
such that

(®) sw B[ et § F )~ T O] dn

o), ..., o™ (w,1)) 0

where (k'(w, 1), ..., k" (w, 1)) satisfy (43), (44), almost surely, the extended
integrand problem.

THEOREM 5 (Rational Expectations Equilibrium): If the generalized Hamil-
tonian of the extended integrand problem (&) is differentiable, if

(k(w, 1), p(w, )= (k' (@, 1), ..., k" (0, 8), p (@, 1), ...,D" (@, 1)

is a competitive process for (&) which satisfies the transversality condition
(46)  Tim Eoe*"p(w, T)'k(w, T)<O,

T->o00
and if for any alternative random process k(w, t) with ko= ko

47) lim Eo e *"p(w, T) k(w, T) =0,

T 00

then the F-measurable, nonanticipating random process

@8 w,0=y( I @ 0)

is a rational expectations equilibrium for the product market of the industry.

PROOF: Since the generalized Hamiltonian for the extended integrand problem
is differentiable, (k(w, t), p(w, t)) is competitive if and only if, writing (¥) in
shorthand form,

dk'=h'(p") dt+o' (k") dz’,

(49) _ . NN om o

dp'=[op'~ ¥/ T f(k))fue— § wlols] drvn'dz
i=1 j=1
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where h' = (CL:)™". Equations (48) and (49) imply
dk'=h'(p)+o'(k") dz’,
(50) o Com o
dp'= [Sp' —r(w, Ofii— Y ﬂ"o}if] dt+w' dz'.
j=1
Equations (46), (47), and (50) are sufficient conditions for each firm to maximize
expected discounted profit, by Theorem 1. Equation (48) implies that (45) is
satisfied and the proof is complete. Q.E.D.

REMARK: Theorem 5 reduces the analysis of a rational expectations equili-
brium to the much simpler analysis of the extended integrand problem (&).

Let 9(k,p, w) denote the generalized Hamiltonian for (&); then the K°
condition reduces to

. 2
(51) min x—,(——g—kf—zi> <§> for all (k,p)e R"XR" where
x#0 X (gpp) X 2
(Wf'f}cl(f}cl?'+ W i) - 1p~f,1cl‘(ka~)'

G = . : s

VN (fir) o (PN (FRNY + P fienen)
Clin 0

(%) ' = ) =Cpp

0 C{:’NUN

Inequality (51) thus imposes a curvature condition on the production and demand
functions relative to the adjustment cost function. The condition is particularly
simple in the case of an infinitely elastic demand curve (¥" =0, ¥' =r) with
quadratic production and adjustment cost functions. In this case the smallest
eigenvalue of the matrix
f i gt 0
1_[/" fkk — :.I,r .
0 ' f II:,NkN

in the metricinduced by the matrix C,, must exceed (5/ 2)?, which is a condition on
the productivity of capital for each producer relative to the cost of adjustment
similar to that examined by Magill [21].

Let W(k)= W(k"', ..., k") denote the current value function (31) associated
with the extended integrand problem (&); then the optimal policy function is

(52)  v*(k)=(h'(Wia(k)), ..., B (Win (k) = f* (k).

Since o*(k) is given by (44), if (52) satisfies a Lipshitz condition, if (51) and
Assumption 3 are satisfied, then by Theorem 4 there exists a stationary distribution
function F(x)=F(x, ..., x™), for the capital stocks of the N firms, such that
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F, 2 F,where F,(x)=F,(x", . .., x") denotes the distribution function at timete I
for the process (34) generated by (44) and (52). The rational expectations
equilibrium for the competitive industry thus converges to a stationary stochastic
equilibrium process.
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